
DESCRIPTION OF MASSLESS PARTICLES

The last terms cancel as another application of Eq.
(A14) for X= 1 and. these equations establish Eqs. (A13)
and (A14) in the case 1V= 2. Finally, suppose that Eqs.
(A13) and (A14) hold for E=R and N=R 1,—where
8=2, 3, 4, . . . Multiply the S=E. equations from the
left by s, and sj„eliminate the ss~ products using Eq.

(A10), and discard terms as permitted by Eqs. (A13) and
(A14) for /V= R and Ã= R—1. The result is Eqs. (A13)
and (A14) for the E=R+1 case. This establishes them
in general and completes the proof that the W helicity
functions (A12) are the solutions of the wave equation
(14)

P H YS ICAL REVIE W VOLUME 179, NUM BL'R 5 25 MAR C H 1969

Mass-Shell Evaluation of the Amplitude, Partial Conservation of Axial-Vector
Current, and. Equal-Time Commutators in Low-Energy J +p Scattering*

A. A. GOLESTANEHt'

Mount Union College, Alliance, Ohio 44601

V. P. GanrAMf

Case Western Reserve University, Cleveland, Ohio 4~l06
(Received 16 July 1968; revised manuscript received 6 December 1968)

For the on-mass-shell calculation of the scattering amplitude, we have used the following method. On
the basis of the hypothesis of partially conserved axial-vector current (PCAC), we introduce the axial-
vector current J=A+c8p, where A is the current appearing in the PCAC relation, and p is the pion field.
Using this current in the Lehmann-Symanzik-Zimmermann formalism, the amplitude is decomposed into
two terms W~ and W due to the equal-time commutators (ETC) of the divergence of the current J, re-
spectively; a term W' due to an ETC leading to a vector current; and a term W giving contributions of the
discrete intermediate states. The ETC s of the current octet J are assumed to be similar in form, though
not equivalent, to those normally used for the current A. For kaon-proton (E+p) scattering, we have
used this formula in conjunction with dispersion relations and the SU(3)QxSU(3) scheme, and derived
sum rules for W' and W'. Using the scattering length, the sum W~+W' is evaluated. It is found that in
order to obtain the correct signs and magnitudes of the E~p scattering lengths, with a single coeKcient c
in the PCAC relation, we must take into account the sum W"+W', which seemed to be negligible in 7fE
scattering. The diRerence between the on- and oR-mass-shell amplitudes is derived, and seen to depend
on the type of particles involved. Assuming that only the sum W~+W' is a smooth function of the squares
of the kaon four-moments, this di6erence is found to be negligible in the E P case, while it is 40% of the
E+p scattering amplitude at threshold.

I. INTRODUCTION

~ OR the study of low-energy meson scattering, the
hypothesis of partially conserved axial-vector

current (PCAC)' ' has been used at times in conjunction
with the current algebras. Among other authors, '
Weinberg, 4 in the study of the pion scattering lengths,
and Raman and Sudarshan, ' in case of pion-nucleon
(s..V) scattering, have applied this combination to the
oR-mass-shell amplitude. Subsequently, for the calcu-
lation of the scattering lengths, other authors' ' have
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used the same technique, which consists of making use
of the off-mass-shell amplitude and extrapolating the
results to the physical threshoM. In these calculations
there are essentially two known sources of error. First,
there is an error due to the extrapolation which may be
considered in two parts: one arising from the use of
PCAC in the current-algebra expression of the ampli-
tude, while shifting k' and k" from zero to m' (k and
k' are the 4-momenta of the incoming and outgoing
mesons, and m is the meson mass); the other due to the
diRerence between the on- and oR-mass-shell terms in
the amplitude. The eRect of these approximations which
seems to be negligible in the x)V scattering4 has not been
investigated in the kaon-nucleon (EE) case. The second
source of error is, except for the (7rs.) scattering, 4 r the
omission of the 0- term which is due to the time deriva-
tive and the divergence of the axial-vector currents.
Weinberg s reason for this approximation, in the x.V
case, is that the above term is in the order of m '/M' as
compared with the terms linear in pion 4-momenta (M
and m being the nucleon and pion masses). The fact
that such an argument is not applicable to the EX case,
however, leads one to believe that the calculation of the
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K+p scattering length made in Ref. 8 may contain some
error, and the use of the PCAC relation in the SCAN case
needs further study. %e shall, therefore, study the
above points in the case of E+p low-energy elastic
scattering by direct evaluation of the on-mass-shell
amplitude with the following method.

In Sec. II, we introduce the axial-vector current
octet J=A+cB&, where A is the weak current appearing
in the PCAC relation, and (t is the interaction field.
Using this current in the I.ehmann-Symanzik-Zimmer-
mann (LSZ) formalism, ' we decompose the on-mass-
shell amplitude into four terms: one called 8"~, due to
the equal-time commutator (ETC) of the divergence of
the current Jwith the time derivative of the interpolat-
ing field; a second term W, consisting of the ETC of
the divergence and the time-component of the current
J; a third one W' due to an ETC leading to a vector
current; and Anally a term 8' due, to all possible inter-
Inediate states. We note that the contribution of 8' ' to
the scattering amplitude is known" to be a polynomial
in (4+k')'. We also observe that the sum W"+W', for
k'=k"=0, is the same as the 0. term which was negli-
gible in the xE case4 and ignored in the work of Ref. 8
for I+p scattering. To evaluate W' and W', we assume
that the commutation rules of the currents J are similar
in form though not equivalent, with those normally as-
sumed for the current A."In applying this treatment to
the X+p scattering, we approximate the term W by a
term 8'~ due to one-particle intermediate states, taking
into account all quadratic terms in k. In Sec. III, the
sum rules for W and W' are derived by combining this
treatment with the dispersion relations. In Sec. IV, we
evaluate the sum W"+W in terms of Wt and W~ and
the observed scattering lengths. Also, we evaluate the
difference of the on- and off-mass-shell amplitudes for
K~p scattering, which is a part of the error in the
extrapolation used in the previous method. 4 ' Our
results may be summarized as follows.

The two matrix elements W and 8"may be expressed
in terms of polynomials of k' similar to that known for
W"." the Goldberger-Treiman coefficient, " c in the
PCAC relation, andthe scattering length which may be
obtained experimentally. For a given c the sum W"+W'
is found to be appreciable at threshold and independent
of the kaon energy. It is noted that if the sum W"+W'
has been omitted from the scattering amplitude, as was
done in Ref. 8, then it would have been impossible to
obtain the correct signs and magnitudes of both Z+p
scattering lengths with a single coefficient c given by
the PCAC relations.

H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1965).

See the work of D. Amati, Nuovo Cimento 2, 190 (1958);
see also S. S. Schweber, Relativistic Quantum Field Theory (Row,
Peterson and Co. , 1961), pp. 789 and 790.

'IThe commutation rules of the weak current A are those
suggested by M. Gell-Mann, Physics 1, 63 (19%).

"M. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958).

The difference between the on- and off-mass-shell
an~plititdes is seen to depend on the type of. the particles
involved in the scattering, and an unknown constant,
namely the off-mass-shell value of the matrix element
of a sca,lar field. Assuming that the sum W"+W' is a
slowlv varying function of k', this difference is found
to be negiligble for X p scattering, and 40% of the
threshold amplitude for K+p scattering.

I'e((u, 1~2,1~")=m' d4x(l4y

&« '"""""(P'I I'{&k(~)&'(y)) I P), (»)

I' t((u 02 Ie")= d4xd4y

Xe-ik' x+4k
yI m2(g 2+g 2)+g 2g 2)

x&p'I T'{y,(~)y.t(y)) I p). (Ic)

Here k and k' are the initial and final momenta and u and
fi the initial and 6nal SU(3) indices for the mesons,
while p and p' are the initial and 6nal momenta, and

I p) and
I
p') are the initial and 6nal state of the target.

The functions I'0 and I"y have the following properties:
For k'= k"=m' we have

I'2(oi k'=f4"=m')=I't(oi k'=k"=m') (2a)

and for k'=k"=0,
I' t((e, k2= li"=0)=0, (2b)

where we have made use of some partial integrations
and of the fact that the spatial terms in these integra-
tions vanish at spatial infinity.

Introducing the PCAC relation' ' "
B„A('=cm2&, (3)

where A is the axial-vector current, nz is the meson
mass, and c is the coefficient which is evaluated at
42=0 by Ref. 1 or 12, Eqs. (2b) and (1a) give

2' (~ $2 P(2 ()) ~
—2 d4gd4y e-ik ~ x ik ((—

x(p'I T(&„A "( ),&,A."t(y))
I p)"=' =o. (4)

"S.L. Adler, Phys. Rev. 157, 81022 (1965).

II. ON-THE-MASS-SHELL EVALUATION
OF THE AMPLITUDE

A. Analysis and Decomposition of the Amplitude

The two-particle scattering amplitude derived from
I-SZ treatment, ' as a function of the time-ordered
products of the interpolating 6eld @, may be expressed
as

Tk (k4 ('e' k")= I'2(oi k' k")+I'i((e k' k") (1a)
with
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J:(x)=A:(x)+ca~a.(x)

as a source of the interacting field, so that

(6a)

It is clear from (1b) that Eq. (1a) in its present form
cannot be evaluated directly. The method used by
previous authors, ' ' hereafter referred to as the "pre-
vious method, " is to calculate the amplitude (4) and
extrapolate the results to the physical mass shell. The
error involved in this treatemnt may be analyzed into
two parts: one is due to the use of (2) while varying k'
from zero to m', and its evaluation requires a knowledge
of the "residual current" involved in the definition of
PCAC as given by Adler"; the other is

e= Ts (re k'=k"=m') —Tsg(re k'=k"=0) (5)

which may or may not be important, depending on the
particles involved in the scattering, as can be seen from
the work in Refs. 4—8 and our 6nal results.

To avoid extrapolation, therefore, we deal directly
with the amplitude (1a) by the following method.

On the basis of the PCAC relation (3) we introduce
the axial-vector current octet

Here,

W'(re, k', k")

X (W"+W'+W' W—) b (~ 7d)

d'«-'"'(p'I ~(—so) LJs'(0),~.J."'(s)]
I p) (7e)

W'(re, k', k")

W(rd, k', k")

= —ik„'k„de e '"'(p'I TfJs"(0)J,"t(s))
I p), (7g)

the field P or by using the generalized Ward-Takahashi
identies, as done by Raman and Sudarshan. 5 Carrying
out this decomposition and using (7b) in (7a) we find

s(2 )4S( p'+k' p -—k)
Ts, (re, k', k") = ——

(27r) s(4ksks')'"c'

(8'+m')P, (x)= c 'B„J s(x) . (6b) and

Using this current and (2), the amplitude (1a) can be
expressed as

N

W"(t,k', k") =—P n (t)(k+k')'".
m' n=O

(711)

Ts, (cv k' k") =c ' d4xd4y

Xe 'a x+'s v(p&I T(g J—p(&) g J ~t(y))

—~-'&(~e —ye) &.,L~.Js"(~) ~ A."'(y)]
I p&.

The second term on the right-hand side of (7a) is
known'" to contribute a polynomial in (k'+k)' with a
finite number of terms and with coefficients depending
on t= (k' —k)'. We may, -therefore, write

d4ad4y i7ce'x+8k vp(& y )

X(p'I ~. oL~.Js"(~),~.A."'(y)] p)

i(2~)'8(p'+k' p+k) iv-
-(t)(k+k')'" (7b)

(27r) '(4ksks') ""

where the o, 's are coeffi:cients depending on the momen-
tum transfer, and E is the number of terms in the
polynomial. " Also, the currents are normalized such
that

(OI A,&(0)
I k, b) = t 2(27r)'ks] '"ck&8,s. (7c)

The first matrix element in (7a) can be decomposed
into three terms, either by using some partial inte-
grations combined with the commutator properties of

"The polynomial expression for the equal-time commutator,
given by (7b), appears both in the dispersive part of the amplitude
and in its relevant S-matrix element, described by H. J. Bremer-
mann, R. Oehme, and J. G. Taylor, Phys. Rev. 109, 2178 i1958l.

where 8, R', and E represent the 0- term, the term due
to a vector current operator, and the terms due to the
discrete intermediate states, respectively. In the present
context, A indicates that the amplitude (8a) depends
on the commutators of the current 3 only. Noticing
from (2) that at k'= 0 the two amplitudes (7a) and (Sa)
are completely equivalent, we find the connections
between our treatment and the previous method as

R'(A)=no+W'(J k'=0) (Sb)

R'(A) = W'(J, k'=0), (Sc)

R(A)= W(J, k'=0). (Sd)

Here, ns the zero-order term in (7h) is a constant, and J
only indicates that the amplitudes 8"s are originated by
the commutators of the current J.

To evaluate the amplitudes (7e) and (7f) we need the
commutation rules of the current J. A simple choice
which guarantees the relations (Sb) to (Sd) is to express
the commutation rules of the current J in a form similar
to those" for the current A, i.e.,

S(.,)LJ,e(0),a„J.t(.)]=id.„Ln,&(.)]S'(s)+S.T. , (9;)

~( )I J."(-),J "(0)]=2 f- .I:I'''"( )]~'( )+S.T (~b)

It is understood, however, that o-~ and V~, the scalar
and vector current operators associated with the cur-

Now consider the decomposition of the amplitude
(4), which can be found in Ref. 4:

Ts,(k'=0) ~
I Rs(A)+R'(A)+R(A)], (8a)
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rent J, are not equivalent to those 0- and U normally
used in the relations (9) as applied to the current A.
Also, in (9) we have the usual SU(3) structure constants,
d, &, and f &„and possibly the Schwinger terms (S.T.),
which we shall neglect hereafter.

/ channel. Then, denoting T&,= Tz+„=T+, &~/ TK p
= T, and using (A15) of the Appendix, we may express
the terms due to one-particle intermediate states,
denoted by 8'~ as

W (co k')=Wry (co)+k'Wsp (co) (12a)
B. Ayylication to K+p Scattering

For further development of Eqs. (7) we shall consider
the case of E+p scattering for which the initial currents

Jrc ——(1/v2)(J4ai Jo)

are given by the SU(3)SSU(3) scheme which we
follow. Using these currents, Eqs. (6a), (9a), and (7e),
and setting for convenience k'=k", we find

W~'(or, k')=(p'lo. z (0)—(1/v3)o. s (0) lp), (10)

where the subscripts & refer to E+p, and co is the meson
lab energy. Similarly, using the above currents (6a),
(9b), and (7f), for k'= k" we may write"

1 M,+M =re:or

ReWzg~ =—Q G(J)
J=A, Z G7&'& co

Mrs* —M+or G(F'g*) Mr, *+M&co
+G(I'o*) +

3GOy'p+& 07 coy, *+~

where

G(J) G(I'o*)
ReW&~~ ——coz

J=~ & G)~'+CO Q7&p++GO

G(Fr*) M Mr, *+M&co

3 3I
(12b)

. (12c)

W~'(co, kz) =+2u(P')

k' (p'+p)

2M
X O'Fr(t)+tc„Fz(t)

M, —M+ (co'—ms)/2M, ,

G(i) = (M/M, )g~'(i),
(12d)

where the I's are the spinors obeying the Dirac equation
and p„ is the anomalous magnetic moment of the proton.
In writing (11a) we have expressed the matrix element
of the current UJ in the usual way, in terms of the
y„matrices (p' —p) „and o „„(p'—p)", and have used the
vector current conservation condition. In (11a) we
have also Ii~ and F2, the unknown form factors corre-
sponding to the mass shell k'= m2, which should satisfy
the relation (Sc), that is,

where g~(i) refers to the axial-vector coupling constant
for a given intermediate state i. The absorptive part
of W (co,k') will not be needed in this work, since we
shall use the threshold values of 8'~ in our computa-
tions. For k'=0, the contribution of the term 8'~
reduces to

(12e)E(co, k'= 0) = Wg~(co),

In (11c) we have from (A14), for co'«M, z+rrzs and
p= (0,0,0,M),

u(p), (1»)

Fr(t=0)=Fz(t=p) =1 for k =0.
Hence, (11a) yields

Wr(co, t=p, kz=0)= &2lcol, (11b)

in agreement with the previous work. ' From the proper-
ties of the scalar and vector 0-J a,nd VJ and the currents
J~+) we find

W+o(co, k') = W o(co,k'),
W+'(co, k') = —W '(co,k') . (11c)

We shall use these conditions with the dispersion rela-
tions for deriving the sum rules for 8' and 8' in the
next section. Also, we shall compute 8" plus lV"
given by (7h), and W' in Sec. IV, using the observed
data for the sca,ttering lengths.

To evaluate the matrix element W, Eq. (7g), we
choose only the one-particle intermediate states. These
states for E+p scattering in the s and u channels are
A, 2, I'~*, and Vo. We neglect the contribution of the

"The SU(3)QxS U(3) scheme gives f,z, V, (z) = Vz"(z) +v3 Vs" (z.)
and for this relation we find (11a), following the procedure seen,
e.g. , in S. Gasiorowicz, elementary Particle Ph&sics (John Wiley
R Sons, Inc. , New York, 1966), p. 435,

making use of Eqs. (Sd) and (12a).
Making use of Eqs. (7h) and (10)—(12) in (7d), the

K+p scattering amplitudes for the forward direction are

T~(co k') = —(ig~'c'I co I)-'
X I

W"(k')+ W'(co k')+ Wy'(or k')

Wr "(co)—k'Wz+ (co)—W ~(co k')] (13)

where we have left out the cr' function from (7d). Here,
W~(co,k'), which is extracted from (jg), represents the
terms due to more than one-particle intermediate
states.

III. USE OF DISPERSION RELATIONS

To obtain further information on the matrix elements
due to the equal-time commutators, we use the disper-
sion rela, tion given by (A12) of the Appendix, viz. ,

T~(co,1)= —(jgrr'c'leo l) rl-Woo(1)+ Wo(rrz, 1)

+ (co/m) W '(rrz 1) W(ms, —1)+W~ ~( 1)rrs

Wg (co,1)]+lcol 'Dg(co, 1). (14a)

Here (co,1) denotes (co, k'= nz') and (1) means (k'= rrz');
W~~ and W~~ represent the terms W~ in (A12)
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D~((v, 1)=k2P
0+ CO O' CO

GV

k'(~"—aP)

0 GO 0 CO

d00' (14b)
k'((V" —002) )

which are, respectively, even and odd functions of ~.
Also,

functions" of ~ (except for a small interval in the low-

energy range). With this approximation extended to
the off-mass-shell k'=0, the integrals in the right-hand
sides of Eqs. (15) to (17b) vanish. In any case, the small
contributions of these integrals may be neglected in
compensation with all the terms 8'+~ which correspond
to more-than-one-particle intermediate states. Hence,
Eqs. (15) and (17) give

W'(co, 1)~w'(2N, 1), W'(~,0)—W'(222, 0) (18a)

W~'(co, 1)=a ( I
&o I/m) W'(222, 1),

wp'(o), 0) = &( I
a)

I /m) w'(m, o) . (18b)

From (18a) we learn that the function W0(&v, k2) is
independent of ~; hence, considering (18a), (10), and
(Sb), we may write

W0(~, 1)+W s~(co, 1) =W0(21, 1)+Ws~(222, 1)

is (AS) of the Appendix, in which the optical theorem
and

for the amplitude (A10) and the total cross sections
0 ~(co) are used. Comparing (14a) with (13), in which the
8'~ term is split into even the odd functions of ~, and
noticing from (7h) and (11c) that W~ and W' are even

functions of co while 8 ~ is odd, we find

and

y 8~2c2k2P
"~+(~')+~-(~'),

(u'd(u', (15a)
k'(00" —&u2)

W0((u, 1)=Q P;(t=o)k"
i=o

(19a)

a polynomial similar to (7h), with coefficients P depend-
ing on 3= (k' —k)'. Using (19a), for k'=0, in (Sb),

Wg'((v, 1)&Wg~(u), 1)

=+ (IM I /m) I
W'(222, 1)+Wg~(28, 1)]

"~-(~') —~+(~')
dM

k'(00" —002)

P0(t=o)+n0(t=o)=R0(3=0, k'=0), (19b)

where p0 is the zero-order terms of the polynomials in
(19a) and n0 and E' are described in (Sb).

On the other hand, Eqs. (18b), (11b) and (11c) allow
us to rewrite (11a), for t=o, as

The dispersion relation for the off-mass-shell ampli-
tudes T~(&a, k2=0) may be expressed by assuming that
all conditions leading to (A12) of the Appendix hold as
k'~ 0. Hence,

W, '(~, 1)= ~L2+Z, (~=O, k2)]~,

Ri(3=0, k') = Q y„(t=0)k"

(2Oa)

(2Ob)

T~((u,o) = —(82r2c2
I
~

I ) it-woo(222 0)y wo(222 0)

+ (~/222) W~'(21,0)—W s~(222,0)&W~ ~(222,0)
—w, &(~,0)]+ I

~ I-'D, (~,0) . (16)

Here (a&,0) denotes (&u, k'=0) and D+(&u,o) is given by
(A8) of the Appendix. Comparing (16) with (13) in
which the k'=0 is used, and with the same procedure
for obtaining Eqs. (15) from (14) and (13), we find

We shall evaluate EI for the threshold, in the next
section, using the observed values of the E+p scattering
lengths.

The difference between the on- and off-mass-shell
amplitudes, Kq. (5), is

(282I2g2~) lLW00(222 1)+WO(2g 1)
—R0(0)aa&R (1)+mW2P(co)g], (21)

making use of Kqs. (20) & (19), (14a), (16), (13),and (12).

IV. USE OF THE SCATTERING LENGTHS

W'(, 0)+Ws ( 0) =P"(m,o)+Ws (222, 0)
"Iml A+(cv') —a)'8+((u')]—(o'd(o' (17a)

co'2 —co~ co'2 —m2
+162rc2k2P

((V"—00') (a&"—m2) '6 For E+p scattering data see C. Cook et a/. , Phys. Rev. 129,
2743 (1963); for E p data see R. H. Dalitz, Ann. Rev. Nucl. Sci.
13 (1963). The E~p cross sections crz(eo) have also been con-
sidered as slowly varying functions of a& by D. Amati, Phys. Rev.
113, 1692 (1959).

We now note that in the E+p case the total cross
sections a.~(&u) can be considered as slowly varying

Here, we compute the sum W00+W0 and the poly-

and nomial Ei(1), Eq. (20b), using the E+p scattering
lengths a~. The s-wave scattering length may be

Wy'(a&, 0)~wc~(cv, o) =&(lcvl/m)w'(ygo)&w~~(222, 0) obtained as 22ri times the reduced mass times the co-
efBcient of the 8 function in (7d), evaluated for forward"ImLA-((u') —co'8 (00')] scattering at threshold, and for the s-wave contributions~1 c62kr2I~2I P d&u'. (17b)
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of the amplitudes, '~

Ws~(ns, 1)p ——0.9t~s ',
Ws~(m, 1) = —0 149tts '

W~~(m, 1)=0.436m,

W ~(tts, 1)= 0 302tr—t.

(23a)

(23b)

(23c)

(23d)

In writing Eqs. (22), we note that in the E+P case
all four intermediate states A, Z, V~*, and I'0* contribute
in the I channel. However, in the E p ca,se the s-wave
contribution to the amplitude is due to Ys* only (&,
Z, and Ys* contribute to the p-wave amplitude, as can
be verified by their spins and parities).

Using Eqs. (10) and (22b), and Eqs. (23) in (22a), we
have

tie 'LW"(1)+W'(nz, 1)]
= 12irc'Ma t.—L1.56+Ri(1)j
= 12~c'Ma +$1.70+Ri(1)$. (24a)

Here, the observed E~p scattering lengths g~ are"

a+= at= (—0.29&0.01) F,
a =Kiri+as3= (—0.83~0.09) F,

(24b)

in which a~ and ao are the scattering lengths corre-
sponding to isospin I= 1 and I=O, respectively.

For co=0.155, obtained from the Cabibbo theory and
used in Ref. 8, Eqs. (24a) and (24b) give

Ri(1)= 0.41, (25a)

W"(1)+W'(1) = —3.3', (25b)

'7 This method of computation of s-wave scat:tering length is
given in Ref. 4 and others mentioned in Ref. 4. The same result,
of course, would be obtained from the standard method as given
by J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963).

"The values of gz(A), g(Z), and gg(F~*) are those gathered by
Ref. 8. The coeKcient gz(Ys") is calculated by (19b), in which we
have used g~yp*~=aggro*q 0 and (gyo' 0'/47r) =0.045, and a=10
according to C. Weil's work I C. Weil, University of Minnesota
report (unpublished)g, as recorded in Ref. 8.

"V. J. Stenger, W. E. Slater, D. H. Stork, II. K. Ticho, G,
Goldhaber, and S. Goldhaber, Phys. Rev. 134, 81111 (1964).
Also, J. K. Kim, Phys. Rev. Letters 14, 29 (1965).

3Im
— LW"(1)+W'(m, 1)

4~c' +m
+W~'(hatt, 1)—W~~(its, 1)ji=s, (22a)

where l is the orbital angular momentum, and we
choose"

c i [%2—g~(&)/gssrrr]M= ic—s—M, (22b)

having used the vertex form factor Fssirc(k' = tn') = 1.
To obtain W' from (22a) we evaluate first W~~(its, 1)

from Eqs. (13) in which the contributions of the t
channel are neglected. Using the coupling constants"
gg(A)=0. 70, gg(P)=0.23, gg(Ys*)=0.15, and
g~(Yt*) =0.67 in Eqs. (13), we find the s-wave con-
tributions of the term 8'~~ as

N 1

R'(0) = —3.3tts —P n m'&" '& —g P,nz" (25c)
n=1

Note that Ri(1), which is the difference W'(tts, 1)
—W'(m, O), is 20/o of W'(m, 0), the oR-mass-shell

(k'=0) value of W'. If we had neglected the terms
W"+W' and Ri in our calculation, we would have
gotten a+=0.258 F, about 11% less than the observed

a+ given by (24b). This value is reasonable, considering
the approximation involved in data for gg, c, etc. ;
however, it has the wrong sign. "For the K p case, on
the other hand, the above approximation would have
given a = —0.28 F, which has the correct sign, but is
three times smaller than the observed a given by (24b).

The difference between the on- and oR-mass-shell

amplitudes depends on the constant R'(0) = Wss(m, O)

+Wo(m, 0), given by (19b) and (25c). Here, we assume

that both amplitudes 8""and S' are smooth functions
of k'; then, we may write

W"(1)+W'(m, 1)—R'(0) =0.
In this case, Eqs. (23) to (26) and (21) give

e+~0.40'(ttt, 1),
e ~0.04T (m, 1).

(26)

(27)

Note that Roy in Ref. 8 has neglected the terms W", W', and
W~ in his calculation, and has obtained u+ ———0.41 F, which has
the correct sign, but is 40 jo larger than the observed u+. The
reason that Roy obtained the correct sign for a+ is that he chose
the signs of the exponentials e 'k'~ 'k & in the formula (1a) oppo-
site to those appearing in the Refs. 9 and 4, which we have used
here. With this choice of sign, the approximation made in Ref, 8
leads to a wrong sign for the E p scattering length.

V. CONCLUSION AND COMMENTS

Considering Eqs. (19) to (27) and the remark, in

the preceding section on the consequence of neglecting
the terms 8", W, and E~ from the expression of the
E+p scattering lengths, we conclude the following.

(1) Each of the matrix elements W' and W' is essen-

tially a polynomial of k', similar to the matrix element
lV" whose general form was already known to us. The
terms 8" and 8"', as well as their respective values

ns and Ps corresponding to the off-mass-shell k'= 0, are
not known at the present time. %e have only been
able to compute the o term Ws'+ W' given by Eq. (25b),
and found it to be appreciable as compared to the terms
W' and Wi'. (2) With a single coefficient c in the PCAC
relation, the correct signs of the E+p scattering lengths
can only be obtained if the sum Ws'+Wo, or at least
one of these terms, is taken into account. For the E+P
cases, in contrast to the m.Ã scattering, the magnitude
of W"+W' exceeds that of the term W'. In both cases,
the difference of the on-mass-shell values of 8", given

by (25a), as well as the contribution of the pole term
W~, are appreciable and should not be ignored. (3)
The difference between the on- and oR-mass-shell

amplitudes at threshold depends on the type of incident
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particle, and on the unknown quantity Ro, Eq. (25c).
This difference could be large, as seen from (27), de-
spite the assumption of the smoothness of W"+W'
with respect to k'.

All these results, of course, depend lnainly on the
accuracy of the observed scattering data, the values of
c and the coupling constants g in lV~. It is also clear
that our present method of evaluation of the physical
amplitude is based on the assumed commutation rules
(9) for the current J, which we hope to study in
further investigations.
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APPENDIX

Here we shall express the E+p dispersion relations in
a suitable form for use in this paper. '"' Also, we shall

give a summary account of the derivation of the one-

particle terms in these relations, all for forward scat-
tering. The scattering amplitude may be expressed as

ReF (o) k') =(uP (co 1P)

"Imt A ((a', 1/) —(u'8 (co',k') j
-du&', (A4)

CO
—Q)

2
ReF+(&u, k') =(uP+((o, k') ——P d(u' 1mB+((u', k')

2
—p

a 'LlmA+(cv', k') —cv'8+(cu', k') j
da'. (As)

m CO
—GO"

Here,
Pp(rv, k') =P+(a&,k') +P—

(a),k') (A6)

gives the contribution of the one-particle terms. On
the right-hand side of (A4) and (AS), the contributions
of the integrals in the unphysical region m& to m are
approximated by those of the resonance poles V&* and
Vo* which are included in P+(~,k'). To eliminate the
divergent part of (A5), we use a subtraction at cv= m,
and for the purpose of symmetry in the final expressions
we carry out the same subtraction in (A4); then we
combine the results in (A1) and find

ReF+(&u, k') =
~ (1+co/m) $F+.(m, k') —mP~(m, k') $

+ (0P„((u,k)+-', (1aco/m)
XfF (m, k') mP (—m, k')5+D+(cu, k'), (A7)

where, for forward scattering, we write

Fi(~ k )—,1-L(iti k ) ~8i(&0 k')
in which

A+(s))*=aA ~(—c0),

8+(cu)*= WB+(—co) .

These properties of the invariant amplitudes A+ and 8+
lead to the dispersion relations

Fg(o),k') =F+((u,k') aF-(a),k'), (A1) where F~ denote the lf.+p scattering amplitudes and

2((v' —m')
D~((o,k') =— -P

"
id ImLA (co') —cu'8 (cv') 1+&v' ImLA+(co') —co'8+(co'))

dM—M
(As)

Fgz =zcoTyz. (A10)

"The Ep dispersion relations are given by several authors,
e.g. , C. Goebel, Phys. Rev. 110, 572 {1958);D. Amati and B.
Vitale, Nuovo Cimento 7, 190 (1958). See also P. T. Matthews
and A. Salam, Phys. Rev. 110, 565 (1958); 110, 569 (1958).

The functions P~(~d,k'), given by (A6), are proportional
to the term corresponding to the one-particle inter-
mediate states, denoted by W~(or, k'), which is included
in (7g) of the text; thus we define

P~(&u,k')—= —(8~'c'~cv ~)
' ReW~ (~ k') (A9)

Since our T matrix, (1a) of the text, is defined to satisfy
$& = 8& +Tzo, then (A9) means that T&, , given by (7d),
is related to the scattering amplitude F& in (A7) by

From (A10) and Eqs. (7b) to (7g) we see that

ImF~((u, k') = —(Sm'c'
~

(u
~ )

—' ImW~((u k') (A11)

where T~ denote the T matrices of the E+p systems.
Making use of (7a) and (10c) of the text, and combining
Eqs. (A7) to (A11), we find

T~(~ k') = —(ig~'c'|co
t ) '(W" (k')+ W'(m k')

+ (cv/m) W~'(m, k') —Wg~(a&, k')
—-'LW "(mk')+W ~(m, k')]W(~(v~/2m)

X fW+~(m k') W~(m k—')]}+a) 'D~((d k') (A12)

where W~, given by (7g), corresponds to more than one-
particle intermediate state. We shall need only the
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Here, the four-momentum p„, the mass M„, and

=pf ~+ (p~k)2)» —
po (A14)

are associated with the intermediate sta, tes
i m& which are

A, Z, I'0*, and Vi* in the present case. For the sum-

mation over spin, in (A12), we use the projection
operator

E= (P+k+M )/2M

for A, Z, and Vo* and

p+ @+Mr,.
I'„„=—2' y, *

p"p"+ (p"v.—p"v,)
3iVy, *' 3iVy, *

X g„,—3V,V.—

dispersive part of (A12); thus, we shall evaluate the
1 eal paj t of I'V ((o,k ) uslIlg (7g). We llcglectllle con-
tribution of the t channel. Then we follow the standard
method and assume that the currents J and Jt in Eqs.
(7) are, respectively, rising and lowering operators of
unit strangeness of a state on which they operate.
Considering all possible one-particle intermediate
states of the s and u channels of the I4+p scattering, and
writing 0(Z) =2Le(Z)+1), Eq. (7g) gives

7'+~= 8'~+& W~

ReB'P+co, k'

&p'Ik. 'J~"(0)
I
~&&~~

1

k J.""(0)
I p& .,8'(p„—p —k)

n ~a++~

&peak„~, (O)i~)&~. ik,~. (0)
~ p&—P(p„—p'+k). (A13)

for I'~*. Considering the spins and parities of the above
states, we choose

t'6 ++co 6+—co ( 1 1
k2 —2M~ I—

GO 67 ' M ' —0) GO
' —6) CO 67 '

gg'(Yp ) (Ar, . —~ Ar, * +a&
k'+2M(u'

2M row E (droe+cv cdraft cd

f 1 1 ) gg'(Yg*)
xi ~ —i+

EM+Mrpe Gdroe —(d) 3MI,*

( MM ) Ari+ —M Arze++M
X k' —

i

4lII r&+) -(d+(dr&e '(or&e —cv

(A15)

where 4 +=M &M for a state ie&.
Note that (A15) for E p scattering contains the con-

tributions of not only the s-wave state Vo*, but also

the p-wave states A, Z, and Yi* through the s channel.

in which i represents A and Z, and

&p., ik„~ (O) ip)=g, (Y,*)., k„& ~„,
&pr, 'Ik.~"(o)

I p) = g~(Yr')~ri*"k.~n,

for I'0* and I'&*, respectively. Here, g& refers to the
axial-vector coupling constants, and I refers to a four-
component spinor. Using the above projection operators
and these current matrix elements in (A12),

g~(i)
ReIVg~+((u, k') = Q

'=~, ~ 2M;


