179 DESCRIPTION OF
The last terms cancel as another application of Eq.
(A14) for N=1 and these equations establish Eqs. (A13)
and (A14) in the case N=2. Finally, suppose that Egs.
(A13) and (A14) hold for N=R and N=R—1, where
R=2,3,4, ---. Multiply the N=R equations from the
left by s; and si, eliminate the sST products using Eq.
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(A10), and discard terms as permitted by Eqgs. (A13) and
(A14) for N=R and N=R—1. The result is Eqs. (A13)
and (A14) for the N=R+1 case. This establishes them
in general and completes the proof that the = helicity
functions (A12) are the solutions of the wave equation

(14).
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For the on-mass-shell calculation of the scattering amplitude, we have used the following method. On
the basis of the hypothesis of partially conserved axial-vector current (PCAC), we introduce the axial-
vector current J =4 +cdp, where A4 is the current appearing in the PCAC relation, and ¢ is the pion field.
Using this current in the Lehmann-Symanzik-Zimmermann formalism, the amplitude is decomposed into
two terms W% and W?° due to the equal-time commutators (ETC) of the divergence of the current J, re-
spectively; a term W! due to an ETC leading to a vector current; and a term W giving contributions of the
discrete intermediate states. The ETC’s of the current octet J are assumed to be similar in form, though
not equivalent, to those normally used for the current 4. For kaon-proton (K*p) scattering, we have
used this formula in conjunction with dispersion relations and the SU3)QSU (3) scheme, and derived
sum rules for W9 and W1, Using the scattering length, the sum W®-W? is evaluated. It is found that in
order to obtain the correct signs and magnitudes of the K#*p scattering lengths, with a single coefficient ¢
in the PCAC relation, we must take into account the sum W®-W?, which seemed to be negligible in =V
scattering. The difference between the on- and off-mass-shell amplitudes is derived, and seen to depend
on the type of particles involved. Assuming that only the sum W%+W? is a smooth function of the squares
of the kaon four-momenta, this difference is found to be negligible in the K~ case, while it is 409, of the

K*p scattering amplitude at threshold.

I. INTRODUCTION

OR the study of low-energy meson scattering, the
hypothesis of partially conserved axial-vector
current (PCAC)!2 has been used at times in conjunction
with the current algebras. Among other authors,?
Weinberg,* in the study of the pion scattering lengths,
and Raman and Sudarshan,’ in case of pion-nucleon
(wN) scattering, have applied this combination to the
off-mass-shell amplitude. Subsequently, for the calcu-
lation of the scattering lengths, other authors®—® have
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used the same technique, which consists of making use
of the off-mass-shell amplitude and extrapolating the
results to the physical threshold. In these calculations
there are essentially two known sources of error. First,
there is an error due to the extrapolation which may be
considered in two parts: one arising from the use of
PCAC in the current-algebra expression of the ampli-
tude, while shifting %22 and £’2 from zero to m? (k and
k' are the 4-momenta of the incoming and outgoing
mesons, and # is the meson mass); the other due to the
difference between the on- and off-mass-shell terms in
the amplitude. The effect of these approximations which
seems to be negligible in the 7V scattering? has not been
investigated in the kaon-nucleon (K N) case. The second
source of error is, except for the () scattering,*7? the
omission of the ¢ term which is due to the time deriva-
tive and the divergence of the axial-vector currents.
Weinberg’s reason for this approximation, in the =V
case, is that the above term is in the order of m .2/ M? as
compared with the terms linear in pion 4-momenta (M
and . being the nucleon and pion masses). The fact
that such an argument is not applicable to the KV case,
however, leads one to believe that the calculation of the
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K*p scattering length made in Ref. 8 may contain some

error, and the use of the PCAC relation in the KN case
needs further study. We shall, therefore, study the
above points in the case of K*p low-energy elastic
scattering by direct evaluation of the on-mass-shell
amplitude with the following method.

In Sec. II, we introduce the axial-vector current
octet J=A+cd¢, where A is the weak current appearing
in the PCAC relation, and ¢ is the interaction field.
Using this current in the Lehmann-Symanzik-Zimmer-
mann (LSZ) formalism,® we decompose the on-mass-
shell amplitude into four terms: one called W%, due to
the equal-time commutator (ETC) of the divergence of
the current J with the time derivative of the interpolat-
ing field; a second term W?, consisting of the ETC of
the divergence and the time-component of the current
J; a third one W’ due to an ETC leading to a vector
current; and finally a term I due, to all possible inter-
mediate states. We note that the contribution of W® to
the scattering amplitude is known! to be a polynomial
in (k+%)%. We also observe that the sum W49, for
k?=Fk"?=0, is the same as the ¢ term which was negli-
gible in the =V case? and ignored in the work of Ref. 8
for K*+p scattering. To evaluate W° and W', we assume
that the commutation rules of the currents J are similar
in form though not equivalent, with those normally as-
sumed for the current 4.1 In applying this treatment to
the K*p scattering, we approximate the term W by a
term W7? due to one-particle intermediate states, taking
into account all quadratic terms in %. In Sec. III, the
sum rules for W° and W* are derived by combining this
treatment with the dispersion relations. In Sec. IV, we
evaluate the sum W+ in terms of W* and W¥ and
the observed scattering lengths. Also, we evaluate the
difference of the on- and off-mass-shell amplitudes for
K=*p scattering, which is a part of the error in the
extrapolation used in the previous method.*® Our
results may be summarized as follows.

The two matrix elements W° and W* may be expressed
in terms of polynomials of %22 similar to that known for
W10 the Goldberger-Treiman coefficient,!? ¢ in the
PCAC relation, andthe scattering length which may be
obtained experimentally. For a given ¢ the sum W%-+1W°
is found to be appreciable at threshold and independent
of the kaon energy. It is noted that if the sum W4-1¥7°
has been omitted from the scattering amplitude, as was
done in Ref. 8, then it would have been impossible to
obtain the correct signs and magnitudes of both K*p
scattering lengths with a single coefficient ¢ given by
the PCAC relations.

9H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1965).

10 See the work of D. Amati, Nuovo Cimento 2, 190 (1958);
see also S. S. Schweber, Relativistic Quantum Field Theory (Row,
Peterson and Co., 1961), pp. 789 and 790.

11 The commutation rules of the weak current 4 are those
suggested by M. Gell-Mann, Physics 1, 63 (1964).

12 M. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).
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The difference between the on- and off-mass-shell
amplitudes is seen to depend on the type of the particles
involved in the scattering, and an unknown constant,
namely the off-mass-shell value of the matrix element
of a scalar field. Assuming that the sum W40 is a
slowly varying function of k2, this difference is found
to be negiligble for K~ scattering, and 409, of the
threshold amplitude for K+ scattering.

II. ON-THE-MASS-SHELL EVALUATION
OF THE AMPLITUDE

A. Analysis and Decomposition of the Amplitude

The two-particle scattering amplitude derived from
LSZ treatment,® as a function of the time-ordered
products of the interpolating field ¢, may be expressed
as

T palw, k2, k’?) = To(w,k2k'2)+ T1(w,k2,k'2),  (1a)

with
To(w,k*, k") =m"/d4xd4y

Xe-zk’arﬂkil(pll T{¢b(x)¢aT(y)} Ip> ) (lb)

and
Pl(w,]ez,/e’2)=/d4xd4y

x e«ik" a+ik- y[m2 (amu2+ ay,2) + aﬁ“zayyﬂ
X' T{u(@)da’ (0} | p).  (1c)

Here k and &’ are the initial and final momenta and a and
b the initial and final SU(3) indices for the mesons,
while p and p’ are the initial and final momenta, and
|p) and |p’) are the initial and final state of the target.
The functions T'g and T'1 have the following properties:
For k2=Fk'?=m? we have

To(w, k2=k"?=m?)=T1(w, k2=k"?=m*), (2a)
and for k2=£"2=0,
Ti(w, k2=Fk"2=0)=0, (2b)

where we have made use of some partial integrations
and of the fact that the spatial terms in these integra-
tions vanish at spatial infinity.

Introducing the PCAC relation!:?13

3, Ar=cmp, 3)

where A is the axial-vector current, m is the meson
mass, and ¢ is the coefficient which is evaluated at
k2=0 by Ref. 1 or 12, Egs. (2b) and (1a) give

Thulw, BP=k?=0)=¢2 / déxddy i ity

X (P | T{0uA v (x),0,A TN} | P aemiromo.  (4)

13 S, L. Adler, Phys. Rev. 137, B1022 (1965).
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It is clear from (1b) that Eq. (1a) in its present form
cannot be evaluated directly. The method used by
previous authors,*8 hereafter referred to as the “pre-
vious method,” is to calculate the amplitude (4) and
extrapolate the results to the physical mass shell. The
error involved in this treatemnt may be analyzed into
two parts: one is due to the use of (2) while varying k2
from zero to m?, and its evaluation requires a knowledge
of the “residual current” involved in the definition of
PCAC as given by Adler!?; the other is

e= T, k2= F"2=m2)— Toa(w, 2=k"2=0), (5)

which may or may not be important, depending on the
particles involved in the scattering, as can be seen from
the work in Refs. 4-8 and our final results.

To avoid extrapolation, therefore, we deal directly
with the amplitude (1a) by the following method.

On the basis of the PCAC relation (3) we introduce
the axial-vector current octet

J o (x) = A *(x)+cI*pa(x) (6a)
as a source of the interacting field, so that
(024 m)dpa(x)=c 10T o*(x) . (6b)

Using this current and (2), the amplitude (1a) can be
expressed as

T (e, 2 k%) = =2 f dbxdby

Xeuik"xﬁk'y({’w T{au]b”(x):av]aﬂ(y)}
—m28(60—0) Do 9T #(%),0,4.4" () ] [ p). (7a)

The second term on the right-hand side of (7a) is
known'® to contribute a polynomial in (#'+%)% with a
finite number of terms and with coefficients depending
on (= (k'—k)2. We may, therefore, write

/d“xd“y ik kU (50— y0)
X <17/[ 6!,0[6,,]5"(3}),3,,/1 aﬁ(y):” 17>
Q)P+ —pk) N
TP TE T S (e
(2m)8(4koky’) /2

n=0

(7b)

where the o’s are coefficients depending on the momen-
tum transfer, and N is the number of terms in the
polynomial.'* Also, the currents are normalized such

that
(0] 4.#(0) | £,0)=[2(2m)%k0 1/ 2ck*d0s. (7¢)

The first matrix element in (7a) can be decomposed
into three terms, either by using some partial inte-
grations combined with the commutator properties of

14 The polynomial expression for the equal-time commutator,
given by (7b), appears both in the dispersive part of the amplitude
and in its relevant S-matrix element, described by H. J. Bremer-
mann, R. Oehme, and J. G. Taylor, Phys. Rev. 109, 2178 (1958).
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the field ¢ or by using the generalized Ward-Takahashi
identies, as done by Raman and Sudarshan.? Carrying
out this decomposition and using (7b) in (7a) we find

i(2m)*o(p'+ k' —p—k)

T po(w, k2, k') =
(27)8(4koky')  2c?
X WO WAW—W)pe. (7d)
Here,
WO(w,k?,k"?)

=i [ate o)L HE ), ()
W (w,k2,k"?)

[ ats e o (-s0 L@ SOl ), 0D
W (w,k%,k'?)

= —ik,'k, f d'z e (p’ | T{T(0),7 21 (2)} | p), (Tg)
and

1 w~
WOt k2 k) =— 32 an(t)(k+E')*. (7h)
m2 n=0

Now consider the decomposition of the amplitude
(4), which can be found in Ref. 4:

Tra(k?=0) =« [R°(4)+R'(4)+R(4)],  (8a)

where R, R!, and R represent the o term, the term due
to a vector current operator, and the terms due to the
discrete intermediate states, respectively. In the present
context, A indicates that the amplitude (8a) depends
on the commutators of the current 4 only. Noticing
from (2) that at k2=0 the two amplitudes (7a) and (8a)
are completely equivalent, we find the connections
between our treatment and the previous method as

RY(A)=apt WO(J, k2=0), (8b)
RY(A)=W'(J, k2=0), (8¢
R(A)=W(J, B2=0). (8d)

Here, ao the zero-order term in (7h) is a constant, and J
only indicates that the amplitudes W’s are originated by
the commutators of the current J.

To evaluate the amplitudes (7¢) and (7f) we need the
commutation rules of the current J. A simple choice
which guarantees the relations (8b) to (8d) is to express
the commutation rules of the current J in a form similar
to those!! for the current 4, i.e.,

8(z0)[J+%(0),0,J o*1(2) |=1idav 07 (2) 16*(2)+S.T., (9a)
3(z0)[Ju*1(2),J 4#(0) 1= 2 fure[ V. 7#(2) 16%(2)+S.T.  (9b)

It is understood, however, that ¢/ and V7, the scalar
and vector current operators associated with the cur-
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rent J, are not equivalent to those ¢ and V normally
used in the relations (9) as applied to the current A.
Also, in (9) we have the usual SU(3) structure constants,
dase and fape, and possibly the Schwinger terms (S.T.),
which we shall neglect hereafter.

B. Application to K*p Scattering

For further development of Egs. (7) we shall consider
the case of K*p scattering for which the initial currents

Tr = (/N2 (JFiT5)

are given by the SU(3)®SU(3) scheme which we
follow. Using these currents, Egs. (6a), (9a), and (7e),
and setting for convenience k2=%'2, we find

W L (w,k?) = (p'| 037 (0)— (1/¥3)a57(0) | p), (10)

where the subscripts & refer to K*p, and w is the meson
lab energy. Similarly, using the above currents (6a),
(9b), and (71), for k2="£'?, we may write'®

W20 7) =k 20(p)
¥+
2M :” (1)

X {k’F1(1)+upF2(t)[k’~ u(p),

where the #’s are the spinors obeying the Dirac equation
and up is the anomalous magnetic moment of the proton.
In writing (11a) we have expressed the matrix element
of the current V7 in the usual way, in terms of the
v, matrices (p'— ), and o, (p'— p)”, and have used the
vector current conservation condition. In (11a) we
have also F; and Fs, the unknown form factors corre-
sponding to the mass shell k2= m?, which should satisfy
the relation (8c), that is,

Fi1(t=0)=F,(t=0)=1 for k2=0.
Hence, (11a) yields
Wi(w, t=0, k2=0)==%2|w|, (11b)

in agreement with the previous work.® From the proper-
ties of the scalar and vector ¢/ and V7 and the currents
Jk + We find

W (w,k?) =W _(w)k?),

Wi w,k?) = —W_1(w,k?).

We shall use these conditions with the dispersion rela-
tions for deriving the sum rules for W° and W* in the
next section. Also, we shall compute W° plus W
given by (7h), and W in Sec. IV, using the observed
data for the scattering lengths.

To evaluate the matrix element W, Eq. (7g), we
choose only the one-particle intermediate states. These
states for K*p scattering in the s and % channels are
A, 2, V1*, and Vo. We neglect the contribution of the

(11¢)

15 The SUB)XSU (3) scheme gives foneVe(z) = V3#(2)-+V3 V4 (2)
and for this relation we find (11a), following the procedure seen,
e.g., in S. Gasiorowicz, Elementary Particle Physics (John Wiley
& Sons, Inc., New York, 1966), p. 435,
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¢t channel. Then, denoting Tee=Tx*p=T4, Tas=Tk»
=T_, and using (A15) of the Appendix, we may express
the terms due to one-particle intermediate states,

denoted by W7, as

W P (w,k2) = WP () + -2 WP (), (122)
where
G(J) G(Yo*)
ReW . .P= 2[— > - ’
J=AZwitw wyg*tw
GY*) M My +M+tw
— :I (12b)
3 MY;* wy,*tw
and
1 M+Mzw
ReWo.? =——[ 2 GU) —
2MLy=a.2 wiw
Myp—M+tw GV )My +M+tw
+G(TeY + |z
wyttw 3 wy *tw

In (11c) we have from (A14), for w? XM 2+m? and
p=1(0,0,0,M),

wsM;— M+ (02—m?)/2M ;,
G()=(M/M)ga*(),

where ga(z) refers to the axial-vector coupling constant
for a given intermediate state 7. The absorptive part
of WP(w,k?) will not be needed in this work, since we
shall use the threshold values of W? in our computa-
tions. For %22=0, the contribution of the term WP
reduces to

(12d)

R(w; k2=0)= WIP(‘O) ]

making use of Egs. (8d) and (12a).

Making use of Egs. (7h) and (10)-(12) in (7d), the
K+*p scattering amplitudes for the forward direction are
Ty (w,k?) = — (18722 | w| )~

XLWOR?)+ WO (w,k?)+W i (w,k?)

—WipP (@) = kWP () — Wi (w,k?)], (13)
where we have left out the § function from (7d). Here,
WH(w,k?), which is extracted from (7g), represents the

terms due to more than one-particle intermediate
states.

(12e)

III. USE OF DISPERSION RELATIONS

To obtain further information on the matrix elements
due to the equal-time commutators, we use the disper-
sion relation given by (A12) of the Appendix, viz.,
Ti(w,1)=— (187%2|w| ) [W(1)+W(m,1)

o/ m)TV L2, D)= TV 1, D)W 4%(m,1)

- W:tp(w’l)]+ !wI-IDi(wzl) . (14&)

Here (w,1) denotes (w, £2=m?) and (1) means (k2= m?);
WaH and W4H represent the terms W in (A12)
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which are, respectively, even and odd functions of w.
Also,

(),
F (0 —w?)
o_(0)—a(w)

F(w?—w?)

Dy(o1)=keP /

m

)dw’ (14b)

is (A8) of the Appendix, in which the optical theorem
for the amplitude (A10) and the total cross sections
o (w) are used. Comparing (14a) with (13), in which the
WH term is split into even the odd functions of w, and
noticing from (7h) and (11c) that W% and W?° are even
functions of w while W is odd, we find

Wow,1)+W s#(w,1) =W°(m,1)+W 5" (m,1)

0 7 _,_ - 7
L8k P f @)t ) . (15a)
o H—ad)
and
W Hw,1)EW 47 (w,1)
=([w|/m)[W*(m,1)+W 17(m,1)]
F8c7k? || P / ) (15h)
K ()

The dispersion relation for the off-mass-shell ampli-
tudes 7'y (w, £2=0) may be expressed by assuming that
all conditions leading to (A12) of the Appendix hold as
k?— 0. Hence,

T:i:(wyo) = (87'-262 [ @ l )_IEWOO(m70)+ Wo(m70)

+ (w/m)W 1 (m,0) — W sH (m,0) =W 47 (m,0)

' —WiP(@,0) ]+ |w| " Di(w,0). (16)
Here (w,0) denotes (w, k2=0) and D, (w,0) is given by
(A8) of the Appendix. Comparing (16) with (13) in
which the £2=0 is used, and with the same procedure
for obtaining Egs. (15) from (14) and (13), we find

WO(e,0)+W sH(w,0) =8°(m,0)+W 57 (m,0)
* Im[ A+ (w") —w’B*(w’
+16wc2k2P / m AT W) —e'BH e )]w'

@) @)

dew’

(17a)

and
W £1(e0,0) =W 4 (w,0) = 2= (|| /m)W (m,0) £ W 47 (m,0)

* Im[ A= (w') =’ B~(w’)]

'—Fl67r62k2[w|P/ do’.
m (0= (w?—m?)

(17b)

We now note that in the K%p case the total cross
sections oi(w) can be considered as slowly varying

LOW-ENERGY K#*p SCATTERING

1453

functions!® of w (except for a small interval in the low-
energy range). With this approximation extended to
the off-mass-shell 22=0, the integrals in the right-hand
sides of Egs. (15) to (17b) vanish. In any case, the small
contributions of these integrals may be neglected in
compensation with all the terms W which correspond
to more-than-one-particle intermediate states. Hence,
Egs. (15) and (17) give

Wo(w,D)~=W°(m,1), W(w,0)~=W°(m,0) (18a)

and
Wd:l(wyl)z i(!w l/m)Wl(m71) )
Wi (w,0)==(|w|/m)W*(m,0).

From (18a) we learn that the function W(w,k?) is
independent of w; hence, considering (18a), (10), and
(8b), we may write

(18b)

I
Ww,1) =2 B:(1=0)k*,

=0

(19a)

a polynomial similar to (7h), with coefficients 8 depend-
ing on ¢t= (¥’'—k)2. Using (19a), for £2=0, in (8b),

Bo(t=0)4-ao(t=0)=R(t=0, k2=0),  (19b)

where B is the zero-order terms of the polynomials in
(19a) and @ and R are described in (8b).

On the other hand, Egs. (18b), (11b) and (11c) allow
us to rewrite (11a), for =0, as

Wil(w,1)==%[24+R:(=0, k?) o, (20a)
in which
I
Ri(t=0,k%) =3 v,(t=0)k%. (20b)
=1

We shall evaluate R; for the threshold, in the next
section, using the observed values of the K*p scattering
lengths.

The difference between the on- and off-mass-shell
amplitudes, Eq. (5), is

ex= — (187 %%) [ W (m,1)+W°(m,1)
—RYO)xwR(1)+m*WaP ()], (21)

making use of Egs. (20), (19), (14a), (16), (13), and (12).

IV. USE OF THE SCATTERING LENGTHS

Here, we compute the sum W4-W? and the poly-
nomial Ry(1), Eq. (20b), using the K*p scattering
lengths a@.. The s-wave scattering length may be
obtained as 2i times the reduced mass times the co-
efficient of the & function in (7d), evaluated for forward
scattering at threshold, and for the s-wave contributions

16 For K*+p scattering data see C. Cook ef al., Phys. Rev. 129,
2743 (1963); for K~p data see R. H. Dalitz, Ann. Rev. Nucl. Sci.
13 (1963). The K*p cross sections o.(w) have also been con-
sidered as slowly varying functions of w by D. Amati, Phys. Rev.
113, 1692 (1959).
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of the amplitudes,'”

1 Mm
Q‘I——>[W°°(l)+W°(m,1)
—+m

47c?

QL=

+W i m, 1) =W P (m,1) Jico,  (22a)

where [ is the orbital angular momentum, and we
choose!?
c—i[V2g4(A)/gavx IM=—icoM ,  (22b)

having used the vertex form factor Fayx(k2=m?)=1.

To obtain W?° from (22a) we evaluate first W2 (m,1)
from Egs. (13) in which the contributions of the ¢
channel are neglected. Using the coupling constants!®
24(A)=0.70, g4(32)=0.23, ga(¥,*)=0.15, and
g4(Y1*)=0.67 in Egs. (13), we find the s-wave con-
tributions of the term W_” as

WP (m,1) . =0.9m1, (23a)
WoP(m,1)_=—0.149m~1 (23b)
W,P(m,1)=0.436m, (23c)
W_2(m,1)=—0.302m. (23d)

In writing Egs. (22), we note that in the K*p case
all four intermediate states A, Z, ¥V1*, and ¥ ¢* contribute
in the % channel. However, in the K—p case the s-wave
contribution to the amplitude is due to Y¢* only (A,
2, and Yo* contribute to the p-wave amplitude, as can
be verified by their spins and parities).

Using Egs. (10) and (22b), and Egs. (23) in (22a), we
have
m WD)+ WO (m,1) ]

=12rc2M ay—[1.564Ry(1)]
= 12rc*Ma_+[1.704+R, (1) ].

Here, the observed K#p scattering lengths a4 are!
ay=a1=(—0.2940.01) F,
a_=%a1+a¢y]=(—0.83+0.09) F,

in which e; and a, are the scattering lengths corre-
sponding to isospin /=1 and /=0, respectively.

For ¢y=0.155, obtained from the Cabibbo theory and

used in Ref. 8, Eqgs. (24a) and (24b) give
R,(1)=0.41,

Woo(1)+Wo(1)=—3.3m,

(24a)

(24b)

(25a)
(25b)

17'This method of computation of s-wave scattering length is
given in Ref. 4 and others mentioned in Ref. 4. The same result,
of course, would be obtained from the standard method as given
l()ly9 6I3.)Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737

18 The values of g4(A), g(2), and g4(¥1*) are those gathered by
Ref. 8. The coefficient g4(¥o*) is calculated by (19b), in which we
have used gpro*r=0agro*s-® and (gro*~92/4r)=0.045, and «=10
according to C. Weil’s work [C. Weil, University of Minnesota
report (unpublished)], as recorded in Ref. 8.

19V, J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G.
Goldhaber, and S. Goldhaber, Phys. Rev. 134, B1111 (1964).
Also, J. K. Kim, Phys. Rev. Letters 14, 29 (1965).
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N T
RY(0)=—3.3m—Y. am? D=3 Bm?. (25c)
n=1

=1

Note that Ry(1), which is the difference W(m,1)
—Wi(m,0), is 209% of Wi(m)0), the off-mass-shell
(k2=0) value of W If we had neglected the terms
Wo-+LW?° and R; in our calculation, we would have
gotten a.=0.258 F, about 119, less than the observed
a,. given by (24b). This value is reasonable, considering
the approximation involved in data for g, ¢, etc.;
however, it has the wrong sign.?’ For the K—p case, on
the other hand, the above approximation would have
given a_= —0.28 F, which has the correct sign, but is
three times smaller than the observed a_ given by (24b).

The difference between the on- and off-mass-shell
amplitudes depends on the constant R%(0)= W% (m,0)
+W(m,0), given by (19b) and (25c). Here, we assume
that both amplitudes W and W are smooth functions
of k2; then, we may write

Woo(1)+W(m,1)— R°(0)=0. (26)
In this case, Egs. (23) to (26) and (21) give
~0.40T 1),
€t +(m, ) (27)

e~0.04T_(m,1).

V. CONCLUSION AND COMMENTS

Considering Egs. (19) to (27) and the remark, in
the preceding section on the consequence of neglecting
the terms W W° and R; from the expression of the
K=*p scattering lengths, we conclude the following.

(1) Each of the matrix elements W° and W! is essen-
tially a polynomial of %2, similar to the matrix element
W9 whose general form was already known to us. The
terms W and W9, as well as their respective values
ao and By corresponding to the off-mass-shell £2=0, are
not known at the present time. We have only been
able to compute the o term W%+ W9 given by Eq. (25b),
and found it to be appreciable as compared to the terms
W1 and W2, (2) With a single coefficient ¢ in the PCAC
relation, the correct signs of the K*+p scattering lengths
can only be obtained if the sum W%4-W9, or at least
one of these terms, is taken into account. For the K*p
cases, in contrast to the w/V scattering, the magnitude
of W9+ W?" exceeds that of the term W!. In both cases,
the difference of the on-mass-shell values of W1, given
by (25a), as well as the contribution of the pole term
WP, are appreciable and should not be ignored. (3)
The difference between the on- and off-mass-shell
amplitudes at threshold depends on the type of incident

20 Note that Roy in Ref. 8 has neglected the terms W, W°, and
WP in his calculation, and has obtained a;= —0.41 ¥, which has
the correct sign, but is 409, larger than the observed a;. The
reason that Roy obtained the correct sign for a, is that he chose
the signs of the exponentials ¢+~ in the formula (1a) oppo-
site to those appearing in the Refs. 9 and 4, which we have used
here. With this choice of sign, the approximation made in Ref. 8
leads to a wrong sign for the K~p scattering length.
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particle, and on the unknown quantity R?, Eq. (25c).
This difference could be large, as seen from (27), de-
spite the assumption of the smoothness of W40
with respect to %2

All these results, of course, depend mainly on the
accuracy of the observed scattering data, the values of
¢ and the coupling constants g in W72, It is also clear
that our present method of evaluation of the physical
amplitude is based on the assumed commutation rules
(9) for the current J, which we hope to study in
further investigations.
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APPENDIX

Here we shall express the K+ dispersion relations in
a suitable form for use in this paper.*! Also, we shall
give a summary account of the derivation of the one-
particle terms in these relations, all for forward scat-
tering. The scattering amplitude may be expressed as

Fi(w,kz)zF‘J’(w,kz):I:F—(w’k% ) (Al)

LOW-ENERGY K*p SCATTERING
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where, for forward scattering, we write
B (w,k?) = A (w,k%) — 0B (w,k?) (A2)
in which
A% ()*=£A*(~w),
BE(w)*=FB¥(—w).
These properties of the invariant amplitudes 4+ and B*
lead to the dispersion relations

(A3)

Rel (e, k%) =P (e, %)

2w © Im[ A~ (o, k%) —w’'B~(’,k%)]
——P / do’, (A4)
T Jm o' —w?
2 0
ReFt(w,k?) =wP*(w,k?) ——P / do' ImB+(w’,k?)
™ m
2 o[ ImA* (o' k?) —o' BT (w',k%)]
-P / dw’. (AS)
T Jm w'?—w?
Here,
P (0,k?) = Pt (w,k?) 4= P~ (w,k?) (A6)

gives the contribution of the one-particle terms. On
the right-hand side of (A4) and (AS), the contributions
of the integrals in the unphysical region ma to m are
approximated by those of the resonance poles V1* and
Yo* which are included in P*(w,k?). To eliminate the
divergent part of (AS), we use a subtraction at w=m,
and for the purpose of symmetry in the final expressions
we carry out the same subtraction in (A4); then we
combine the results in (A1) and find

ReF 4 (w,k%) = 3(1£0/m)[F 1 (m,k?) — mP(m,k?)]
FoP i (wk)+3(1Fw/m)
XLE_(mk?)—mP_(mk*) J+Di(wk?), (AT)

where F;. denote the K*p scattering amplitudes and

Dy (w,k?) =

™ m

The functions P, (w,k?), given by (A6), are proportional
to the term corresponding to the one-particle inter-
mediate states, denoted by W2(w,k?), which is included
in (7g) of the text; thus we define

Py(oh?)=— (87%2|w| )~ ReW.P(wk?).  (A9)

Since our 7" matrix, (1a) of the text, is defined to satisfy
Sva=08pa+Tsa, then (A9) means that T, given by (7d),
is related to the scattering amplitude Fy, in (A7) by

Fba,=7:waa- (A].O)

21 The Kp dispersion relations are given by several authors,
e.g., C. Goebel, Phys. Rev. 110, 572 (1958); D. Amati and B.
Vitale, Nuovo Cimento 7, 190 (1958). See also P. T. Matthews
and A. Salam, Phys. Rev. 110, 565 (1958); 110, 569 (1958).

2e =) / * & Im[ A= (') —o'B=(o') Jaee’ Tm[ A (') —’ B+(w')]

do’ . (A8)
(w/2 _wZ) (w/Z __m2)

From (A10) and Egs. (7b) to (7g) we see that

TmF 4 (w,k2) = — (87%2|w ) ImW(w,k?), (Al11)

where 7'y denote the 7" matrices of the K*p systems.
Making use of (7a) and (10c) of the text, and combining
Egs. (A7) to (A11), we find
Ts(w,k?) = — (i8r%2|w | ) TH{ WO (R?)+ W (m,k?)

+ (w/m)W £ (m, k%) — W L7 (w,k?)

—3LWH (m,k?)+W_H(m,k?) JF (|w| /2m)

XLW L H (mk?) — W _H (m,k?) [} o' Di(w)k?),  (A12)

where WH, given by (7g), corresponds to more than one-
particle intermediate state. We shall need only the
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dispersive part of (A12); thus, we shall evaluate the
real part of WP(w,k*) using (7g). We neglect the con-
tribution of the # channel. Then we follow the standard
method and assume that the currents J and Jt in Egs.
(7) are, respectively, rising and lowering operators of
unit strangeness of a state on which they operate.
Considering all possible one-particle intermediate
states of the s and # channels of the K*p scattering, and
writing 8(Z)=3[e(Z)+1], Eq. (7g) gives

Wi P=WPFtEWF-,

RCVVP:E"):kZ
" kT o#(0 k] (0
n wn++w
kT (0 ke (0
i([)[ ( )l”xnl g ( )|p>53(pn~—p/+k)- (A13)

W—Wnp_,
Here, the four-momentum p,,, the mass M,, and
wny =M+ =k)*] *— po (A14)

are associated with the intermediate states |#) which are
A, 2, Yo*, and V1* in the present case. For the sum-
mation over spin, in (A12), we use the projection
operator

P=(p+k+M,)/2M

for A, 2, and Y¢* and
p+HR+My,s
)7

2
pp+
3MY1*2 3MY1*

X[g,w—%v,m— (P"%—Pm):]
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for V1*. Considering the spins and parities of the above
states, we choose
(Pi I k”]”(O) ]?>=g-‘1 (i)dikﬁ'yu')’pfyaup;
in which ¢ represents A and Z, and
(pro*| kut#(0) | p)=ga (Y o*) vo*kuy*thp,
(PYx*[kM]“(O) [P>= gA(Yl*)ﬂyl*“k,‘u,,,

for Yo* and Vi* respectively. Here, g4 refers to the
axial-vector coupling constants, and » refers to a four-
component spinor. Using the above projection operators
and these current matrix elements in (A12),

ga(7)
ReW PE(w,k?) = 3
=A% 2M ;

At+w Aft—w 1 1
X {( + >k2—2Mw2(————~:l:————~)}
wtw; wi—w Wi—w wtw;
, gA2(Y0*) {(Ayo*“—ngAyo*——f—w
" My -

>k2+ 2M w®

Wygx—w

wygxtw

1 1 g43(Y1*)

><( + >}+
w—}-wyo* Wy —W. 3My1*

Mw 2 Ay["——w Ay1*++w
], s
Yi* w-{—wyl* Wy x—w
where A,t=M,+M for a state |n).
Note that (A15) for K~ scattering contains the con-

tributions of not only the s-wave state Y¢*, but also
the p-wave states A, Z, and ¥* through the s channel.




