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An effective Lagrangian, containing relativistic SU (6)-invariant three- and four-point interaction terms,
is constructed for the scattering of the 35 meson representation by the 56 baryons. The lowest-order matrix
elements calculated from the Lagrangian include single-particle exchange terms that account for long-range
forces, and four-point interaction terms that approximate short-range forces for low-energy scattering.
Because of the imposition of free-field conditions on the scattered particles, the amplitudes maintain a
coplanar U (3)QU (3) symmetry, which is then broken by the mass differences in the multiplets. There are
three parameters in the model, which are fixed by the Si1, Sa1, and Pi; scattering lengths for #V elastic
scattering. Unitarity is implemented without introducing more parameters, by equating the matrix elements
to those of the reaction matrix XK. The amplitudes for all other reactions contained in 35()56 scattering are
determined thereby. In particular, the cross sections and angular distributions for #N — =N, KN — KN,
«N — 9N, =N — KA, #N — KZ, and KN — nA are calculated near their thresholds and compared with
experiment. In all cases where comparisons can be made, the model is in fairly good agreement with the
data, with the exception of 7V.— KZ. The threshold amplitudes for vector-meson production are also given
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as a prediction of the model.

I. INTRODUCTION

N the past several years various methods have been
evolved to calculate theoretically the parameters of
low-energy meson-nucleon scattering. These methods
fall into two general categories: the dispersion-theoretic
approach and the algebraic approach.

In the dispersion-theory approach an attempt is
made to account for dynamical features by assuming
that the analytic structure of the scattering amplitude
at low energies is dominated by nearby singularities in
the crossed channels.! Once these singularities are
chosen, the requirements of analyticity, unitarity, and
crossing symmetry must be satisfied, at least approxi-
mately. There are many approximation schemes that
have been developed to satisfy these restrictions, all
based on the Mandelstam representation? of two-body
scattering amplitudes. The schemes generally begin
with the assumption that the nearby singularities in the
partial-wave amplitudes can be approximated by single
poles, representing resonances and bound states. One
school of thought then proposes to use only these singu-
larities to determine the input functions in an iteration
scheme, the “bootstrap,” which will finally lead to self-
consistent solutions for the partial-wave amplitudes
without initially taking into account the contributions
of uncorrelated multiparticle intermediate states.! This
philosophy has had qualitative success, at least in some
of its implementation, in that it generates resonances
and bound states having masses and coupling strengths
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in rough agreement with nature.® Without further as-
sumptions, however, there have been no quantitatively
satisfactory predictions for low-energy differential and
integrated cross sections.

Another dispersion-theoretical approach, due to Cini
and Fubini,* is to attempt to account for the multi-
particle intermediate-state contributions to the dis-
persion integrals, explicitly. This is accomplished by
formally expanding the Mandelstam double spectral
integrals about the threshold for the reaction under
consideration. What results, then, are polynomials in
the kinematical variables, s, {, and %, with undetermined
coefficients representing the effect of the short range
forces, or the “background” terms. The nearby singu-
larities (long-range forces) are still approximated by
single poles. The coefficients of the background terms
are in principle calculable by using unitarity to produce
coupled nonlinear integral equations. In practice, how-
ever, this approach provides a phenomenological pa-
rametrization for low-energy scattering, in which the
undetermined polynomial coefficients are fixed by fitting
the experimental data.® Any theoretical model that can
relate these coefficients to one another, thereby reducing
the number of parameters available for fitting cross
sections and partial-wave amplitudes, will provide a test
of the nature of the background terms. The Cini-
Fubini representation, then, can not only explain the
gross features of a scattering process, but can phe-
nomenologically account for the details of differential
and integrated cross sections at low energies.®’

3 G. F. Chew, Phys. Rev. Letters 9, 233 (1962); P. Carruthers,
Phys. Rev. 133, B497 (1964); A. W. Martin and K. C. Wali, zbid.
130, 2455 (1963); R. E. Cutkosky, Ann. Phys. (N. Y.) 23, 415
(1963).

4 M. Cini and S. Fubini, Ann. Phys. (N. Y.) 10, 352 (1960).

5 J. Bowcock, W. M. Cottingham, and D. Lurié, Nuovo Cimento
16, 918 (1960).

6 R. L. Warnock and G. Frye, Phys. Rev. 138, B947 (1965).

7 P. Signell and J. Durso, Rev. Mod. Phys. 39, 635 (1967).
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A completely different method for determining the
parameters for low-energy scattering has evolved from
the Gell-Mann algebra of weak hadronic currents.?
Making use of the algebra of currents and the hypothesis
of partially conserved axial-vector current (PCAC),
Weinberg was able to relate the amplitude for the scat-
tering and emission of an arbitrary number of soft pions
to the weak-interaction parameters.® In particular, the
s-wave scattering lengths for elastic 7V scattering were
determined!® and were in good agreement with experi-
ment. This successful application of the current algebra
to strong interaction processes has led many investiga-
tors to recast the theory into a Lagrangian framework,
in which extrapolation to zero-mass mesons is not neces-
sary.l! A phenomenological Lagrangian is constructed
for mesons and baryons by requiring invariance under
nonlinear chiral U(2)® U(2) transformations, so that
both PCAC and current-algebra relations are satisfied.
Although this construction is not unique, the resulting
s-wave wlV scattering lengths are the same, in all cases,
as those given by the zero-mass pion formulas. How-
ever, the determinations of the p-wave scattering
lengths and s-wave effective-range parameters depend
more critically on the particular form of the phenomeno-
logical Lagrangian.

In this paper we will present a model for low-energy
meson-baryon scattering that combines some of the
features of a phenomenological Lagrangian, invariant
under a nonchiral U(3)® U(3), with the features of the
Cini-Fubini approximation to the double dispersion
relations. Our approach then is to write an effective
Lagrangian,’ to be used to second order in the coupling
strengths, which contains trilinear interactions among
most of the known low-lying hadrons along with four-
point interactions which account for the background
terms in the dispersion representation, and is invariant
under coplanar U(3)® U(3).13

By requiring that our effective interaction Lagrangian
be formally invariant under transformations of rela-
tivistic SU(6) or U(6,6),*~16 we are able to maintain the
desired properties for the scattering amplitudes. We

( 8 Dii) Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
1964).

9 S. Weinberg, Phys. Rev. Letters 16, 879 (1966).

10 S, Weinberg, Phys. Rev. Letters 17, 616 (1966); A. P. Bala-
chandran, M. G. Gundzik, and F. Nicodemi, Nuovo Cimento
44A, 1257 (1966).

11'S, Weinberg, Phys. Rev. Letters 18, 188 (1967); J. Schwinger,
Phys. Letters 24B, 473 (1967); J. A. Cronin, Phys. Rev. 161, 1483
(1967); J. Wess and B. Zumino, 2bid. 163, 1727 (1967).

12 By an “effective Lagrangian” we mean a series of products of
interacting fields written in momentum space, with momentum-
dependent couplings, so that matrix elements between particle
states will result in momentum-dependent form factors. The effec-
tive Lagrangian is to be used only to lowest nontrivial order in
calculating S-matrix elements, since higher orders are already ap-
proximately accounted for by the form factors.

13 R. Oehme, Phys. Rev. Letters 14, 866 (1965); R. F. Dashen
and M. Gell-Mann, Phys. Letters 17, 145 (1965).

14 A, Salam, R. Delbourgo, and J. Strathede, Proc. Roy. Soc.
(London) 28A, 146 (1965); 285A, 312 (1965).

15 M. A. Bég and A. Pais, Phys. Rev. Letters 14, 267 (1965).

16 B. Sakita and K. C. Wali, Phys. Rev. 139, B1355 (1965).
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write all relevant trilinear and quadrilinear interactions
among the meson 143 representation and the baryon
364 representation of U(6,6). Using this Lagrangian to
second order, then, will give us scattering of the pseudo-
scalar and vector-meson nonets upon the baryon octet
and decuplet. As is by now well known, U(6,6) cannot
be an invariance group of the full Lagrangian, and con-
sequently of the S matrix.'” In fact the free-field part
of the Lagrangian breaks the symmetry in its kinetic-
energy term.’® Then in computing second-order dia-
grams, with free-field propagators inserted, the result-
ing symmetry of the second-order .S matrix is no longer
U(6,6). The S matrix for two-body scattering, calcu-
lated from our effective Lagrangian,? is invariant under
the coplanar U(3)® U(3) subgroup of U(6,6). However,
not all of the coplanar U(3)® U(3)-invariant amplitudes
have independent parameters in this approach, since
there are generally more independent coplanar U(3)
® U(3) amplitudes than there are independent U(6,6)
invariant three- and four-point interactions in the
Lagrangian.

An additional feature in this higher-symmetry ap-
proach is the appearance of momentum-dependent fac-
tors in the effective Lagrangian which arise through the
imposition of symmetry-breaking free-field conditions
(Bargmann-Wigner equations) on the external particles.
In terms of the Cini-Fubini approximation then, this
effective Lagrangian gives the single-pole Born terms,
as well as the polynomial background terms, and relates
many of the undetermined polynomial coefficients.

This model can then make predictions for the low-
energy scattering reactions of mesons on baryons be-
longing to the 35 and 56 representations of SU(6). How-
ever, to make the scheme plausible, it is necessary to
account for the sizable mass splittings within the repre-
sentations. This is accomplished at the outset by using
the phenomenological mass breaking of Sakita and
Wali'6 in the free-field part of the Lagrangian (or equiv-
alently in the free-field equations). The full Lagrangian
is then only invariant under isospin transformations,
although the number of coupling parameters is still
limited to the six parameters of the U(6,6) interactions.
In an earlier paper using this model,’® the parameters
were chosen to be constants and were fixed by fitting
xN and KN elastic-scattering partial-wave amplitudes
at low energies. Under the assumption that the arbitrary
functions are constants, we can now test the predictive
power of the model for various other scattering pro-
cesses. Unfortunately, aside from low-energy =N and
KN elastic scattering, all other experimentally acces-
sible reactions involve couplings to other inelastic
channels, even at low energies (e.g., 7NV — KA, KN —
K-N, wN — pN). When the coupled-channel effects

17 L. O’Raifeartaigh, Phys. Rev. 139, B1052 (1965).

18 R. Ochme, Phys. Rev. Letters 14, 664 (1965); 14, 866 (1965);
P. G. O. Freund, ibid. 14, 803 (1965).

19 G, R. Goldstein and K. C. Wali, Phys. Rev. 155, 1762 (1967);
hereafter referred to as I.
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are in fact large, our model, without unitarity correc-
tions, will fail. If, on the other hand, this method is
taken seriously, then its success or failure in describing
the low-energy behavior of various inelastic processes,
will be an indication of the relative importance of cou-
pled-channel effects, and, where practical, coupled-
channel unitarity will be approximated.

In Sec. I1, we review the U(6,6) scheme for particle
multiplets, the free-field equations for the multiplets
and their solutions, the free-particle propagators and
the general method for constructing formally invariant
interaction Lagrangians. In Sec. ITI, we show, in general,
how S-matrix elements for various processes are invari-
ant under particular subgroups of U(6,6) depending on
the kinematical configurations and the number of in-
ternal lines. We also classify the particles according to
representations of these various subgroups. In Sec. IV
we present the effective Lagrangian for meson-baryon
scattering and discuss its symmetries, its dynamical
structure, and some general consequences of the sym-
metries. Section V is devoted to the presentation of a
simple procedure for approximating multichannel uni-
tarity, and the calculation of total cross sections and
angular distributions for several processes near their
thresholds: #N — «N, KN — KN, N — nN, =N —
KA, =N — K2, KN — yA, and vector-meson produc-
tion. Section VI summarizes the successes and failures
of the model. In the Appendix we collect together the
invariant amplitudes for vector-meson production.

II. U(6,6), FREE FIELDS, AND PROPAGATORS

In this section we review the relation of representa-
tions of the group U(6,6) to physical mesons and
baryons.'6 U(6,6) can be characterized as the group of
all 12)X12 matrices M satisfying the condition

MTI‘4M= I‘4 (2.1)
or

IWMTTy=M1,

where Ty is a 12X12 matrix having 6 plus ones and 6

minus ones on the diagonal and zeros for nondiagonal
elements. The carrier space for the fundamental (quark)
representation is chosen to be the direct product of a
three-dimensional with a four-dimensional complex vec-
tor space, and the basis for this space is denoted by ¥.a,
where i=1, 2, 3, 4 and a=1, 2, 3. In this representation
I'y=v4Q®1, where v4 is the usual Dirac matrix, and 7
is a 3X3 identity matrix, and the generators can be
chosen as the set {y} ®{\}, where {v} is the set of eight
Hermitian Dirac matrices I, v4, to,, 2v,vs(r, s=1, 2,
3), and eight anti-Hermitian Dirac matrices #y,, o4,
7vs, vavs, and {A} is the set of nine 3X3 Gell-Mann
matrices.2® An infinitesimal transformation on ¢ is

20 M. Gell-Mann, in 7'e Eightfold W ay, edited by M. Gell-Mann
and Y. Ne’eman (W. A. Benjamin, Inc., New York, 1964), p. 11.
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then

16 9
Yia = Yiati ,§1 Z}El eaz(v)id(N)eis.  (2.2)

The contragredient representation is formed by
U=y (vs®1), and ¥‘4y,, is an invariant under the trans-
formations (2.2).

Higher-dimensional representations are constructed
by taking irreducible tensor products of the fundamental
basis. In particular ¢i®~ (Yif— trace), which is
identified with mesons, forms a basis for the 143 repre-
sentation, and ia,jg iy~ Wicis¥ry) totally sym-
metrized, which is identified with the baryons, forms a
basis for the 364 representation.

To relate these representations to field operators for
physical particles, free-field equations are imposed upon
them. For example, the quark field is required to satisfy
the Dirac equation, so that the free-quark Lagrangian is

J/M(P)[i?u7#®l+ml®ljiajﬂ¢jﬂ(?)' (23)

This not invariant under the U(6,6) transformations in
(2.2) since the kinetic-energy term does not commute
with the generators. Hence the free quark with four-
momentum p is a projection on the basis of the funda-
mental representation of U(6,6) of the form

Yia(p)=[2m(m—+ po) I 1 (m—1ipuy,) 6. Y js.

Similarly, the free-meson field of momentum %, namely,
$:4"(k), is a projection on the basis for the 143 represen-
tation that satisfies the Duffin-Kemmer equation?! and
can be written in the form

bia®? (k) =[1— (i/mo)kuyu]s’
XLOrs)#Pa (k)4 (1) Vaa"(R)],  (2.5)

where P,7(k) is an element of the pseudoscalar nonet of
SU(3) and Vy 4"(k) is a member of the vector nonet
satisfying the auxiliary condition k\Vy,.?(k)=0. Fi-
nally, the free-baryon field ¥;q,i8,14(#) is a projection on
the 364 basis satisfying the Bargmann-Wigner equa-
tion?? and can be denoted by

‘pia,fﬁ,kv(P) = %[(7#_ (i/MO)‘T.uﬂPV)C]jk%t,i,aﬂ'y(p)
+H LU~ G/ M)yup)Clinki,o’ (B)essy
+[I— (i/MO)’YnPu)C]kﬂ&j,ﬂa(P) €iya
FLUI—= /M)y up)Clibr, () esas} ,  (2.6)

where C is the antisymmetric charge conjugation ma-
trix, ¥..o’(p) is the ith component of the Dirac spinor
belonging to the spin-3 baryon octet of SU(3) and,
Yui,apv(p) is a component of the Rarita-Schwinger
spin-$ field?® for the baryon decuplet [with auxiliary
conditions . plu.i,asy(P)=0, (vu)i%u.i,a8v(p)=0, and
total symmetry in the SU(3) indices «, 8, and v].

(2.4)

21 R. J. Duffin, Phys. Rev. 54, 1114 (1938); N. Kemmer, Proc.
Roy. Soc. (IL.ondon) A173, 91 (1939).

22V, Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.
34, 211 (1948).

23 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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Thus the imposition of free-field conditions on the
basis for the 143 representation of U(6,6) results in a
degenerate multiplet of mesons (2.5) containing the
pseudoscalar nonet and the vector nonet with common
mass which no longer transforms according to an irre-
ducible representation of U(6,6). To give these mesons
their physical masses and break the degeneracy, m, in
(2.5) is replaced by an SU(3) and spin-dependent opera-
tor m.,%®. Similarly, there results a degenerate baryon
multiplet, (2.6), containing the spin-} octet and the
spin-§ decuplet with common mass M ; mass splittings
can be introduced by replacing Mo with an SU(3)-
dependent operator M ag,, constructed so that the
physical masses result. These mass operators will be
used in the actual calculations, but for the general dis-
cussion following we will ignore the mass splittings un-
less stated otherwise.

The propagators for the multiplets of free fields (2.5)
and (2.6) are obtained by finding Green’s functions for
the field equations. For the meson field there is a unique
propagator; for the baryon field there is no wumique
Green’s function, although all choices give the same
residue of the pole in momentum space.?* As we found
in I, the nonunique part, the nonpole terms in the propa-
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gators, could be chosen in such a way that when the
four-momentum tends to zero the entire propagator
vanishes. This requirement ensures that the propagators
contain only terms that break the U(6,6) symmetry—
L.e., the #y,p, terms in the propagators are not U(6,6)
covariants. Then the resulting meson “symmetry-
breaking propagator’ is

1
(4a®,BcP)s =§‘*;Ii —064P8c%
o

(—ikuyutm) 4P (Fikryr+m) P
+ ] . @0
m2k?

To obtain the propagator for pseudoscalar mesons
merely contract {¢p4p,¢c?)y with (vs®I)4(vsQ1I)pC,
and similarly for vector mesons contract with (y,®I)p4
X (¥A®1)pC. Note that contracting with 6546, yields
zero, which means that there is no propagation of a
fictitious scalar meson (this is an important feature of
our choice for the meson propagator that is not shared
by the other approaches in Ref. 24). For the baryon
field the “symmetry-breaking propagator” is

(=ipuyutM) 4P (—ipy,+M) P (—ipxyat+M)c”

Wanc,PPEF), =
12M? p4BC)

where the summations are over-all permutations. The
M in the second summation is necessary to ensure van-
ishing at p,— 0, the —3ip,y, term is necessary to en-
sure that there is no propagation of a fictitious spin-}
unitary singlet. By contraction with appropriately sym-
metrized combinations of ¥ matrices and the charge-
conjugation matrix C, we can obtain the baryon octet
spin-3 propagator and the decuplet spin-3 propagator.

Given the meson and baryon fields and propagators,
possible interactions among them can be obtained by
forming products of the fields and propagators in which
all indices are fully contracted and the total four-
momentum is conserved. Products of this type, con-
taining no propagators, will be formally U(6,6)-invari-
ant—until the free-field conditions are imposed to de-
termine physical S-matrix elements. These latter inter-
actions will result in contact interactions with form
factors, for the free fields. Products containing propa-
gators will not be U(6,6)-invariant, even without free-
field conditions imposed.

In Sec. ITI we will clarify these statements and in-
vestigate the subgroups of U(6,6) under which the vari-
ous kinds of interaction terms are invariant.

24 C, S. Guralnik and T. W. B. Kibble, Phys. Rev. 139, B712
(1965); S. Kamefuchi and Y. Takahashi, Nuovo Cimento 44, A1

(1966); A. Salam et al. (Ref. 14). Our approach is closest to that of
Salam with modifications in contact terms.

M2+P2

—17 X

P(DEF)

(M—Sipu'y,.)ADt?BEﬁoF}, (2.8)

III. HIERARCHY OF U(6,6) SUBGROUPS
IN TWO-BODY SCATTERING

It has been emphasized that U(6,6) cannot be an in-
variance group for two-body scattering amplitudes.!” In
an effective Lagrangian this point is made manifest by
the presence of U(6,6) symmetry-breaking terms in the
free-particle Lagrangian and in the free-particle propa-
gators. In both cases the appearance of v,p, terms de-
stroys the full invariance, even for completely degen-
erate masses. When the mass breakings are included, the
full Lagrangian is only invariant under isotopic spin
transformations (Lorentz invariance is, of course, main-
tained). However, when the masses are degenerate, the
effective Lagrangian will be invariant under larger sub-
groups of U(6,6) which depend on the particular ki-
nematical configuration of the external particles. In this
section we will display the heirarchy of U(6,6) sub-
groups?® that are invariances of the full effective Lagran-
gian (with mass degenerate multiplets) and the scatter-
ing amplitude for two-body scattering. We will first
clarify the situation by considering mathematical quarks
and their interactions.

2% R. F. Dashen and M. Gell-Mann, Phys. Letters 17, 142
(1965); H. Harari and H. J. Lipkin, Phys. Rev. 140, B1617 (1965);

R. O46hme, in Preludes (Wiley-Interscience, Inc., New York, 1966),
p. 143,
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In Sec. IT we presented the free “quark” field as the
projection on the basis for the fundamental representa-
tion of U(6,6) satisfying the Dirac equation (2.4). It
was shown that the free Lagrangian (2.3) was not in-
variant under U(6,6).

If we now ask, under what subgroup of U(6,6) is (2.3)
an invariant, we are led to the subgroup defined by only
those elements M of U(6,6) which satisfy

M_1<PMVM®I)M=(pM'Yu®I)a (31)

as well as condition (2.1) above. Those elements form a
U6)®U(6) group which we will call the momen-
tum p U(6)®U(6), since the elements will depend
on the choice of momentum. If the quark is at rest
[$.= (0,im)], the subgroup is called the rest U(6)® U(6)
which is generated by the Hermitian set {I,y4,90 1,27 ,v5}
®{A} and the quarks (antiquarks) transform according
to the [6,1] ([1,6*]) irreducible representation. The
same rest U(6)® U(6) will leave the free “143” meson
Lagrangian and the free “364” baryon Lagrangian in-
variant when the particles are at rest. The degenerate
mesons in (2.5) transform irreducibley according to the
[6,6*] representation and degenerate baryons in (2.6)
(antibaryons) according to the [56,1] ([1,56*]) irre-
ducible representation of the rest U(6)® U(6) when the
respective particles are at rest. [For convenience we
will continue to denote the mesons by “143”, and the
baryons by “364” although the free fields do not
transform according to these, or any, irreducible rep-
resentations of U(6,6).] More generally if we con-
struct a basis for any irreducible representation of
U(6,6) as an irreducible tensor product of bases for
fundamental representations, and then impose Barg-
mann-Wigner conditions on this basis [for example,
Yia,i8,.-(p), with the conditions (ip,y,+ M) Vira,ip,...(P)
= (puyutM)iYiaip,...(p)=-+-=0], the associated
field will transform according to an irreducible represen-
tation of the momentum p U(6)Q U(6). [We will refer
to these fields as “broken U(6,6)” fields. ]

We consider now, an effective interaction Lagrangian
constructed out of products of “broken U(6,6)” fields,
in which all indices are fully contracted, for example, a

_ four-quark interaction

Lr=N (k" WiaR)YP (P Wis(p).

Then any S-matrix elements calculated from such an
interaction will be af most invariant under a U(6)® U(6)
group. In fact, this maximum symmetry will only be
realized when all of the external and internal lines of
the associated Feynman diagrams can be brought to
rest simultaneously by a single Lorentz transformation,
for only in that circumstance will all the “broken
U(6,6)” fields transform irreducibly under the same
momentum U(6)® U(6). In our example, if we use (3.2)
to lowest order in A to calculate quark-quark scattering,
illustrated in Fig. 1(a), the .S matrix will be U(6)® U (6)
invariant only when the quarks scatter at rest, i.e., at

(3.2)

MODEL FOR LOW-ENERGY MB SCATTERING

%(D*l-q)

(a) (b)

F1c. 1. Feynman diagrams for a four-quark contact interac-
tion, specified by Eq. (3.2) in the text, calculated to (a) first order
in A, (b) second order in \.

threshold. However, the \? term in the S matrix [Fig.
1(b)], will not be U(6)® U(6)-invariant for any ki-
nematical configuration, since there is an integration
over all four-momenta for the internal quark lines. The
same statement applies for all higher orders in A.

The next simplest kinematical configuration for the
Feynman diagrams is one in which there are only fwo
independent four-momenta, as in the forward direction
for two-body elastic scattering. To determine which
subgroup of U(6,6) is the maximum invariance group for
this configuration we first consider the product of two
free-quark fields with different momenta p and %, and
use (2.4) to write

Yk ia(p) ~ i (m—ikyy,) i (m—ipxyy) Y. (3.3)

This will be invariant under that subgroup of U(6,6),
the elements of which satisfy conditions (2.1) and (3.1)
above, as well as the condition

M_l(ku'Yu@I)M: (kn'Yu®I) . (34)

The subgroup so defined is a U(6) group. If we consider
the particular Lorentz frame in which p= (0,im) and & is
in the Z direction, the conditions (2.1), (3.1), and (3.4)
can be replaced by M—'=M', MT(y.Q )M = (v«®1),
and M1 (y;Q )M = (v;®1), and the resulting group is
U(6)w.25 The generators of this U(6)w are

{11012, 07 17507275} ® (A}

The quarks transform according to the 6 representation
of U(6)w, the “143” mesons according to the reducible
1835, and the “364” baryons according to the 56. Then
an S-matrix element calculated from a general effective
interaction Lagrangian, will be invariant under U(6)w
if some of the external and internal lines in the
associated Feynman diagram can be brought to rest by
a single Lorentz transformation under which the three-
momenta of the remaining lines simultaneously become
parallel or collinear. For our quark-quark example, (3.2)
the first-order diagram, Fig. 1(a), for scattering in the
Sforward direction will be U(6)w-invariant, but second,
Fig. 1(b), and higher orders will not be, since internal
lines in the second and higher orders must be integrated
over noncollinear momenta. For general two-body scat-
tering in the forward direction, diagrams with no more
than one internal line (i.e., for which the momentum is
fixed by momentum conservation), will contribute
U(6)w-invariant S-matrix elements. Furthermore all
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three-point functions constructed from “broken U(6,6)”
fields will be U(6)w-invariant, since momentum con-
servation allows only two independent momenta. This
means that the coupling constant relations obtained
from the formally U(6,6)-invariant three-point functions
will be the same as the U(6)w coupling-constant rela-
tions, when compared in the same Lorentz frame.

Finally, we consider the kinematical configuration for
which there are three independent four-momenta, p, &,
and ¢. The elements of the invariance group for such an
S-matrix element will satisfy

Mgy . @M= (g,v,®1I), (3.5

as well as conditions (2.1), (3.1), and (3.4) above. This
defines a U(3)Q U(3) group. If we choose a frame in
which one of the momenta p, &, or ¢ is at rest and the
other two three-momenta define the X-Z plane, that
particular U(3)® U(3) will be generated by {I,iysys}
®{\} (note that in our representation #y,ys=—vyaos,
10,s=—€r01). Under this coplanar U3)QU(3) the
quarks moving in the X-Z plane with spin quantized
up (down) along the ¥ axis, the normal to the plane,
transform according to the [3,17], ([1,3]) representa-
tion, whereas the antiquarks with spin up (down) trans-
form under the [3*%1] ([1,3*]) representation. Then
the “143”” mesons transform according to the reducible
representation

G 1lel13])e (3% 118[1,3%])
=[9,1]®[1,9]80[3,3*]10[3%3], (3.6)

where [9,17] ([1,9]) is a nonet of vector mesons with
spin-projections +1 (—1), [3,3*]@[3*,3] contains a
nonet of vectors with spin-projection 0, and a nonet of
pseudoscalar mesons. The “364” baryons transform ac-
cording to the totally symmetrized direct product of
three-quark representations:

{B1]e[1,3])e (311013 D@ ([3,11®[1,3 D}syn
=[10,1J®[1,10]®[6,3]®[3,6], (3.7)

where [10,1] ([1,10]) is a decuplet of spin-3+ baryons
with projection +% (—%), and [6,3] ([3,6]) is a decuplet
of spin-3+ baryons with projection +% (—3%), along with
an octet of spin-3* baryons with projection +3 (—3%).
[We have derived the expressions (3.6) and (3.7) so
that we will be able to determine below the number
of coplanar U(3)® U(3)-invariant amplitudes involv-
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ed in meson-baryon scattering.] From the preceding
paragraphs, it should now be clear that a diagram for
which some of the external and internal lines can be
brought to rest by a Lorentz transformation which
simultaneously leaves all the other lines in the same .
plane (coplanar), will be invariant under coplanar
UB)Q®U(3). In particular, for two-body scattering, all
diagrams with no more than one internal line will be
coplanar, since momentum conservation allows only
three independent external momenta and conservation
also fixes the single internal momentum. All such dia-
grams will thus be coplanar U(3)®@ U(3) symmetric.

In summary, then, given an effective Lagrangian
fully contracted on “broken U(6,6)” fields, all diagrams
calculated from this Lagrangian will be (i) invariant
under U(6)Q U(6) if all lines in the diagram can be
simultaneously brought to rest; (ii) invariant under
U(6)w if some lines can be brought to rest while the re-
maining lines are collinear in three-momenta; (iii) in-
variant under coplanar U(3)® U(3) if some lines can be
brought to rest while those remaining are coplanar. Then
for scattering of fwo degenerate “broken U(6,6)” multi-
plets, all diagrams containing, at most, one internal
line, will be rest U(6)® U(6)-symmetric at threshold,
U(6)w-symmetric in the forward direction, and coplanar
U(3)® U(3)-symmetric for arbitrary kinematical con-
figurations [the ‘“tree graphs” are always coplanar
U(3)® U(3)-symmetric|. We see then, that in the limit
of mass degeneracy, using trilinear interactions only to
second order, and quadrilinear couplings only to first
order, results in coplanar U(3)® U(3) symmetry for the
S-matrix elements in two-body scattering.

IV. EFFECTIVE LAGRANGIAN

We next write our effective interaction Lagrangian
for meson-baryon scattering,’® containing formally
U(6,6)-invariant trilinear and quadrilinear couplings.
The trilinear terms lead to manifest U(6,6) symmetry
breaking in second order, due to the imposition of free-
field conditions on the external particles, as well as the
propagator for the exchanged particle. The discussion
of Sec. IIT will facilitate an analysis of the invariances
of the resulting scattering amplitude.

With ¢.7#(k) the “143”” mass-degenerate mesons and
Via,ia,ny(p) the “364” degenerate baryons, the effective
interaction Lagrangian is, as in I,

L1=oPABC(p" W apc(p)p P (— kK)o pE(R)+4804B¢(p" W asp(p)[dc®(— k) P (k) + o (R)pP(—k')]
+4BPABC(p" W app(P) b P (— ko EP (k) —dc P (k)P (— k') ]+ EC(p" W anp(p)psP(—k )pcE (k)

where 4, B, -+« are pairs (4,@), (4,8), +++, and G and g
are coupling constants which will be fixed by the known
m-nucleon coupling and by the decay width of the p into
two pions, respectively. The parameters «, 8, 8, and v
are undetermined functions of the scalar invariants s,

+igtmoTr(¢ppd) +iGPABY apppc?, (4.1)

¢, and %, and must satisfy the following restrictions due
to crossing symmetry:

B(s,t,u)zﬁ(u,l,s) ’
E(S;tyu) = —B(u’:tys)x 'Y(syt;u) =’y(%,t,$) .

a(s,t,u) = a(’l/t,f,s),

(4.2)



179 MODEL
Since s, , and # are not independent, we can choose to
write the four parameters as functions of the two inde-
pendent variables ¢ and (s—#). Then the above restric-
tions imply that @, 8, and v must be even functions of
(s—mu), whereas 8 must be an odd function of (s—u).
Later we will assume for simplicity that the parameters
are constants, so that 8 will have to be set equal to
Zero.

When free-field solutions (2.5) and (2.6) are substi-
tuted into (4.1), an effective interaction Lagrangian
will result containing trilinear couplings among the
vector and pseudoscalar mesons, the spin-3 baryons and
and spin-§ baryons and because of the momentum de-
pendences in the free-field solutions, there will be form
factors multiplying those interaction terms.!¢ In particu-
lar, the familiar couplings for the nucleons, pions, and p
mesons, 4rysu: ¢, Avysyut: 0,9, eyt V,, ¢X0.6-V,,
will be contained in the expansion, with momentum-
dependent form factors. Furthermore, the quadrilinear

M5 p,k)= o ABC(p W anc(p)pu”(—k )pn" (k)
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terms will result in contact terms among the mesons
and baryons, again with momentum-dependent form
factors. Among these terms will be the pion-nucleon con-
tact interactions #u¢- ¢ and dey.u- ¢ X 3,6, and with
our final choice of parameters, in Sec. V, only the latter
contact term will contribute near threshold. Our effec-
tive Langrangian, then, is similar in form to the phe-
nomenological Lagrangians,'* except that we have main-
tained invariance under the nonchiral coplanar U(3)
® U(3), and have made no attempt to relate the cou-
plings here to the constants of weak interactions.?¢

Now, given the effective Lagrangian (4.1), we can
derive the amplitude for scattering of the meson and
baryon multiplets.

The trilinear couplings will lead to three matrix ele-
ments in second order; meson exchanges, baryon ex-
changes, and direct-channel baryon poles. The quadri-
linear terms are only used to first order, so the resulting
amplitude will be

+48ABC(p W anp(p) b (— R )d s (k) +dc T (k)puP(—F') ]

+4B0AB(p" W app(p) [dc"(— k) uP (k) —dc” (k) P (— k') JHvE 4B (0" Wanr(p)dsP(—k )pc (k)
—imGgyAEC(p" ) anp(p)(bcP(p' —p), buF (B —p))1[dr®(—k)pa®(k)+¢ rF(—k )pa" (k)]
+GAEC (PP (— k) Y anp(p+k), $EFC(p4-k) )y 57 (k)Y pe(p)

+GPAE(P o P (k) W anp(p—k"), §FT(p— k) s r™ (=K Wonra(p),

where the brackets ( ); represent the momentum-space
propagators for the multiplet specified, which were de-
fined in (2.11) and (2.12). When the free-field solutions
and the propagators are substituted into the amplitude
M(p',k'; p,k), the a, B, B, and v terms will give rise to
amplitudes containing polynominals in the invariants
s, ¢, and #, and no pole terms. These contact terms are
then of the same form as the Cini-Fubini polynomianl
approximations to the double spectral functions in the
Mandelstam representation.* Hence we interpret them
as approximations to singularities distant from the
threshold region of the physical cut in the Mandelstam
plane,? i.e., as short-range forces. The terms containing
the propagators, when expanded, will consist of contact
terms and pole terms, and thus represent single-particle
intermediate states—the single spectral functions or
long-range forces—with the additional contact terms to
ensure that these are purely U(6,6)-breaking terms (as
specified in Sec. IT). Because of the additional contact
terms, the symmetry-breaking single-particle exchanges
will all vanish at the degenerate-mass threshold. Thus
the dynamical scheme we have chosen is one in which
long-range forces are generated by the exchange of the
same particles that are scattered—the low-lying hadron
states—and the short-range forces, approximated by
formally U(6,6)-invariant contact terms, dominate the
scattering at and near threshold.

Next we investigate the number of independent
amplitudes that should enter from symmetry considera-

(4.3

tions in the scattering of “143” mesons on ‘364" bary-
ons. If U(6,6) were a good symmetry of the scattering
amplitude (which it is not) we would have only four
independent invariant amplitudes, since in U(6,6),
364143=364572601601635100 couples in four
invariant ways to another 364® 143 [note that we have
ignored the U(6,6) scalar part of the meson representa-
tion]. If free-field conditions were not imposed on the
external particles, one choice of four independent in-
variants would be the «, 8, §, and v terms of (4.3). By
then decomposing the fields according to the SU(2) s
®SU(3) subgroup, where SU(2) g is the group of ordi-
nary spin transformations, relations would be obtained
among the many reactions described by the four U(6,6)
invariants. Specifically, all two-body scatterings of the
vector or pseudoscalar nonets by the baryon octet or
decuplet would be specified by fixing the four functions,
a, B, B, and v.2” Then the well-known difficulties with
the implementation of unitarity would arise.?® However,
because of the introduction of free-field conditions and

26 A similar Lagrangian has also been used for =V scattering at
low energies, requiring PCAC; H. S. Mani, Y. Tomozawa, and
Y. P. Yao, Phys. Rev. Letters 18, 1084 (1967).

27 The quadrilinear terms alone were used to predict relations
among many cross sections by J. M. Cornwall, P. G. O. I'reund,
and K. T. Mahanthappa, Phys. Rev. Letters 14, 515 (1965); R.
Blankenbecler, M. L. Goldberger, K. Johnson, and S. Treiman,
ibid. 14, 518 (1965). Several of the predictions of this simple model
were in violent disagreement with experiment, such as no polar-
ization in K—p — K&,

28 This was already noticed by R. Blankenbecler e al. (Ref. 27).
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second-order matrix elements in (4.3), U(6,6) will not
be an invariance group of the scattering processes. The
ipyy,'s that are contained in the free-field projection
operators and propagators break the symmetry as ex-
plained in the preceding sections. This is equivalent to
introducing symmetry-breaking ‘“‘spurions” or ‘kine-
tons”’!® but in a particular, physical context; namely, as
particle exchanges. The coefficients that multiply the
symmetry-breaking terms are consequently related to
physical coupling constants, and are not arbitrary, as
they would be in the “spurion” scheme. However, it is
important to note, that if all possible “spurions” are
introduced into the amplitude, the remaining invariance
will be only U(3). By restricting our matrix element to
no more than second-order terms in the coupling con-
stants, we are considering only a subset of “spurions”
such that, in general, coplanar U(3)Q@U(3) symmetry
is maintained in the absence of mass splittings, and for
particular kinematical configurations, larger subgroups
of U(6,6) are invariance groups.

At the threshold for the reaction, all the degenerate
particles are at rest and we have seen in Sec. IIT that
the scattering amplitude must be rest U(6)Q U (6) sym-
metric. Then at threshold there can be only two invari-
ant amplitudes, since in U(6)® U(6),

[56,11®[6,6*]=[126,6*]®[210,6%]

and this can couple in only two invariant ways to
another [56,11®[6,6*].

Thus, of the seven terms in the amplitude M, (4.3),
there can be only two independent terms at threshold.
Only the a, 8, and 3 terms will be nonzero at the degen-
erate-mass threshold and the 3 term will equal the g8
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term. This has very strong implications for the scatter-
ing lengths of the reactions involved—they are all de-
termined by the two functions & and (8+48) evaluated
at threshold (i.e., two constants).

Then (for degenerate masses) the following relations
are obtained for s-wave scattering lengths:

a(xtp — 7tp)=a(K+p — K+p)
=—[16M /(M +m)J[a+4(8+5)],
a(r=p — 7 p)=a(Ktn — Ktn)
=—[16M /(M +m)[a+3(8+5)];
20(Ktn — K*n)—a(Ktp— K*+p)=a(K—p— K—p)
=a(K—n— Kn); (4.5)

(4.4)

a(rtp — wtp)—al(a=p — 77p)=(V/6)a(r—p — 1'n)
=V3a(r=p — n'n)=— (2/V3)a(K~p — =°A")
=—2a(K—p — 7°A%) = —V2a(K—p — 'A%

=—2a(K—p — 71°2%) = —a(K—p — 7~ Zt); (4.6)
0=a(rtp — KtZH)=a(rp — K*27)
=a(r—p— KA)=a(K—p— KtE")
=a(K—n— K%-). (4.7)

When mass breaking is included, the U(6)® U(6)
symmetry is broken and the relations among the in-
elastic amplitudes at threshold (4.6) and (4.7) will no
longer hold since other terms in the matrix elements
(4.3) will be nonzero. However, the elastic processes will
still be determined by the two parameters a and 8+,
although expressions (4.4) and (4.5) become modified
in the following way:

a(wtp — wtp)=[—8M n/(M y+mz) {1+ (ms*/me®) Ja+[B+BD+5 (m+/mo)[8+51} ,
a(r=p — 7 p)=[—8M n/(M y+mz) {[1+4 (ms*/me?) N a+[B8+B]) —F (m+/mo)[8+5]} ,

a(K*p — K*p)=[—8M n/(M y+mx) {[1+4 (mx?/mi®) Na+3[8+B1)£4 (mx/mi)[8+81}

(4.8)

a(K*n— K*n)=[—8M y/(M y+mx) [ 1+ (mx?/me?) J(a+3[8+B1) £ 2 (mx/mo)[B+B]} .

For the K-meson scattering lengths, a simple relation
holds even with mass breaking:

a(K*+p)—a(K=p)=2La(Kn) —a(K-n)].  (4.9)

This relation is part of the Johnson-Treiman relations,
which were derived from degenerate SU(6).2? Taking
the experimentally determined KN and KN, T=1 scat-
tering lengths, we can obtain the KN, T'=0 scattering
length30.3t;

a(KN, T=0)~0.0 F,

a(KN, T=1)~0.28 F,
o(KN, T=1)~0.0+140.7 F.

29 K. Johnson and S. Treiman, Phys. Rev. Letters 14, 189
(1965).

30V, J. Stenger et al., Phys. Rev. 134, B1111 (1964).

31 S, Goldhaber ef al., Phys. Rev. Letters 9, 135 (1962).

32 J. K. Kim, Phys. Rev. Letters 14, 29 (1965).

Then a(EN, T=0)~—0.2—41.2, which is nonsensical
since the imaginary part must be positive. This just
confirms the importance of multichannel effects for the
KN system. We found in T that choosing =0 and
a=—f gave good scattering lengths for #N and the
T=1KN. We will consider this again when we calculate
cross sections in Sec. V. It is also important to note that
although relations (4.7) cannot hold when mass breaking
is included, the threshold amplitudes for these associ-
ated-production reactions will be small relative to the
elastic amplitudes (by more than an order of magni-
tude). We take this to be a very encouraging qualitative
prediction of the model, since all of the reactions in-
volved in (4.7) have small cross sections at low energies,
experimentally.

Relations similar to (4.4)-(4.7) can be written for
degenerate-mass threshold amplitudes in vector-meson
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production (P4 B — V4 B), baryon-decuplet produc-
tion (P+B — P+ D), and double-resonance production
(P4+B— V+D). All of these relations will be altered
drastically by mass breaking.

The next simplest kinematical configuration will be
the forward direction, for which all external and internal
lines in the matrix elements that we have considered
in (4.3) will have parallel three momenta, and hence
the amplitude will be U(6) w-invariant. The number of
independent U(6)w-invariant amplitudes for the scat-
tering of the reducible 36 representation by the 56 rep-
resentation will be seven, since

56@36=56® (3501)=56700 70051134056

contains two 56’s which couple invariantly in four ways
to the two 56’s contained in the outgoing 56®36. Since
our amplitude (4.3) contains only seven independent
terms, in the forward direction we obtain the same pre-
dictions as in U(6)w, with the further restriction that
our three pole terms involve only two parameters—the
coupling constants g and G (although the functional
forms of the three terms are all different).

If we separate out the SU(3) singlet pseudoscalar
part of the meson fields by writing

ik \’
d)iajﬂ(k) =[¢iajﬁ(k) —%5&9(‘)’5—“"/5) (‘Ys)kl¢l~/k7(k):|
m i

ik \7
+%aaﬂ(ys——75) (1), (4.10)
;)

1

the bracketed term will transform according to the irre-
ducible 35 representation of U(6)w. Then substituting
(4.10) into the scattering matrix (4.3), we can separate
out those terms corresponding to pure 35 scattering off
of 56. From the direct product decomposition, above,
we know that there will be only four independent
U(6) w-invariant amplitudes for 35® 56 scattering. Then
in the forward direction the three second-order terms
in (4.3), corresponding to particle exchanges, will be
linear combinations of the four first-order terms in (4.3)
(the «, B, B, and v term). Again, with our choice of
propagators, the meson-exchange term will vanish for
forward scattering, so the baryon-exchange terms will
be linear combinations of the four first-order terms.
(These remarks, as previously specified, only apply in
the degenerate-mass limits.) It then follows that all of
the relations among scattering amplitudes in U(6)w
will hold for forward scattering of degenerate-mass par-
ticles in our model. In particular, the relations derived
by Johnson and Treiman?® and by Carter et al.?® will be
obtained for the forward amplitudes. Many of these
relations have been shown to disagree markedly with
experiment.®* By including mass breakings, the relations

38 J. C. Carter et al., Phys. Rev. Letters 15, 373 (1965).
3 J. D. Jackson, Phys. Rev. Letters 15, 990 (1965).
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will be altered and simple ratios of amplitudes will no
longer be obtained.

Finally, for an arbitrary kinematical configuration in
our meson-baryon scattering matrix, the amplitude will
be coplanar U(3)Q@U(3) symmetric. Since the pseudo-
scalar and spin-projection zero (quantized normal to
the scattering plane) vector mesons are in the (3,3%),
and (3*,3), irreducible representations, and the spin-
projection +3 baryon octet and decuplet are in the
(6,3)41/2 representation, and the direct products

(3,3%)0®(6,3)412
=[(10,8)® (8,8)® (10,1)® (8,1) 1112,

(3%,3)0®(6,3) 4172
=[(15,6)®(3,6)® (15,39 @ (3,3") 112,

then, there will be eight coplanar U(3)® U(3)-invariant
amplitudes for P+B+1/2 — P—|" B+1/2 (P+B__1/z ampli-
tudes are related to these by parity). Note that there
will be no P+ By1/2— P+ B_1)2 terms since the total
spin projection and parity are combined. The same eight
amplitudes will also describe reactions involving the
spin-projection zero vector mesons and the spin-projec-
tion =% decuplet baryons. To completely determine
production of vector mesons (P+B — V-4 B) the initial
states, represented by the decomposition in (4.11),
must also be coupled to the spin-projection +1 (—1)
vector mesons in the final state, which belong to the
(8,1) 410 (1,1)41((1,8)_1® (1,1)_1) reducible representa-
tion. When this is done there will be a total of 24-invari-
ant amplitudes for vector-meson nonet production.
These 24 amplitudes completely determine the six inde-
pendent helicity amplitudes for the production of each
member of the nonet. Because there are, generally,
more independent amplitudes in coplanar U(3)®@ U(3)
than the seven we have chosen in our broken U(6,6)
scheme, there is less arbitrariness in our prediction (and
less freedom). For example, of the eight undetermined
functions of energy and angle that would describe
P+ B — P+ B scattering in coplanar U(3)® U(3), only
four of those functions will be independent in our model.
Furthermore, part of the functional dependence will be
fixed by the kinematical factors that arise in the decom-
position of the supermultiplets “143” and “364” into
constituent mesons and baryons, part will arise from
the dynamical assumption of single-particle intermedi-
ate states, and the remainder will be specified by fixing
@, B, B, and y. In specifying the functions we were
guided by the Cini-Fubini representation, i.e., distant
singularities in the scattering amplitude, at low energies,
can be approximated by polynomials in the Mandelstam
variables s and £. Polynomial terms appear naturally in
the four-point functions and in the nonpole terms in the
single-particle exchanges, so we make the simplest as-
sumption, that all of the distant singularities are ac-
counted for by these polynomial terms and the «, 8, §,
and v merely fix the over-all strength of the four-point
interactions. Then a, 8, B, and v are taken to be con-

(4.11)
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stants. Condition (4.2) then requires =0, so we have
only three constants to choose in order to determine the
low-energy scattering processes.

V. UNITARITY, ANGULAR DISTRIBUTIONS,
AND CROSS SECTIONS

To proceed with the calculation it is necessary to
specify the four as yet undetermined functions that
multiply the four-point functions in the Lagrangian,
and the two coupling constants g and G for the trilinear
interactions. The coupling constants are fixed, as in I,
by relating G to the n-N coupling and g to the p-7w
coupling to obtain G?/47=2.05 and g?/4r=0.05 (having
taken g,,-0?/4r=15 and g,».*/4r=3). This fixes the
couplings of the “364” baryons to the “143” mesons and
the couplings of the “143” mesons to the “143” mesons.
The four functions e, 8, B, and v are chosen to be con-
stants for simplicity. Crossing symmetry for the four-
point functions demands that «, 8, and v be even under
the interchange of the Mandelstam variables s and #,
whereas 8 must be odd. Hence 8 must vanish when it is
taken to be a constant, leaving three constants, , 3, and
v. Next, requiring that the =N s-wave scattering
lengths satisfy the relation 2as+a1=0, which is ob-
tained by assuming pure isovector exhcange in the ¢
channel at the s-channel threshold® and is fairly well
satisfied experimentally,®® imposes the restriction that
a+B=0. Finally, the calculated s-wave phase shifts for
wN, T=% at Pi1.,=100 MeV/c and KN, T'=1 at Piap
=140 MeV/c are required to agree with the experi-
mentally determined phase shifts,” which fixes the two
remaining independent parameters, as in I,

a=—B=—0.0957u.1,
v=3.00u,"1.

Having made these choices for the parameters, it is now
possible to use the Lagrangian to second order as speci-
fied previously, to calculate the low-energy scattering
of any member of the “143” meson representation on

3 This prediction is a result of several different theoretical
models. S. Weinberg [Phys. Rev. Letters 17, 616 (1966) Jand A. P.
Balachandran, M. G. Gundzik, and F. Nicodemi [ Nuovo Cimento
44A, 1257 (1966)] use the current algebra to obtain this result. J.
J. Sakurai [Phys. Rev. Letters 17, 552 (1966)] uses vector-iso-
vector meson dominance. J. Schwinger (Ref. 11) and Wess and
Zumino (Ref. 11), among others, use chiral symmetric phenomeno-
logical Lagrangians. Finally, the PCAC assumption gives this
result as a consistency condition at threshold as shown by S. L.
Adler, Phys. Rev. 137, B1022 (1965).

36 J, Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963); L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev.
138, B190 (1965); S. W. Barnes et al., ibid. 117, 226 (1960), all
agree that 2as+a: is small. C. Lovelace, in Proceedings of the
Heidelberg International Conference on Elementary Particles, edited
by H. Filthuth (North-Holland Publishing Co., Amsterdam,
1968), has obtained 2as+a:1=0.069, which is in strong disagreement
with the other determinations. However, if we choose to fit the
Lovelace values, our parameters « and 8 change by only 10%, and
our final conclusions will be effected only very slightly.

37S. W. Barnes et al., Phys. Rev. 117, 226 (1960); S. Goldhaber
et al., Phys. Rev. Letters 9, 135 (1962).
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any member of the “364” baryon representation. How-
ever, it should be clear that such a calculation can only
produce real amplitudes, and may violate single-channel
and multichannel unitarity, even in the low-energy
region considered.

To compare our results with experimental cross sec-
tions, angular distributions, and excitation functions it
is necessary to implement unitarity. We would like to
do this in a way that introduces few new parameters
into the model yet, is, in some sense, a better approxi-
mation to a more complete theory. One general method
often used to generate an amplitude satisfying unitarity,
from a Born-term input, is the N/D method.?® In our
case, however, the lowest-order terms that would be
used as input in an N/ D iteration procedure were chosen
to be a good approximation to threshold phenomena.
Those terms contain polynomials in s, ¢, and % which
approximate the distant singularities only for low en-
ergies. In calculating the D function the polynomial
terms would have to be cutoff to give nondivergent
results, and since the polynomials become very large in
the medium-energy region the results would be strongly
dependent on the cutoff parameters chosen for each
partial-wave amplitude. Thus we feel that the N/D
method is not a natural procedure for unitarizing our
amplitudes.

A simpler assumption, and a more natural one from
our point of view, is to assume that our partial-wave
amplitudes are an effective-range approximation to the
real K matrix.?® Such an ansatz is implemented without
introducting any new parameters, and does not involve
the behavior of the amplitudes at higher energies. The
resulting 7 matrix then satisfies unitarity automatically,
since T—'=K~'—ip, where p is the appropriate phase
space matrix, and Im7—'= —p. It is easy to justify this
procedure when the calculated real partial-wave ampli-
tudes are small, as in s-wave 7N scattering, where
(cosé sind/q)~5/g~1/q coté=K. In the discussion of
the Ns3* resonance, below, we will also see that this
method provides a simple way to unitarize resonant
amplitudes, so that the correct threshold behavior is
guaranteed. In the case of large, nonresonant partial
waves it is not clear that this approach is completely
justified, but we will attempt to make it plausible. Con-
sider a perturbative scheme in which the 7" and K
matrix are expanded in powers of some coupling con-
stant A% i.e.,

T=3 NT,
n=1
and
K=3 N"K,.
n=1

Then the relation T—'44p=K~! yields an iterative

38 See, for example, A. W. Martin and K. C. Wali, Phys. Rev.
130, 2455 (1963), where earlier references are also given.
39 R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961).
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solution, the first few terms of which are symbolically

Ky=T,,
Ko=Ty—TripT1,
K3= Ts—' Tz’ipTl— TlipTg— T]ipTlipTl .

Hence, in such an iteration scheme, the lowest-order K
matrix is the lowest-order T-matrix element, i.e., the
Born term. In our case we can identify the four-point
interaction terms with a low-energy approximation to
the higher-order terms in K.%° It should be emphasized
that the preceding discussion is intended only as a
plausibility argument. We do not calculate any higher-
order T-matrix elements.

To illustrate some general consequences of this as-
sumption, consider a partial-wave amplitude for pseudo-
scalar-meson—spin-3-baryon scattering with total angu-
lar momentum J =743, satisfying elastic unitarity,*

F1e(@) = e sindus(@) V/g=1/{[K (@) T'~ig} ,

where K ;,.(q)=[tané.(¢)]/q. Now, if the partial-wave
projections of the matrix elements obtained from the
Lagrangian (4.1) are set equal to the K matrix, the
elastic unitarity condition, Im{[ fi.(¢)T'}=—¢g, and
the threshold conditions, Refi.(¢)~¢? and Imfi(g)
~q*1 are automatically satisfied since the K, will be
real and satisfly K;.(g)~¢? near threshold. Further-
more, the f;.(¢) will have the same singularities as the
input matrix elements—no new poles can be generated
by this procedure. This is in keeping with the spirit of
the model; low-lying resonant states are explicitly ac-
counted for by pole diagrams (it is essentially an N/D
procedure in which the N function is approximated by
the aforementioned matrix elements and the real part
of the D function is set equal to 1). Chosen as stated,
the Ky will have pole terms and polynomial terms and
consequently its magnitude will become a monotonically
increasing function beyond some finite energy, so that
the fi4 will all tend to zero at high energies. These K,.’s
having no poles in the physical region will produce
phase shifts that approach 44 asymptotically. These
asymptotic properties will be of no concern, however,
since the model is only used up to energies slightly above
inelastic thresholds. For those K;;’s that become large
in magnitude at low energies, the corresponding &
will approach 437 more rapidly. In a few cases we will
consider the implications of multichannel unitarity for
the K matrix, but these general results will still apply.

40 Recently Remiddi, Pusterla, and Mignaco have used a Padé
approximant technique to sum 7-matrix elements to fourth order
to determine =N phase shifts. The P[2,2] approximant has extra
effective-range parameters included to account for short-range
forces, so that except for the fourth-order terms, the partial-wave
amplitudes have a form similar to our K-matrix approximation.
[E. Remiddi, M. Pusterla, and J. A. Mignaco, CERN Report
No. 895, 1968 (unpublished).]

( 41 S). C. Frautschi and J. D. Walecka, Phys. Rev., 120, 1486
1960).
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Having specified the calculational procedure, and its
qualitative features, we will now proceed to discuss the
quantitative results of the model for particular reactions.

A. =N— =N

In I we obtained the lowest-order terms from the
effective Lagrangian for =V scattering, projected out
partial waves, and identified them with the real parts of
the partial-wave amplitudes f,.‘D. In the low-energy
region (P1,5=0-300 MeV /c) the calculated real partial
waves were found to be in good agreement with the ex-
perimentally determined set of Roper, Wright, and
Feld,®? with the exception of the resonant amplitude
(=3, J=4%). In the latter case, the model did not take
the nonzero width of the N33* into account, and conse-
quently this amplitude was infinite at the resonance
position. In order to compare more directly with experi-
mental data, namely, differential and total cross sec-
tions, it is necessary to include a width for the Njs™*.
We have done this without introducing any new param-
eters, by using the K-matrix approximation, discussed
above, which is equivalent to a narrow-width approxi-
mation*® with elastic unitarity and correct threshold
behavior, as we now demonstrate.

Consider the pure-pole contribution to the P33 ampli-
tude (which is identical to the narrow-width approxima-
tion to a dispersion relation for a kinematical-singu-
larity-free amplitude)

E+M1 q2 gN*N,rZ/47r
W 6M* Mp—W

Jue6™(g)= S CA Y

where f1, ¢/ is the usual T=3%, /=1, J =34 partial-wave
amplitude (defined in I), W is the total energy in the
c.m. system, E is the nucleon energy, ¢ is the magnitude
of the c.m. momentum, M g is the resonance mass, and
gn+n«2/4m is a dimensionless coupling constant. This
amplitude is pure real and has a pole at W=Mg. In
order to produce the usual Breit-Wigner resonance form,
near the resonance, replace Mr by Mg—i(q/qr)3T,
where T' is identified with the full width at half-maxi-
mum. Then the new amplitude will satisfy unitarity at
the resonance position, providing the following identifi-
cation is made:

I'= (ER+M/I/I/>%qR3(M_2>gN*NW2/4Tr, (52)

where the subscript R refers to the value of the sub-
scripted quantity at the resonance energy. This identi-
fication gives a width of 100 MeV in our model, where
gnvsn-=2[14+M~+Mg)/mo) JG. If unitarity is to be
satisfied for all energies, T' must be a function of energy

42 L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965); also A. Donnachie, R. G. Kirsopp, and C. Lovelace,
Phys. Letters 26B, 161 (1968), who obtain phase shifts in agree-
ment with the above at the low energies considered here.

(1;2?) W. Martin and K. C. Wali, Nuovo Cimento 31, 1324
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F16. 2. 7% total sections. The experimental curves (Ref. 45)
are given by solid lines for 7*p. The cross sections calculated from
our model are given by dashed and dotted lines for #*p and =,
respectively.

satisfying relation (5.2) at W =M g. If, furthermore, we
require that the form (5.1) be preserved, except for the
substitution of a complex mass for the resonance,** then
the complete amplitude must be

rw)/2

L G2 () = ,
T = ey —igh (72

where
T(W)=(E+M/W)3qrq®/(M?)gnxn+/4m.

This amplitude also satisfies the threshold conditions

(5.3)
Refiy— ¢, Imfi— g
We can rewrite (5.3) in the form

S =([1/ 1 ¢ W)]—ig) ™,

where 1, ®/2 is the narrow-resonance approximation in
(5.1), and this is just the K-matrix approximation

Fr B = Ky G0 ().

(5.4)

The full P3; amplitude, calculated from the model, con-
tains nonpole contributions arising from the baryon
propagators and the other terms in the Lagrangian, so
that when this amplitude is identified with the K matrix
there arises a nonresonant background which will be
important at the very low energies.

Among the various terms in the Lagrangian, the a and
B terms dominate the lowest-energy region, contributing
to the s-wave scattering. Near threshold, all other terms
contribute to p waves and higher partial waves. As
stated previously, this situation arises because the
matrix elements calculated from the v term, the p-

44 Without this requirement I' (W) could have an arbitrary extra
energy-dependent factor, say, v(IW), only satisfying the conditions
v(Mg)=1 and v(W) at threshold not zero. For example, a factor
(M r—ERg)/(W — E) would give the Chew-Low linear extrapolation

for (¢* cotdss)/w [G. Chew and F. Low, Phys. Rev. 101, 1570
(1956)] in the static limit.
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meson-exchange term, and the direct and crossed N
and N* terms all vanish at threshold in this model. At
energies in the Ng* region, the direct N*-pole term, of
course, dominates, with all other terms contributing to
a coherent background.

Now, using the K-matrix approximation for all the
partial waves important in the low-energy region,
namely, s and p waves, we calculate the total #tp and
7 p cross sections, plotted in Fig. 2, and compare with
the experimental data compiled by Bareyre, Bricman,
and Villet.?> The agreement is very good. In Figs. 3 and
4 we plot the elastic 7#tp and »—p differential cross sec-
tions at several energies and compare with the data of
Barnes et al.3” We have not included Coulomb correc-
tions to our amplitudes, so there will be some systematic
differences with the data, especially at very low energies
and small angles. Furthermore, the partial-wave analy-
sis of Barnes et al. agrees with the more recent and more
complete analysis of Roper, Wright, and Feld,* except
for the T'=4%, J=4%+ partial wave which is positive in the
former analysis, negative in the latter. This discrepancy
casts some doubt on the data near the backward direc-
tion in 7—p .With these qualifications, we consider the

§ 2asmev  THp—Ttp
Lo f 31.5Mev % (~— T332 MeV
_______ Ty 22 MoV
os- S e
0.0 7 L
3.0F 3 4l5Mev .
§ 58.6Mev wip=—7hp
} T2 59MeV
2.0
e -—Tyea5Mev
—~ 10 4
-
s 3
=
elg: 0.0 el o 1 1 1 1 1 1
$ 1somev  Tp—emtp
30 { 4
§ L e Teis6Mev
w0k ] J
3
10F E

O?_'?_lT—L-—L-" 1 1 1
20° 40° €0° 80° 100° 12Q° 140° 160° 180°

Fic. 3. 7tp differential cross sections. The plotted points are from
Ref. 37. The solid curves are the predictions of the model.

4 P, Bareyere, C. Bricman, and G. Villet, Phys. Rev. 165,

1730 (1968).



179 MODEL
calculated angular distributions to be in fairly good
agreement with experiment.

In order to carry these calculations to higher energies
we must consider the inelastic processes, the multipion
production and associated production. We do not at-
tempt to account for the uncorrelated multipion produc-
tion amplitudes, but we will consider some of the quasi-
two-body processes later.

B. KN— KN

KN elastic scattering is particularly amenable to
study in our model, since there are no direct-channel
resonances in the hypercharge-2 system (at least in the
low-energy region that we are considering here). The
matrix elements that contribute to this process are the
a and B terms, p and w exchange, and A, Z, and V:*
exchange. There is no contribution from the v term since
it corresponds to the 56 representation of SU(6)w in
the direct channel, and thus does not contain a ¥'=2
member. Of all these matrix elements, the « and 8 terms
will dominate the low-energy region; the exchange
terms contribute primarily to the p-wave scattering, in
this model, which is suppressed by the threshold factor
g* relative to the s waves. Hence, we expect the KN
scattering to proceed primarily through s wave as experi-
ment indicates. It is important to realize that in a more
conventional model, with only pure exchange terms,
the s-wave scattering would be significantly smaller
than our s waves, and, as Warnock and Frye* have
shown, it becomes necessary to include polynomial
terms in the amplitude, representing short-range forces

YT T T T T T T

F 4.5Mev TpeTp
§ 65 Mev
1L.Of— |3 98Mev e Ty 2449 Mev —
— Ty =105 MoV
'---T,' =66 MeV

\ § 150 Mev

—~ Tpe-wp
a8 3
EI- 3.0— { -
gf: § 170Mev
° N

Tz 174 MoV

2.0—

——Tyre 156 MoV

N N |

80° 100® 120° 140° 160°

ool 1 |
20 40° 60

Fi1c. 4. =7 p differential cross sections. The plotted points are data
from Ref. 37. The solid curves are the predictions of the model.

46 R. L. Warnock and G. Frye, Phys. Rev. 138, B947 (1965).
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Fic. 5. K*p elastic cross section. The plotted points are data
from Ref. 47. The solid curve is the prediction of the model.

in the Cini-Fubini* approximation. In our model these
polynomial terms appear naturally from the a- and 8-
matrix elements.

The calculated K+p elastic-scattering cross section is
plotted in Fig. 5 along with the data of Goldhaber et al.”
The agreement is good—the total cross section is essen-
tially flat from threshold to Pi,~600 MeV/c, and in
Fig. 6, the differential cross sections indicate the pre-
dominantly s-wave character of the interaction, as we
predict. We have used the K-matrix approximation to
perform the calculation, but in K+ there is only a very
small unitarity correction, since all the phase shifts are
small in this case. Hence, we predict very small polariza-
tion in this region, below the inelastic threshold.

For the K*n elastic scattering, the o and 3 terms pro-
duce a very large s wave for 7'=0, that exceeds the uni-
tarity bound if these matrix elements are taken to be
the real part of the partial-wave amplitude. However, by
equating the partial-wave projections with the K-matrix
elements, unitarity is preserved, as we have outlined
above. The resulting real part of the s-wave amplitude
increases rapidly from threshold, reaches a maximum,
and then gradually decreases. The other partial waves
are hardly effected by the unitarity correction, since
they are relatively small.

Experimentally, the K+ interaction must be ex-
tracted from K*d scattering using some form of impulse
approximation and the known values for the K+p scat-
tering. There are difficulties with this procedure at very
low energies where multiple-scattering effects will be
important. Stenger ef al.?° have measured K+d scattering
in the range Pj.p=350-812 MeV/c and have extracted
the T'=0 phase shifts. There is an unresolved Fermi-
Yang ambiguity and they have determined both sets,
with large uncertainties at the lower momenta (recently,
a K*d experiment at ~600 MeV /¢c*” measured polariza-
tion and favors the Yang set). We compare K% angular
distributions and cross sections with the model, and
these results are presented in Figs. 7 and 8. The agree-
ment is not very good, although the calculated cross

47 S. Goldhaber ef al., Phys. Rev. Letters 9, 135 (1962). There is
a possibility of an over-all normalization error in the total cross
sections obtained, but the relative angular distributions definitely
support pure s-wave scattering. For a thorough discussion of the
data, and a phase-shift analysis, see A. T. Lea, B. R. Martin, and
G. C. Oades, Phys. Rev. 165, 1770 (1968); A. K. Ray et al., Bull.
Am. Phys. Soc. 13, 703 (1968).
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F16. 6. K*p differential cross sections. The plotted points are data
from Ref. 47. The solid curve is the prediction of the model.

sections (Fig. 7) are not inconsistent with the data at
the two low-energy points, P, =350 and 530 MeV /c.
From the differential cross-section data (Fig. 8), it is
seen that the model does not adqeuately reproduce the
large p wave of Stenger’s phase-shift analysis. More
accurate measurements must be made before definite
conclusions can be drawn from the data.

C. EN— KN

Low-energy KNV scattering is the most complicated of
the experimentally accessible elastic reactions. A theo-
retical understanding of this system depends on a multi-
channel analysis involving the as yet unobserved 72 and
xA channels, and the KN bound states—the ¥;%(1385),
JP=3+ and the V*(1405), JP=4".%8 The V,*(1385) is
included in the 56 representation of SU(6)w that we
are considering, but the ¥*(1405) is not. It is not clear
to which representation of SU(6)w the latter resonance
should be assigned—it seems to be a singlet in SU(3).4
Without an assignment for the ¥o*, we could simply
ignore it and perform a multichannel calculation, but
this would not be in the spirit of the model, which re-
quires that all important states be included.

T T
K¥n—K*n

o (mb)

1 1
200 400

PLAB(MeV/c)

600

Fic. 7. K*n elastic cross section. The two plotted points are
data extracted from Ref. 30. The solid curve is the prediction of
the model.

48 J. K. Kim, Phys. Rev. Letters 19, 1079 (1967). This paper
gives the most extensive phenomenological analysis of the data.

49 R. H. Dalitz, T. C. Wong, and G. Rajasekaran, Phys. Rev.
153, 1617 (1967). These authors generate a primarily singlet ¥¢*
by vector-meson forces. They include references to earlier theoreti-
cal models for the KN system.

D. =N — n'N

Of all the pseudoscalar-meson—nucleon reactions,
n production has the lowest inelastic threshold at
W=1487 MeV. If other energetically allowed multipion
final states are ignored, then only mV elastic scattering
competes with » production, and through multichannel
unitarity the 7V and 9V systems are coupled together.
Since the 7V system is pure =%, only the =% part
of the 7V is coupled. Now at this threshold, our matrix
elements are no longer adequate to quantitatively de-
scribe the wV partial waves, although the calculated =V
cross sections are still of the right order of magnitude.
However, without further refinements in the model, we
only want to get a rough estimate of the effects of multi-
channel unitarity on 5 production by again setting the
partial-wave projections, obtained from the model,
equal to the K-matrix elements.

Explicitly, we calculate the amplitudes for 7N — 7V
(r=%), xN — qN, and 7N — 9N, at the nV threshold
and above. Calling these a; (W), 81 (W), and vy (W),
respectively, we equate

oy W I
K ()= (W) B i:(W)> ' 5.5)
(W) (W)
Then the phase-space matrix p is defined as
W)y 0
=" ). 5:)
0 q2(W)

where ¢1(IW) and g2(W) are the c.m. momenta in the 7V
and 9N systems at the c.m. energy W. The T matrix is
then given by

T (W) =[(Kuu(W)) ' —2p(W) I, (5.7)
so that® Im{[ T, (W) T} = —p(W). For a given partial
wave the T-matrix elements may be parametrized either
by an inelasticity parameter 5, and two phase shifts &;

% There is no need to extract threshold factors and branch
points for each partial wave, since the matrix elements that we
use for the K. matrix already have the correct analytic properties,
having been obtained from a relativistically invariant Lagrangian.
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and 4§, or by the K-matrix elements «, 8, and v:

MODEL FOR LOW-ENERGY MB SCATTERING

400 T T
T= 600MeV

T T
J T=650Mev

24611 1/1—n2\ 172
L _< 7’) gt(01+02)
2iq; 2
T q 0192
1/1—n? 1/2 ,7321'52_1
ﬂ( > et (01+82) -
2\ qig» 2igs

=[1—gqga(ay —B?) —i(gra+qav) I
X<0‘_¢Q2(‘1’Y_5 ) . g ) 658
¢ vy —igi(ay —B?)

The two sets of parameters are then related as follows:

9101+ qy
01} 6= arctan(——— ,
1—q1920

a—qzy
Kt q"‘), (5.9)

01— 0= a.rctan(
1+Q1925

_[(1+q1Q25)2+(qla—qw)z]”z
(1—q1920)*+ (gr0+g27)*

where §=detK=ay—p@?. The parameters n and § com-
pletely determine the wN elastic partial-wave ampli-
tudes. In a complete calculation, the n parameters in
(5.8) would be determined not only by transitions to
the 7V inelastic channels, but by transitions to all other
open channels [N, mrnN, wN*(1238)]. Hence, if the
other inelastic channels are strongly coupled to the =V
channel, the n parameter that we calculate from the
two-channel approximation will be closer to unity
(0<7<1) than the experimentally determined 5. Even
if this is true, the n-meson channels may still be coupled
most strongly to the 7V system, so that the other open
channels have a smaller effect on 7V than they have on
wN. We assume that this is the case, so that two-channel
unitarity will be a good approximation to full unitarity
corrections for % production, although not necessarily
for IV elastic scattering.

We have calculated «, 8, and v in (5.5) for s and p
waves near the n-production threshold. Higher partial
waves are small in this energy region for the #-IV system.
Upon unitarizing the partial-wave amplitudes, as speci-
fied, we have determined the angular distributions and
cross sections for #V— gV, and have plotted them in
Figs. 9and 10. They are compared with the experimental
data on®%2 7—p — 9%, (where the 5° decays into two
photons) by dividing the cross-section data by the

51 7, Bulos ef al., Phys. Rev. Letters 13, 486 (1964).

52W. B. Richards et al., Phys. Rev. Letters 16, 1221 (1966).
More recent data agree with the work of Richards ef al.; cf. W. G.
Jones et al., Phys. Letters 23, 597 (1966); E. Hyman e/ al., Phys.
Rev. 165, 1437 (1968).

do
'd_Q,' (mb/sr)

-0.5 -l
cos 6;.m,

F16. 9. 7~p — o' differential cross sections. The predicted
curves are compared with the data of Bulos ef al. (Ref. 51) and
Richards et al. (Ref. 52).

79— 2v branching ratio of 0.34.5 The two sets of data
differ in that the earlier experimental angular distribu-
tion of Bulos et al.%! is compatible with pure s-wave pro-
duction up to 7'»=1 BeV, whereas the data of Richards
et al.®? require p waves at 7,=655 MeV. The model
predicts relatively large p-wave contributions at the
lower energy in agreement with Richards et al., but these
become too large beyond T'»=750-800 MeV, and in the
vicinity of 1 BeV the predicted differential cross section
is too large over all angles. The total production cross
section is also in good agreement with experiment up to

 Bulos.et.al.’ -
GRichards.etal. WF7°N
T &
T 2f I -
° N
AN \\\ _.5{ ]
o NI
400 €00 800 1000
T (MeV)

F1c. 10. #~p — %% production cross section. The predicted
curve is compared with the data of Bulos e al. (Ref. 51) and
Richards et al. (Ref. 52.) The dashed curve is the predicted s-wave
contribution.

% A. H. Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968). The
branching ratio, for » — 2y decay, may be ~309, higher than the
value we have quoted. There are some discrepancies in the experi-
mental determinations. This situation introduces a large uncer-
tainty in the over-all normalization of the cross sections.
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TasLE L. Phase shifts and inelasticities for S-wave 7V elastic scattering above the threshold for s-meson production. The calculated
parameters for the two-channel approximation are given at the left. The parameters are defined in the text. The phase shift and inelas-

ticity parameter on the right are taken from Ref. 54.

Partial wave W (BeV) o (BeV™Y) B8 (BeV) v (BeV™?) 81 (deg) 82 (deg) 7 81 (deg) 7
NV 1.49 1.71 —1.40 3.52 36.5 0.0 1.00 34 0.54
1.51 1.82 —1.43 3.61 35.7 19.8 0.88 33 0.52
1.54 1.94 —1.46 3.68 39.1 30.2 0.86 38 0.46
1.56 2.07 —1.49 3.77 41.8 36.7 0.85 43 0.43
1.58 2.21 —1.52 3.84 440 40.9 0.86 51 0.40
1.62 2.45 —1.57 3.96 47.8 46.2 0.86 65 0.41
1.64 2.62 —1.60 4.02 50.5 49.0 0.87 75 0.45
1.66 2.82 —1.63 4.10 53.3 51.6 0.89 82 0.51
1.72 3.46 —1.73 4.30 60.5 57.5 0.92 100 0.72

T,.~800 MeV, but beyond that energy the measured
cross section decreases, whereas the calculated values re-
main flat. This indicates that above 7°,~800 MeV the
calculated p waves should be reduced further by uni-
tarity than we are able to accomplish in the two-channel
approximation, i.e., other channels are important for p
waves in the higher-energy region. The s-wave contribu-
tion to the total cross section is also shown in Fig. 10;
it has the correct behavior—a sharp rise at threshold and
a gradual fall-off due to unitary corrections.

Now it is important to realize that there are no reso-
nances included in the model in the region of # produc-
tions, although relevant resonances in w/V have been
reported at T, = 660 MeV [ N1,,*(1550),3~], at 7»=880
MeV [N1,2*#(1680), 5=, at T'»=900 MeV [ Ny,,*(1688),
5+7, and at T,=940 MeV [N1,2*(1710), 3—1.5 The two
1~ resonances should have noticeable effects on the
n-production amplitudes as well as the 7V elastic chan-
nel, but our nonresonant calculation satisfactorially ac-
counts for the s-wave production amplitude near thresh-
old. If we compare the extrapolated threshold produc-
tion cross section (Ginitial/tina1) X (gtinar—> 0) with the
prediction of the model, we find good agreement:

experimental extrapolation —6.22-+0.80 mb;
prediction of model —6.04 mb.

This indicates that the N1,2*(1550) may not be neces-
sary in explaining  production near threshold. In fact
in Table T we compare the resulting =V elastic S11 phase
shift with the phase shifts determined by Lovelace
et al.,5* where the 1550-MeV resonance is #of required,
and we find the phase shifts in good agreement up to
T.~T700 MeV (W~1580 MeV). This is easily under-
stood, since the analysis® indicates a rapidly decreasing
n from the threshold for 7V — 7N *(1238), so that the
effect of the y-meson production is superimposed on the
already small 7 parameter, and a more complete calcu-
lation would require at least three-channel unitarity.
Beyond T,~700 MeV the phase-shift analysis gives a
monotonically increasing phase shift passing through
Lir at W~1710 MeV, and here the model is unable to

% A. Donnachie, R. G. Kirsopp, and C. Lovelace, Phys. Letters
26B, 161 (1968).

give a resonating amplitude since the calculated K
matrix has no singularity here.

Hence, we see that the model provides the proper
s-wave threshold enhancement for # production without
an Ny,,%*(1550), but cannot account for the decreasing
p wave at higher energies above threshold, nor for an
N1/2*(1710) which may have only a small branching
ratio into the nV channel. The terms in the effective
Lagrangian that contribute to this reaction are the 8
and v contact interactions and the nucleon pole in both
direct and crossed channels. The 8 term provides the
largest part of the threshold behavior; the direct-nucleon
term dominates at energies above the maximum in the
cross section, causing a large p-wave contribution. At
lower energies, the latter is essentially cancelled by the
v term and the nucleon-exchange term. Thus, in this
model the behavior of the amplitude for 5 production
near threshold is determined primarily by short-range
forces (the B8 term) and coupling to elastic 7V scattering
through unitarity. This is in marked contrast to more
detailed fits to the data, without unitarity, that require
the nucleon-pole term and a D13(1512) resonance®®; or
an S11(1560), a P11(1503), and a Dy3(1631)56; or a nu-
cleon pole, and S11(1567), a P11(1430), and a D13(1512)
with finite widths®”; or these and an additional Fis-
(1688).%® We emphasize that in our less satisfactory fit
to the data, there were no free parameters and no 7'=1%
resonances—short-range forces and multichannel uni-
tarity play the major rolein the near-threshold behavior.

The 7N — 9N calculation is typical of the inelastic
processes we consider. The model provides an adequate
description of the scattering very near threshold, but
even with multichannel unitarity approximated, we are
unable to account for the marked decrease in the cross
section at somewhat higher energies. Hence, in the fol-
lowing reactions we will calculate only the extrapolated

5 G. Altarelli, F. Buccella, and R. Gatto, Nuovo Cimento 35,
331 (1965).

8 F. Uchiyama-Campbell and R. K. Logan, Phys. Rev. 149,
1220 (1966).

57T, A. Moss, Phys. Rev. 163, 1785 (1967).

8 S. R. Deans and W. G. Holladay, Phys. Rev. 165, 1886 (1968).
These authors obtain the best fit to the data up to I'»=975
MeV by varying seven parameters for the partial widths of the
resonances.
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threshold cross sections. Unitarity is more difficult to
approximate adequately for the higher threshold pro-
cesses (where there are many competing channels) and,
it is hoped, will not play a significant role very near
threshold.

E. stN— KA

The amplitude for 7=p — K°A° is pure T=3% and the
production threshold is at 7,=766 MeV (where the
n-production amplitude is still large). There are known
to be large polarization effects in this reaction fairly
near threshold,®® and unitarity becomes important in
the region of the rapidly decreasing cross section above
T.~900 MeV, where resonant amplitudes are also im-
portant.t® At threshold the extrapolated cross section
(@initial/Qtina1) X0 (@tina1— 0) is 1.75 mb in the model,
and 1.2940.35 mb averaged over the four lowest-energy
measurements.’® The total production cross section for
low energies is given in Fig. 11. It is clear that the model
gives an adequate representation of the data below the
maximum in the cross section. The fact that the calcu-
lated cross section is close to the experimental values
is a good test of the method we have adopted to split
the particle masses from their degenerate U(6)® U (6)
multiplet values; in the absence of mass breaking,
U(6)®U(6) symmetry predicts that the cross section
would be exactly zero at threshold [see relation (4.7)]
and slowly rising above. Hence, the nonzero cross sec-
tion is due entirely to mass-broken contact and ex-
change terms, primarily contact terms at threshold.
This is true for the other associated-production reac-
tions, also; i.e., in U(6)QU(6) symmetry, at rest, all
associated-production reactions have zero amplitudes,
and any small finite cross sections are due to symmetry-
breaking effects. We consider this to be an important
qualitative result of our broken-symmetry model.

F. stN— KX

The associated production of = hyperons involve both
T=1 and 7=4% amplitudes, and, as in A production,
there are many competing channels that contribute to
unitarity corrections. Here we reach the first significant
failure of the model. The total cross section for 7=p —
K+2~ and ntp — K+Z+ are predicted to be an order of
magnitude too large, e.g., at Pip,=1170 MeV/c,
o(mp— K+t27)=0.231+0.006 mb whereas the model
predicts 3.50 mb, and o(ztp — K+27)=0.2054+0.014
mbé! whereas the model predicts 9.13 mb. Furthermore,
the model predicts large backward peaks and forward
minima at Pr=1170 MeV /¢ for both 2= and Z+-
production angular distributions whereas experiment

® L. Bertanza et al., Phys. Rev. Letters 8, 332 (1962). Earlier
experimental references are included here.

6 See the model of G. T. Hoff, Phys. Rev. 131, 1302 (1963),
where a resonating Pi/» state is necessary to explain the experi-
mental cross sections, as well as K* exchange.

&1 F, S. Crawford, Jr., F. Grard, and G. A. Smith, Phys. Rev.
128, 368 (1962).
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F16. 11. #7p— KC°A° production cross section. The plotted
points are data taken from Ref. 59. The solid curve is the predic-
tion of the model.

indicates a large forward as well as backward peak for
2~ production® and only a slightly backward peaked
distribution for 2+ production.®® The reason for the large
discrepancy in this case can be traced to the direct-
channel pole terms—the nucleon and the N33*. Because
of our choice of propagator for the baryons, Eq. (2.18),
these terms have nonpole contributions that increase
with c.m. energy as IW*. Very near elastic threshold those
nonpole terms were useful in canceling the pole contribu-
tion exactly, so that only the four-point functions or
contact terms determined the near-threshold elastic
scattering. Beyond the KZ-production threshold, how-
ever, these terms dominate over all other contribu-
tions—the contact terms 8 and v, the K* exchange, and
the A, 2, and V;* exchanges—and produce very large
cross sections. Only in those cases where these terms
cancel against one another can we expect to be able to
continue the model to higher energies as in the KA pro-
duction. On the other hand, where it is feasible to apply
multichannel unitarity, as in 5 production above, these
high-energy divergences are suppressed.

G. K p—n'A

Of all the inelastic reactions we have considered, the
K—p — 5°A is known to have the most striking behavior
near threshold. Without applying any unitarity correc-
tions, the model predicts a very large s-wave interaction
near threshold, due primarily to contact terms, and p
waves that are smaller by an order of magnitude. The
extrapolated cross section (g:/qs)o(g; — 0) is predicted
to be 9.8 mb, whereas the extrapolation from the data?
ranges between 5 and 10 mb. Hence, the rapid increase
from threshold that we calculate is consistent with the
data, see Fig. 12, and the predicted enhancement is
predominantly s wave, as verified by the angular distri-
bution collected by Berley et al.%?

It is clear that rather extreme behavior will be neces-
sary for the 7" matrix, to give the rapid decrease so near

62 J. C. Doyle, F. S. Crawford, Jr., and J. A. Anderson, Phys.
Rev. 165, 1483 (1968).

63 D. Berley et al., in Proceedings of the Twelfth Annual Confer-
ence on High-Energy Physics, Dubna, 1964 (Atomizdat, Moscow,
1965), p. 635; D. Berley et al., Phys. Rev. Letters 15, 641 (1965);
P. L. Bastein ef al., ibid. 8, 114 (1962).
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model.

threshold and unitarity alone may not accomplish this.
Berley et al.% attempted to fit the data by using either
resonances or large constant scattering lengths (in a
two-channel Dalitz-Tuan model®), and obtained the
best fit for an .Sy,2 resonance at mass 1675 MeV and a
very narrow width of 15 MeV approximately equal to
the partial width in the nA channel. If this interpreta-
tion is correct,%® then our model could not account for
the data, even with multichannel unitarity.

H. P+B— V4B

The production of vector mesons near their thresholds
is also predicted by the model. The relevant invariant
amplitudes, and the contributions to these amplitudes

TasLE II. Predicted cross sections for vector-meson production
processes very near thresholds. The extrapolated cross sections
are given in the first column; the ratios of those cross sections with
respect to m~p — p~p are given in the second column; the ratios
that result by assuming mass degeneracy are given in the third
column.

(ginitial/gfina1) Degenerate mass
Reaction X (qtina1 — 0) Ratios ratios
(mb)
T p— p'n 271 12.5 12.5
xtp— ptp 34.7 16.0 16
P> pp 2.2 1.0 1
TP — 'n 27.1 12.5 12.5
K+p— K**p 359 16.5 16
Ktn— K*tn 2.3 11 1
K~ p— p°A 18.3 8.4 6.7
K p— A 18.3 8.4 6.7
K-p— ¢°A 0.007 0.0032 0

64 R. Dalitz and S. F. Tuan, Ann. Phys. (N. Y.) 10, 307 (1960).

6 An enhancement has been observed in the neutral hyperon
spectrum in K—p — Z+mr at 3.5 geV/c; Birmingham-Glasgow-
London (I.C.)-Oxford-Rutherford Collaboration, Phys. Rev. 152,
1148 (1966). The mass, however, is somewhat lower, 164546
MeV; and the width larger, 404-10 MeV. With this mass the en-
hancement would be an 1A bound state, which did not give as good
a fit in the analysis of Berley ef al. (Ref. 63).
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from the various terms in the matrix element (4.3), are
summarized in the Appendix. The o term in (4.3) does
not contribute at all to these reactions, and at threshold
only the 8 term and the baryon-exchange amplitude con-
tribute; the latter only through factors that are propor-
tional to mass differences of the initial and final particles.
For degenerate masses of the U(6)® U(6) multiplets
there would be only one independent rest U(6)® U(6)-
invariant amplitude at threshold, as for the P4+B —
P’+ B’ reaction in (4.6) and (4.7), and the vector-meson
production reaction amplitudes would be in simple
ratios,

As(mp— p7p)
=—1As5(rtp— ptp)=—3V2A5(x=p — p'n)
=A5(Ktn— K*n)=—21A45(Ktp — K*tp)
= — VI p — ) = — (2/3V3) As(K—p—> o%A)
= —(2/3V8)As(K—p — o), (5.10)

0=As(np— o) =As(K~p— o), ($.11)

where A5 is the invariant amplitude defined in (A1).
For this degenerate-mass case, 45 is simply (16/9)
XB(b+*—b~), which leads to threshold cross sections of
the order of 1 mb. The prediction that the #=p — ¢%
reaction is zero holds even with mass breaking, for all
energies, in this model.5¢ This is in agreement with ex-
perimental information,®” for which the production cross
section m~p — ¢ is compatible with zero, or at most it
50 times smaller than the w-production cross section as
comparable c.m. momenta.

When mass breaking is included in the model, the
other relations (5.10) and (5.11) are altered. Further-
more, there is another invariant amplitude that con-
tributes at inelastic threshold—the B amplitude defined
in (A6)—so that the cross sections will not be in simple
ratios. There is a contribution to both 45 and B from
the baryon-exchange terms, (A13) and (A14), but the
magnitudes of these are appreciably smaller than the
B terms (A8), since they vanish for degenerate masses,
thus they involve higher orders of the mass differences
than do the 8 terms.

Away from thresholds the dominant terms in the
model are the baryon exchanges, and, as in 7V — K2,
those terms rapidly become very large. It is known that
the meson-exchange terms should dominate the produc-
tion in the BeV region,® in contradiction to the predic-
tion of the model. This is again an indication that be-
yond the vector-meson-production thresholds the back-
ground terms and contact terms in the exchanges in
(4.3) are no longer a good approximation to the short-
range forces, i.e., the polynomial terms begin to diverge.
Thus the only meaningful predictions that can be made

6 The ¢ meson does #of couple to strangeness=0 mesons and
baryons, so that all the diagrams that are included in (4.3) will
give vanishing contributions to this process.

67 R. 1. Hess et al., Phys. Rev. Letters 17, 1109 (1966).

% J. D. Jackson, J. Donohue, K. Gottfried, R. Keyser, and B.
E. Y. Svensson, Phys. Rev. 139, B428 (1965).
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from the model, will be the values of the cross sections
extrapolated to threshold. Unfortunately, the experi-
mental measurements of the cross section near threshold
are difficult to perform since the uncorrelated multipion
states mask the vector-meson productions. Neverthe-
less, we will make predictions for the extrapolated cross
sections, with the expectation that there will eventually
be enough data to make comparisons.

The predictions of the model for (¢initial/qtinal)
X (gtina1— 0) are listed in Table II. Notice that the
ratios of the cross sections are not very different from
the ratios that would be derived from the threshold
amplitudes for degenerate-mass particles, (5.10) and
(5.11).

As we have stated, experimental data is not available
near enough to the production thresholds to make com-
parisons with the predictions meaningful. The lowest en-
ergies for which measurements have been made are in
the region where the production angular distributions
show sharp forward peaking, so that the resonating
meson system can be disentangled most easily from the
the background of uncorrelated mesons.®=7¢ Since our
predictions are presumably valid in the region where
s-wave production should predominate, we must await
lower-energy data. There is another difficulty in #p —
plN -and 7~p — wn, since the thresholds for these reac-
tions are very near the Si; resonance at W=1710 MeV
[which we were unable to account for in our discussion
of the coupled (wN,nN) system], which may have a
large effect on the amplitudes.

We can, however, make the following qualitative com-
parisons with the lowest-energy data. In 7=p — p~p?°
and K—p— ¢°A% 7 the predicted cross sections are of
the correct order of magnitude if we assume only slight
variation from threshold to the measured values. In
T p — o', K—p — A% Ktp — K*+p 7 there must
be a rapid decrease in the amplitudes (as in K—p — 7°A9,
discussed above) if our threshold values are to match
the higher-energy measured values. This latter circum-
stance could occur if there were s-wave resonance effects
very near threshold. In #—p — %, the N*(1710) Su
resonance could provide the mechanism, as mentioned,
but it would have to be only weakly coupled to the T=3%
plV system so as not to destroy our qualitative agree-

% W.J Fickinger, D. K. Robinson, and E. O. Salant, Phys. Rev.
Letters 10, 457 (1963). These authors measured =~ p— p'% at
P =1.7 BeV/c, but give no absolute cross section.

7 D. D. Allen et al., Phys. Rev. Letters 17, 53 (1966); 7~p — p~p
at Pr,=1.7 BeV/c gives 6=2.1+0.2 mb.

1 R. Kraemer ef al., Phys. Rev. 139, B428 (1965). 7~ p— w'n
atbapproximately 120 MeV/c above threshold gives ¢=0.44-0.2
mb.

2 P. Eberhard et al., Phys. Rev. 145, 1062 (1966). K~ — wA°
at P;,=1.32 BeV/c, =0.800.06 mb. Threshold is at Pr=1.2
BeV/c.

78 J. S. Lindsey and G. A. Smith, Phys. Rev. 147, 913 (1966).
K=p— ¢°A° at Pr,=2.10 BeV/c, 6=82411 ub. Threshold is at
Pr,=1.8 BeV/c.

7 R. W. Bland et al., Phys. Rev. Letters 17, 939 (1966). K+p —
K**p (interfering with K*p— KN*) at PL=1.2 BeV/c gives
¢=1.5320.26 mb. Threshold is at P,=1.0 BeV/c.
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ment for 77p — p~p. In the K—p — w°A° threshold re-
gion for K—p scattering there are no observed s-wave,
T=0 resonances, so this reaction may be unexplained
by the model. For K*p scattering near the K*(890)
production threshold, there is a definite enhancement in
the total cross section” but a resonance interpretation
for this phenomenon is still in doubt.?®

We emphasize that it would be of great interest to
have data available closer to threshold, since our predic-
tions for these vector-meson reactions depend crucially
on the ability of our symmetry model to relate spin-0—
and spin-1~ meson interactions.

VI. CONCLUSIONS

The U(6,6) symmetry scheme,*16 as a relativistic
version of SU(6),”” has provided a useful classification
scheme for the low-lying hadronic states and has pre-
dicted form factors and coupling constants in fair agree-
ment with experimental information. Shortly after its
inception, however, it was realized that U (6,6)-invariant
S-matrix elements were necessarily in conflict with
unitarity,’® and the two-body scattering amplitudes de-
rived from such invariant S-matrix elements were seen
to give some untenable relations among various reac-
tions.?? It was shown next that intrinsic breaking of the
symmetry by kinetic-energy terms would result in a
hierarchy of subgroup invariances not necessarily in
conflict with wunitarity,!®!® provided all possible
“spurions” were included. Alternatively, the possibility
of using only U(6,6)-invariant three-point functions for
the Born terms as input in a unitarized dynamical cal-
culation was suggested,'* to preserve the “good predic-
tions” for the three-point functions. Greater impetus
for preserving some vestiges of the broken symmetry
has recently been provided by superconvergence rela-
tions, where saturation of the spectral functions by low-
lying SU(3) multiplets has resulted in U(6,6) coupling-
constant relations.”®

Several calculations have been performed in the last
few years using some residue of the U(6,6) symmetry,
while at the same time approximating unitarity. Gatto
and Veneziano®® have used the SU(6)w subgroup,
which is the symmetry for the three-point functions (as
discussed in Sec. III), to write input Born terms in an
N/D unitarization for two-body scattering. Various
authors have used mass-broken U(6,6) meson exchanges
and “spurion’-broken U(6,6)-invariant amplitudes to

75 R. L. Cool et al., Phys. Rev. Letters 17, 102 (1966).

78 R. W. Bland et al., Phys. Rev. Letters 18, 1077 (1967).

77 B. Sakita, Phys. Rev. 136, B1756 (1964); F. Giirsey and L. A.
Radicati, Phys. Rev. Letters 13, 175 (1964).

78 S. Coleman, Phys. Rev. 138, B1262 (1965).

V. de Alfaro, S. Fubini, G. Furlan, and G. Rosetti, Phys.
Letters 21, 576 (1966); R. Ochme, Phys. Rev. 154, 1358 (1967);
Phys. Letters 22, 207 (1966); B. Sakita and K. C. Wali, Phys.
Rev. Letters 18, 29 (1967) ; H. F. Jones and M. D. Scadron, Nuovo
Cimento 48A, 545 (1967); R. Ochme and G. Venturi, Phys. Rev.
159, 1283 (1967).

80 R. Gatto and G. Veneziano, Phys. Letters 19, 512 (1965);
20, 439 (1966).
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calculate the low-energy parameters for nucleon-
nucleon elastic scattering.®! In these cases the sym-
metry schemes have been fairly successful in relating
the many parameters that are necessary to account
for the nucleon-nucleon interactions. Proton-neutron
charge-exchange scattering at intermediate energies has
been described in a model using meson exchanges with
U(6,6)-invariant couplings and absorptive corrections
by Migneron and Moriarty.%? And with the same model,
Migneron and Watson have fitted the proton-antipro-
ton annihilation into hyperon-antihyperon.’® Bala-
chandran et al.3* have imposed three-point function
unitarity on broken U(6,6) vertices to obtain sum rules
for some two-body scattering amplitudes. Carey has
taken a unitarized effective-range formalism with
SU(6)-invariant amplitudes providing the effective
ranges to calculate some of the low-lying meson-baryon
resonance positions.?? And finally, Goldstein and Wali,
in I, have used U(6,6) interaction terms along with
symmetry-breaking single-particle exchanges to describe
low-energy w#V and KN elastic scattering.!®

All of these calculations have been relatively success-
ful in relating the many parameters that are a prior:
required for phenomenological analyses of the data, and
in providing decent fits to the experimental measure-
ments. Encouraged by these results, we have extended
the model used in I, to describe low-energy inelastic
meson-baryon reactions, as well as the elastic reactions,
in terms of the same three constant parameters that
were fixed by 7NV and KN s-wave scattering very near
threshold. We have been able to account for a large
amount of experimental information without introduc-
ing any more parameters into the model, illustrating the
essential utility of the broken-symmetry scheme—
namely, to relate many different processes through the
largest symmetry compatible with our single-particle
intermediate-state approximation.

As has been stated in the Introduction, because of the
automatic appearance of contact interaction and poly-
nomial terms in the S matrix derived from the model,
the scattering amplitudes are related to a Cini-Fubini
approximation for low-energy scattering, and the
Lagrangian is similar in form to the phenomenological
Lagrangians derived from ckiral U(3)®U(3) invari-
ance. These similarities make the model especially ap-
plicable to low-energy scattering.

In the quantitative calculations, where we were able
to approximate unitarity with the K-matrix formalism,
there was good agreement with experiment—at least in

81 P, G. O. Freund and S. Lo, Phys. Rev. 140, B927 (1965); C.
S. Lai, 4bid. 147, 1136 (1966); G. Kopp, Rev. Mod. Phys. 39, 640
(1967); M. J. Moravcsik, zbid. 39, 670 (1967).

82 J. H. R. Migneron and K. Moriarty, Phys. Rev. Letters 18,
978 (1967).

83 J. H. R. Migneron and H. D. D. Watson, Phys. Rev. 166,
1654 (1968).

8¢ A, P. Balachandran, I. Gyuk, S. Pakvasa, and K. Raman,
Phys. Rev. 159, 1310 (1967).

85 D. C. Carey, Phys. Rev. 169, 1368 (1968).

GARY R. GOLDSTEIN

179

the region not too far from threshold. This includes =V
and KN elastic scattering and 5 production. Where
multichannel unitarity was not approximated, due to
the large number of competing channels, the results are
not so clear cut. The 7N — KA and KN — pA threshold
enhancements were predicted well within experimental
uncertainties, but the 7V — KZ reactions were far from
correct. Furthermore, without unitarity corrections, the
baryon-pole terms begin to dominate at energies above
threshold comparable to the KZ threshold in 7V scat-
tering. This indicates that to carry the calculation
beyond associated production thresholds, more func-
tional dependence would have to be introduced to damp
out the diverging terms.

The predictions for vector-meson productions at
threshold do not suffer from the difficulty of diverging
contact terms and are of the correct order of magnitude

~ but a definitive comparison for these depends on more

low-energy data.

Qualitatively, the model provides a simple explana-
tion of the small cross sections for associated produc-
tion, 7V — KA and #N — KZ; for cascade production,
KN — K=; and for KN — ¢A. These reactions proceed
only through terms that break the U(6)® U(6) thresh-
old symmetry, and the reaction amplitudes are propor-
tional to the mass differences. The reaction NV — ¢ N
is totally forbidden, even with mass breaking, and this
is in agreement with the actual situation.

In summary, the model provides qualitative explana-
tion for the relatively small production cross sections
and provides quanitatively good fits, using only three
parameters, to the 7NV and KN elastic reactions, and
the threshold enhancements in 7N — 9N, 7N — KA,
and KN — 5A. Where resonances are known to be of
importance the model necessarily does not provide for
these, and above the associated production thresholds
the contact terms begin to diverge.
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APPENDIX

We have collected together in this section, the rele-
vant formulas for vector-meson production P+B—
V4 B. There are 12 helicity amplitudes for this reaction,
and the requirement of parity conservation leaves only
six independent amplitudes. Then the general 7' matrix
for the process can be written as

Tor,i(p' K5 p,k) = €. (B (p") {GewnegyPrQeA o(s,1)
+iPysA1(s,0)+iquysAa(s,h)
+¢PW&%¢QA3(5,'5)‘1’19#75%10144(5;’5)

_I"Y 5'YMA 5(8,1)}%1'(?) ) (Al)
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where p (p’) is the initial (final) baryon momentum, %
is the incoming pseudoscalar momentum, and %’ is the
outgoing vector-meson momentum; #.(p) (%,(p’)) is the
Dirac spinor for the initial (final) baryon, ¢, (k') is the
vector-meson polarization vector (satisfying %'+ ¢ =0),
and the combinations of momenta are defined as

P=p+k=p'+F,
Q=k+F%,

g=p' —p=rk—1,
s=—P% and t=-—¢%.

Using the Dirac equation, the condition %’- e=0 and the
relation eune=5Ys[vu{v»[y2v.]} ], it can be seen that
there are no other independent amplitudes.

With the T matrix normalized by the definition

Seri=I—2m)%s*(p"+k —p—Fk)
M'M 1/2
P P
4py poko'ko

the differential cross section will be given in the c.m.
system by

do |K| 4M'M
= > | Teral?, (A3)

aQ [kI (87I'W)2 spins, s, f, %
where M’ and M are the baryon masses and W is the
total energy in the c.m. system. The summation is over

all unobserved spins, and is facilitated by use of the
completeness relations

(M —ip)
M

2 ui(p)ai(p) =

and
7
l‘,k"

Z € (kl) ev(xﬁ(k,) =0t (A4)

m'?
We will be interested particularly in the production
amplitudes at threshold. At rest for the outgoing par-

ticles (we assume that M'+m’> M-+m) there are only
two independent amplitudes, and (A1) reduces to

Top,iiM'im' 5 p,k) = €, (i )iy (iM ') {ik,[— A1+ A2
+ (m’+%(M'+M))(— A3+A4)]+75’Y;4A 5}%‘(?) ) (AS)

where the functions 4,(s,f) are evaluated at
s=(M'+m")?,

and the fourth component of ¢, vanishes. Using rela-
tions (A3) and (A4), the total cross section at threshold
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will be given by
) { K ] T
im - 2(po—
k-0 [k'la 87r(M'+m')2{ pe
—2k? Re(BAs*)+3(po+M)| 452}, (A6)

where
B=—A1+ Aot [m'+5(M'+M)J(—As+A4s).

We next evaluate the contributions of the various
terms in the scattering matrix M (p',k’; p,k) [Eq. (4.3)]
to the invariant amplitudes 4,(s,t) =0, 1, --- 5, in
(A1). The « term in (4.3) does not contribute to any
inealstic process, and the § term has been chosen to be
zero, so we list below the invariant amplitudes resulting
from the 8, v, meson exchanges, baryon-octet exchanges,
and baryon-decuplet exchanges. To simplify the expres-
sions, we first define some common kinematical func-
tions and SU(3) coefficients:

M'+M~+(m'2/mo)+mo M'+M+2m,
nT MM T
(A7)
(M'+M)2—1 3m/ 2 m2—1
Y3= y 4= .
2M'M 2m'?

Letting B, P, and V denote the SU(3) matrices for the
baryon octet, pseudoscalar octet, and vector nonet, the
required coefficients are defined as follows:
a*=((BB—BB+(BB)I)(VP+PV)),
b= ((5BB+BB—(BB)I)(VP+PV)),
C=—(BBPV)—(BBVP)+(BBXVP)
+(BVBP)+(BPBV )+3(BVPB)+5(BPVB)
—$(BV)(BP)—3(BP)(BV)
+(BBPXV)—(BPBXV),
D=4(BPBV)—4(BPB)V)—2(BVBP)
—(BVPB)—(BPVB)+(BV)(BP)+ (BP)XBV),
E=(BPVB)—(BVPB)+(BV){BP)—(BP)BV),
where the angular brackets denote the trace of the SU(3)
matrices.

(A8)

A. 3 Term
Ag® =—1patry,
A1B® = —18bH{ (m"2—m?)r,
+ 2L (m"*—me®) /m"*mqJrs} ,
Ay® = —18{—ri(u—s)b+
+2rs[M'Mri+ (m"*—me?) /m"*mJb7}
A3 ® = =36 2(M"+M)ri— (4/m'*)rs],
A4® =++3BL2(M"— M )rib++ (4/m'?)rsb— ],
A5 =+38(LAL M) (m>—m?)+ (M + M) (s~ )]
Xrib*+(2/m') Cu—s— (M= M) (met—m)" /mq]
Xrsbt—4rgrd~}.

(A9)
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B. ¥ Term

Ay =—(1/36)yCry,

Ay = (1/144)yrof [14m"*—m>+ 2(m"* /mo) (M '+ M) 1D~+3[uu—s— (M'— M) (M '+ M+ 2mo) ]},
4,0 = (1/144)yro{ [u—s+ M+ M)M'+M~+2(m" /m)) |D— 3[14m">—m*—2(M'+ M) (M'+M+mo) 1},
A =1/72)y(1/ M Mm){[t4m">—m?*+2(m" /mo) M+ M) 1D—3[u—s— (M'— M )(M'+ M+ 2m,) E} ,

A0 =172y (1/ M Mm"){[u— s+ (M'— M) (M '+ M~+2m"2 /mq) D
+ 3Lt m"—m2— 2+ M) (M + M +mo) JEY

(A10)

A5 = — (1/24)y (1/M"Mm"2){ QM mo+ M2+ m2— 5) QM (m"2 fmo) -+ M"2+m">—s)
—4M' Mm'*rsr i QM 'mo+ M2+ m2—u) [ 2M (m'%/mo)+ M 2+Hm"2—u) |} .

C. Pseudoscalar-Meson Exchange
The only nonzero amplitude for this exchange is the
As,

A, P = (Gg/18)b~[rs/mp*(mp*—1)]
X[t4-2mo(M'+M+mp)+mp(M'+M)], (A1)

where mp is the mass of the exchanged pseudoscalar
meson.
D. Vector-Meson Exchange

With my the mass of the exchanged vector meson,
the amplitudes are

Gg Mo 1
Ay =g+
48 M'Mm"my® (my®—1)
m'2 4 mo?
X [t(M'+M+mV+~—~—)
Zm()
my
+—(M'+M)(m'2+mo2)} ,
2’”’L0
Gg 75
A= =) ),
144 my*—t
Gg 75
A, = ——p* (s—u) M+ M),
144 my2—t
A3<V)=_G_gb+ i z,
72 mv2—t
Gg 75
A4(V) =+.__b+____(M/2 _M2) ,
72 my?—i
Gg 75
A0 = =)+ (U= M) =),
144 my?—i

where

m 2 m?
ry= — _

mo |:
—_—] {
M’ Mmy2m' 2myo

X(M’—I—M—i—mv)—mV(M’-i—M)] . (A12)

E. Spin-} Baryon-Octet Exchange

For these exchanges we will only write the contribu-
tions to the pole term for exchange in the # channel. In
the calculations, however, the contact terms must be
included, in order that the full amplitude vanish at the
degenerate-mass threshold. To simplify the expressions
for both octet and decuplet exchange, we define an addi-
tional invariant amplitude A4¢(s,f), which occurs in the
form

e“(k’)ﬂ(ﬁl)’)’ﬁk,’)’w’l 6(s>t)u(P> .

A is not an independent amplitude, but is related to
the previously defined amplitudes in (A1) by the follow-
ing identity:

LM+ M) — e vy sik'y
= e,01{ ~ 316w P\Qt 3L (M'+M ) — t+m*—m" ]
XiP oy s5+5 (u—s)iquys— (M'+M)iP y5(31Q)
+(M'—M)ig,ys(3iQ)— LM+ M) (u—s)
+(M'—M)(M'+M)*—t+m2—m") Jysyi}u.

We also define the over-all strength of the coupling,

K=(G2/36)(M'MM g*mo)~'[(M'~+M 5)>—m?]
X (M'+M p+mo)(M+Mp+m'),

where M is the mass of the exchanged baryon; and we
define the SU(3) coefficients:

F1=3[5((BPVB)—(BPBV)+(BPBXV))
+(BVBP)—(BBVP)+(BBP)V)],

Fo=(2/9)[5((BPV P)+2(BPBV)—2(BPBXV))
+(BVBP)+2(BBV P)—2(BBP)XV)—6(BP)XBV)].
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Then the contributions of the pole terms of spin-3
octet exchange to the invariant amplitudes can be
written as

4,®=0,
A1 B =—A,B=K/(Mz>—u)
XU+ B )1~ (4402000
+0m'—(M'+M)(Mp+M)/2m"]F5} , AL3)
AsB=—A,B=—K/m'(Mz*—u)
X{M~+Mp—m")Fr+ (M p+M)F,},
AsB=Mp—M)As=K/(M g*—u)(Mp—M)/m’
X{LM p+M)2—m" P+ [ (M M )*+m'2]F,) .

F. Spin-§ Baryon-Decuplet Exchange
Define the over-all strength by

K'=—(4G*/9M")[14- (M p+M") /m.]
X[ (mo/m") (M +M ) 1H

where the SU(3) coupling coefficient H is given by
H=3[3((BBXVP)+(BVPB)— (BBPV)—(BV)(BP))
—2(BPBXV )+{(BPBV)—(BBVP)+(BVBP)

+(BBPKV)].

We also define various common functions of masses and

MODEL FOR LOW-ENERGY MB SCATTERING

1479

momentum transfer

(MA+Mp)2—m"
rg=—————,

2MMp
rs® =1 (M'Mp—M"2— M z>+m?) /3M 52,

7’7=MB+%(M,—'M),

7o =;§[t—M2 — M ———(M'M p—M"?— M p*+m?)

3M p*

X (m’Z __m2+M/2 _M2)] ,

ro=(1/3M5)(M'Ms+M5*—m?).

Then the pole term of decuplet exchange contributes to
the invariant amplitudes as follows:
AP =0,
AP =K'/(M > —u){Frerws™
+ 1/ 2M M) gt r10((M'+M) (M —M )
+MBZ_M2_m,2+%(M2_M,2)):|
—(ro/ M)+ BM'+M —2M 5)r10} ,
AP =K'/(M g>—u) [ Zrerms T+ (ro/M)
— BM'+M —2M p)r1e],
AP =K'/(Mg2—u){ —3rers D+ (1/2M gM)
X[—rot+ (M —M)rio]— (2/M)r1o} ,
AP =K'/(M g*—u)[—3rers O+ (2/M)r1o],
AP =K' /(M 5= )
X{M—Mp)((Ms(M'+Mp)—m*]/3M p)re
+ /M)~ M s+M)rg— (M s[M—M'+Mg]
—M'M—m')r]},
4P =K'/M g*—uw){— (M s(M'+Mp)—m*]/3M 5)7s
+Q/M)[re—(M'+M)r1]} .

(A14)



