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Relativistic Corrections to the Conductivity of a Collisional Plasma in a magnetic Field
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The electrical conductivity tensor of a many component, relativistic plasma in a constant
magnetic field, and near equilibrium is obtained. The collision term in the kinetic equation
is left arbitrary, and the collisional part of the conductivity tensor is expressed as a momentum
integral over the collision term directly. As an application, the conductivity due to electron
motion is calculated to first order in both the relativistic and thermal corrections with the
Beliaev-Budker collision integral. The thermal corrections are the same as in the non-
relativistic theory. The leading contributions to the conductivity from the ion motion are also
obtained to first order in the electron relativistic corrections.

I. INTRODUCTION

In the preceding paper' (hereafter referred to
as I), a general method was developed for the direct
calculation of the collisional contribution to the
conductivity tensor of a nonrelativistic plasma in a
constant magnetic field.

In the present paper we extend the discussion of
I to the relativistic domain, and obtain the corre-
sponding total conductivity (collision term arbi-
trary) for an s component, relativistic plasma.
Whereas in I particle velocity variables were used,
here it is convenient to do the calculations in terms
of the particle momenta.

As an application of the general result, the con-
ductivity is calculated to first order in the collision
parameter from the Beliaev-Budker equation. ' This
equation is the relativistic analog of the Landau
equation. Specifically, we consider the electron
current, and in keeping with the neglect of radiation
(see Krizans), we restrict the discussion to order
(v/c)'. Thermal corrections are assumed small,
and products of these by relativistic corrections
are neglected. Thus, we need actually calculate
only the k =0 part of the conductivity. The k'
(thermal) corrections are identical to those given
in the Landau equation calculation of I. The wave-
length independent contributions to the conductivity
tensor from ion motion are then obtained, and these
include first-order relativistic corrections result-
ing from the electron motion in electron-ion and
ion-electron collisions.

II. CONDUCTIVITY TENSOR FOR ARBITRARY
COLLISION TERM
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and A. ' ' is the normalization constant. The spe-
cies superscript will be suppressed whenever pos-
sible.

With the fixed coordinate system of I, introduc-
ing the cylindrical momentum coordinates

p=ucosQe +u sin(It)e +p ex Z Z

and using the relation

(2)

p =ymv,

the linearized, relativistic kinetic equation for the
perturbed distribution function (f=fl +f ) becomese

f„(, &„,&)f rqE . f. rc(f) (4)
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C(f ) is the a.rbitrary, linearized, relativistic
collision term. From Eq. (3), we see that Eq. (4)
has the same explicit form in the tIt) variable as for
the nonrelativistic case [see Eq. (4) of I]. Thus,
the procedure of I applies (the calculations are done
in terms of momenta here rather than velocity),
and it is straightforward to show that the conduc-
tivity tensor 0~~ is obtained from

We consider a neutral, relativistic plasma com-
posed of s species of charged particles. A uniform
magnetic field is present, and the distribution func-
tion of the ith species is assumed to be perturbed
slightly from its equilibrium value as in Eq. (2)
of I. The equilibrium distribution f, " is the rel-
ativistic Maxwellian at (common) temperature T,

[ (i)J d3 (i) (i) (i)

f d3 (i) (i) (i)( ( )i)]

In Eq. (5) f =f g E /KT,
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assumed small) by replacing C(f ) by C(f, ). Using
Eq. (15) of I, we obtain to this order

(nurJ (yb) iwdZ (yb)n n

yb ' d yb , ~ Z(yb)z n )
&&exp[i(yb sing —nQ)] /(ya —n)Q

P is the vector obtained from Eq. (10)of I by replacing
a, b by ya, yb and then multiplying by y, and

Equation (5) is exact in the sense that it is valid
to all orders in the collision parameter. From
here on, however, we limit the discussion to first
order in the collision parameter (collision effects
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It is worth emphasizing that the relativistic cor-
rections do not alter the explicit form in the ~It)

variable of the linearized kinetic equation. For
this reason, the discussion of I is extended nat-
urally to yield a conductivity which is formally
the same as in the nonrelativistic case.

III. CONDUCTIVITY TENSOR FROM THE BELIAEV-BUDKER EQUATION

A. General Results

In this section we calculate the conductivity tensor using the Beliaev-Budker collision integral. Sub-
stituting the linearized Beliaev-Budker collision term into Eq. (8), a,nd integrating by parts in the p~
variable, we obtain
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I =I is the Coulomb logarithm, and, with 5=p/mcy,
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From Eqs. (9) and (10) it is easily verified that, as in the nonrelativistic case,

o
I

(A)=o (-0) .(c) (c)

Electron Current

We now consider specifically the contribution to the conductivity from the electron current. The



179 CONDUC TIVI TY OF A COLLISIONA L RE LATIVIS TIC P LASMA

relativistic corrections to the electron motion are assumed small, and we retain only (v/c)' corrections
to the conductivity. Ion motion is neglected altogether so that we ignore the electron-ion mass ratio
compared to unity. We assume that "thermal" corrections to "cold plasma" theory are small by using
Eqs. (24) and (25) of I, and do not consider the phenomenon of resonant damping (Landau damping,
cyclotron damping). As discussed by Krizan, ' a particle Hamiltonian is well defined to order (v/c)',
and the use of the Beliaev-Budker equation to this order seems justified (at least for Q «urj„m «uf, ).
Neglecting products of thermal by relativistic corrections, and remembering that the Beliaev-Budder
equation is the relativistic generalization of the Landau equation, we see that we need calculate only
the wavelength independent (k =0) part of the conductivity denoted by ckf(k = 0). The k' corrections will
be identical to those given in I. With the above assumptions, it is straightforward to show that, to lowest
order in the relativistic correction, electron-electron collisions contribute nothing to ckf(k = 0), and that

&r„(k=0)= d'pv f $ (k=0)—
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where the second term is due to electron-ion collisions. In Eq. (12), the "average" ion charge Ze is
defined by

s —1
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and to order (v/c)',
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Also, the vector p(k =0) is
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where Q is negative for the electrons. Using Eqs. (7), (13), and (14), the integrals are readily performed
in Eq. (12) with the result that

cr (k =0) =i(u 'T (k =0)/4w(u+(2/w)'I'u) 'LZK (k =0)/4w(u'A
kl P kl P kl (i5)

To the desired order, the only nonvanishing components of Tkf(k =0), and Kkf(k = 0) are

T = T = [(u'/((u' —Q')] [I —(5/2& )((u'+ Q')/(ar' —Q')],

T = —T = [iQ(u/((o' —Q')] [1—5(o'/$ (a)' —'Q')], T = 1 —5/2$,Xg fX zz

K =K =[&@'((u'+Q')/((u'- Q )2][1 —[15/8$((u —Q )][&@'((u'+3Q2)+(Q'/15)(3(u'+Q )]),
K = —K = [2iu'Q/(w' —Q')'](I —[15/16$(&u' —Q')] [(3u'+ Q')+ ~(~'+3Q')])

K = 1 —15/8$ .

Since okf(k =0) is linear in the normalization of f„a factor of

n (&/2wm'c')' '(1 —l 5/8$)

is contributed to each of the above components from that normalization.

(18)
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C. Effects of Ion Motion
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As discussed in I, ion motion cannot be ignored at low frequencies (&u & Qf}. For completeness then, we

now discuss briefly the effects of ion motion, and give the corresponding wavelength free contributions to
the conductivity tensor. There are two contributions: those due to ion motion in the electron current, and
those from the ion currents. To keep the discussion of reasonable length, we consider here only one
species of ion with charge Ze, and density ne/Z .Specifically, we are interested only in wavelength inde-
pendent (k =0) results to first order in electron relativistic corrections, and we treat the ion motion non-
relativistically. Consequently, the noncollisional contributions will be those discussed in I, and ion-ion
collisions will not contribute (the k contributions from ion-ion collisions are those discussed in I). How-

ever, the effects of ion motion on the electron-ion collisional contribution to the electron current, and the
ion-electron collisional contribution to the ion current will contain electron relativistic corrections. These
terms are not difficult to calculate from Eq. (9), and we merely state the resulting additions to Eq. (16) de-
~oted by ~kl'.
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The K ' term of (Zm /m. }'(I+I/8$}+2Z(m /mf)(1 —7/8$) is negligible at all frequencies.

IV. DISCUSSION

We have generalized the discussion of I to obtain
an expression for the total conductivity of a col-
lisional, relativistic plasma in a constant mag-
netic field [Eq. (5)]. Important simplifications
result from being able to write cr as an integral
over the collision term directly rather than over
fc. The conductivity, as it stands in Eq. (5), is
in a convenient form for iteration. Iterating once,
we obtained the conductivity tensor for a weakly
collisional plasma to first order in the collision
parameter [Eq. (8)]. This conductivity is formally
identical to that in the nonrelativistic case. The
derivation was easily extended to the relativistic
case since relativistic corrections to the linear-
ized kinetic equation do not alter the explicit P
nature of that equation.

As an application of the general result, the k = 0
part of the conductivity due to the electron motion
was calculated to lowest order in the relativistic
correction from the Beliaev-Budker collision in-
tegral The ac.tual computation of v (k = 0) is sur-

prisingly little complicated by the inclusion of
relativistic effects to order (v/c)'. The k' cor-
rections to "cold plasma" theory are identical to
the Landau equation results of Pytte' (products of
relativistic by thermal corrections were ignored).
The results are consistent with the dispersion re-
lations for electron waves given by McBride4 for
propagation parallel, and perpendicular to the
magnetic field. With the results of this payer and
the preceding one (I), we have in effect derived
the dispersion relation for electron wave propaga-
tion at an arbitrary angle with respect to the mag-
netic field to first order in the relativistic and
thermal corrections. In particular, we are now
in a position to calculate the collisional damping
for any electron wave mode (&u» Q ) to first order

2
in the relativistic and thermal corrections.

Contributions to the conductivity from the ion
motion, which become important at low frequen-
cies (&u & Af), were calculated for k = 0, and for a
two-component plasma to first order in electron
relativistic corrections, and the collision parame-
ter.
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