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General perturbations around Sugawara’s theory of currents are considered. The usual forms for the
semistrong, electromagnetic, and weak interactions are easily incorporated, and, using a modified inter-
action picture, a covariant I'eynman-graphical approach to the perturbation is achieved. There is some
degree of uniqueness in the allowed perturbation: If infinite polynomials are to be avoided in the theory,
the perturbations must be of the form V,V#, or V,C# (C*is a canonical vector field), or o (the scalar density

due to Bardakci, Frishman, and Halpern).

I. INTRODUCTION

ORK on Sugawara’s theory of currents' has

proceeded along several lines. (a) The limit
procedure of Bardakci, Frishman, and Halpern? re-
lating the theory to the massive Yang-Mills theory,
has led to the incorporation of electromagnetism, and
at least two distinct ways® of introducing the semi-
strong interactions. (b) Fairly general canonical repre-
sentations of the theory have been found,* corre-
sponding roughly to the ¢ model of Gell-Mann and
Lévy,? or a relativistic, second-quantized spinning top.
Because of difficulties in perturbation expansions,® the
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field, 7bid. 176, 2019 (1968).

2 K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.
170, 1353 (1968). It should be noted that, although the limit
procedure often works (i.e., yields a consistent current theory),
it is not guaranteed to do so. For example, the limit of a Yang-
Mills model with symmetry breaking in the F,, terms (‘“vector”
or “particle” mixing as opposed to the mass-mixing model of
Ref. 3) is inconsistent. Such can usually be spotted quickly before
the limit: The limit will not work if the divergences of the (Yang-
Mills) fields contain F,.

3 See Ref. 2 and H. Sugawara, Phys. Rev. Letters 21, 772 (1968).
The first method retains the usual algebra of currents, but at the
expense of new scalar and pseudoscalar densities. One of the
results of this paper is that this approach is the only way to
introduce semistrong interactions while keeping the original
algebra. The second method works entirely in terms of currents,
but changes the algebra of currents. In the language of the
spinning top, the first model corresponds to a sort of “potential”
while the latter is an asymmetric top. It will be interesting to see
which of these is the more realistic model.

4 K. Bardakci and M. B. Halpern, Phys. Rev. 172,1542(1968) ;
H. Sugawara and M. Yoshimura, sbid. 173, 1419 (1968). If the
theory is taken as a classical field theory, these are the most
general representations. As a quantum field theory, other solu-
tions to the (0,7) curl equations may exist.

5 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).

6 If the obvious perturbation expansions are to be believed,
then zero-mass (Goldstone) particles occur in the theory, and
isospin invariance (including charge conservation) is spontaneously
broken in the theory. Analogous expansions of the spinning top
(in which angular momentum is not conserved) are easily found
also, but these do not meet the boundary conditions. The hope
is that “good” nonperturbative solutions exist for the current
theory as well. To our knowledge, moreover, there is no reason
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particle content of the theory (even for the represen-
tations) remains an open question. (c) Certain new
sum rules’” and inequalities® based on the theory have
been derived, and those that are testable seem to be in
agreement with experiment.

Our purpose in this paper is to consider general
perturbations around Sugawara’s theory. This includes
three questions and their answers: (1) Can all the
usual semistrong, electromagnetic, and weak inter-
actions be incorporated into the theory? (2) How does
one actually perturb in such interactions? (3) Does
the structure of the symmetric hadronic theory dictate,?
to some degree, the forms of the perturbations possible?
The answer to the first question is yes, and the details
of the incorporation are found throughout the text.
Our answer? to the second question is a modified-
interaction picture, in which the operator time depen-
dence is that of the symmetric theory. This results in
a (covariant) Feynman-graphical expansion in the
perturbations. The answer to the third question is
somewhat striking : Within the framework of Sugawara’s
original assumption that the theory contain no infinite
polynomials, the perturbations must be of the form
V.V#or V,C* where C*is a canonical vector field, or o,
the scalar density of Ref. 2. The internal symmetry of
these perturbations is, however, arbitrary.

The plan of the paper is as follows. In Sec. II, we
work out the details of two representative types of
perturbation, namely, (a) a ‘“mass-mixing” model,
applicable to semistrong interactions or current-current
nonleptonic weak interactions, and (b) SU(2)®SU(2)
nonleptonic weak interactions with W mesons. The
Poincaré invariance of the interaction picture is checked
explicitly. These are simple illustrations of the tech-

why the theory, and, in particular, the given representations,
cannot contain fermionic states.

7D. J. Gross, Phys. Rev. Letters 21, 308 (1968); C. G. Callan
and D. J. Gross, zbid. 21, 311 (1968).

8S. Nussinov, University of California, Berkeley, Report
(unpublished); D. J. Gross and S. Nussinov (unpublished).

9 This is the spirit of R. I'. Dashen and S. Frautchi, Phys. Rev.
145, 1287 (19606).

10 An alternate approach would be through Green’s functions,
staying in the Heisenberg picture.
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niques necessary to treat two distinct cases, that is,
perturbations with and without canonical felds. At
the end of Sec. II, we mention the simpler case of
perturbations in the scalar and pseudoscalar densities
of Ref. 2.

Realistic models, involving combinations of the
above cases, are given in Sec. III. In particular, we
give results for the usual Cabibbo theory of weak
interactions (with and without W mesons), with leptons
and (mass-mixing) semistrong interactions. The useful
perturbation here is in the weak interactions alone.
Section IV is a collection of topics, beginning with the
question of restrictions on the perturbations. The
question of a ‘“finite” current theory in the sense of
Lee! and of Gell-Mann et al.'? is also briefly discussed.

In essentially the usual manner,”® the Appendix
details a manifestly covariant (but frame-dependent)
transition to the interaction picture.

II. SIMPLE MODELS

As mentioned in the Introduction, there are several
distinct kinds of perturbations possible on the sym-
metric theory, characterized in general by the presence
or absence of canonical fields. As the technique for
calculating the perturbation differs somewhat from
case to case, it is instructive to start with some simple
examples of each. We begin with the case of no canonical
fields.

Mass-Mixing Model

The most general mass-mixing Yang-Mills La-
grangian (see also Ref. 2) is*

L= —{F B '+ 3mipaDard™
Fou=0,bar—utbau—38Care Dousber i,

where D,; is some real symmetric matrix. Going over
to the Hamiltonian formalism, and taking the usual
limit,> we obtain the most general mass-mixing current
theory

(2.1)

0#1': (1/2C) (D—-l)ab{[.]—au,]bvji—
— gl Y,
EJGO(X);]bO(y)]=icachOc(x)a(s) (X—‘ y) s

L7409, 1= D Cara (D)o 08 (xy) - P
+iDpaC3:; W8 (x—y),
[Jai(x),5(y)1=0,
along with the associated dynamical equations
0% ap=— (1/2C)Cape(D™) cal T b * 1.,
(D™)0a{ 8, av— 05T au} = (1/2C)Cape(D")1a
X DN e T aw 1ol (2.3)

uT, D. Lee, Phys. Rev. 171, 1731 (1968), and references
therein.

12 M. Gell-Mann, M. L. Goldberger, N. M. Kroll, and F. E.
Low, this issue, Phys. Rev. 179, 1518 (1969).

18 See, e.g., P. T. Matthews, Phys. Rev. 76, 1657 (1949).

14 Where it overlaps, our notation is that of Ref. 2.
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In general, of course, D will be the unit matrix plus
some perturbation. Qur task is to find out how to
calculate this perturbation. It will not do just to take
matrix elements of the Hamiltonian because some of
the interaction is in the algebra. This is a general
problem for which we propose the following approach.

Interaction Picture

If we are to remain conventional in our approach,
the first thing to do is get all the interaction in 6,,, i.e.,
prepare to get all the interaction out of the states. For
simplicity, we discuss here the case of a diagonal mass
mixing, Dep=2045Nq, but the generalization is straight-
forward. For this case, the algebra is swept free of
interaction by the change of variable

Jop= (Jaﬂa(l/ka)]ai) y
Egao(x),gbﬂ(y)] = icabcgco(x)é(s) (X— y) )
LJa0(%),d5i(¥) ]=1Capede:(3)0® (x—y)

+1C84p0: V6@ (x—y),
[9ai(x),90i(y)]1=0.

As detailed in the Appendix, Jq, is a frame-dependent
vector, properly written as

é‘ap,: (1/>\a)]ay+ (1— I/Aa)npnvjay ) (2.5) -

Throughout the text, we shall work in the (usual)
frame #»n*=(1,0,0,0), contenting ourselves with the
remark that it is common'® to introduce such quantities
when passing to the interaction picture in the presence
of derivative coupling or spin-1 mesons.

In terms of Ja,u, we can rewrite 6,,:

Bo0=000%(9)+000%(9) ,
00:': oOzS(cﬂ) )

and so on, where 6,,5(g) is the symmetric 6, written
as a function now of g, namely,

05 (9) = (1/2C){[ansJar = gurJacg®°}  (2.7)

and 0907 (g), the interaction Hamiltonian density, is

(2.4)

nmt=1.

(2.6)

1—A

a (1 - Aa)2
6o’ (9) = Jaud*+
2C

ZCAG 5:;05410 .

(2.8)

Now we are ready for the interaction picture. Because
the algebra of ga, is that of the symmetric theory, we
can hope to find a unitary transformation which leaves
the operators with only the symmetric time dependence.
Thus we seek a U(?),

Jau(X,)=U() o, (x,0)U (1),

15 See Ref. 13. For example, in a theory of pseudoscalar mesons
derivative coupled to fermions [£7=—M,0%¢, l,=¢v, v ], the
natural four-vector in the Heisenberg picture is m*=9*@—\I*,
but instead one introduces the frame-dependent vector 7#=9*¢
—n#nl,. In the usual frame (» pure timelike), 7#= (8°p—A,
d’¢). Then in the interaction picture 7# becomes the frame-
independent four-vector d,¢. Similarly, our Ja, will be a four-
vector in the interaction picture.

(2.9)
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such that
05 Jau® () =iLLP (JP),Jan” (%) ],

PP(gP)= / @z 00,5 (gP). (2.10)
This is easily accomplished in the usual manner,
resulting in ’

U@=Teq(—{[dd%%%aw%),<zu>

where T is the usual time ordering, along with the .S
matrix for the perturbation

S=T exp(——i[d“x 0001(51’)> .

To calculate the perturbation, this .S matrix is to be
taken, in the usual manner, between in and out states
of the symmetric theory of currents.

Notice that, in the interaction picture, the generators
of the Lorentz group M ,,” must be constructed out of
0,,5(gP) in the usual way

(2.12)

M&#WMWW%MMW-@W

Thus, as promised in Ref. 15, $,.2(x) is a (frame-
independent) four-vector

[Mlﬂ'DrcgaﬂD]': _i(xuav_xvap)ga/zb
+1:(gﬂp(gauD_gup(gavD) . (2.14)

This completes the identification of g..”(x) with the
currents in the symmetric Sugawara theory. Thus the
S matrix, Eq. (2.12), is a power series in the symmetric
currents. The remaining problem is the Poincaré in-
variance of the .S matrix.

During the rest of the discussion of this model, we
will remain in the interaction picture. Thus we suppress
the label D. The form of Eq. (2.8) is typical of de-
rivative coupling theories, that is, 600?(g) is not just a
scalar, but the (0,0) component of a tensor. In fact,
the extra noncovariant piece is just what is needed to
make S a scalar, that is, to have Schwinger terms cancel
seagulls.l” Let us see how this goes in a perturbation
expansion. Suppose A\,=1+€A,, where eX1; then to
second order in e,

€A €A,2

oo’ 2(;5“3”4 °C JaoJao- (2.15)

16 What has happened is what always happens in derivative-
coupling theories: The frame dependence of the variables, intro-
duced by quantizing along a special surface, has been cancelled
by the frame dependence of U (¢). This is, of course, what inter-
action pictures are designed to do.

17 L. S. Brown, Phys. Rev. 150, 1338 (1966) ; S. G. Brown, zbid.
158, 1444 (1967). .
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Orders € and €' are obviously covariant, while the
second-order perturbation is

—€eAAp
‘—8?;——/d4x/d4y T{gan(x>gal‘(x))<gbﬂ(y)gb6(y)}

—iEZAa2

2C /d“x (ﬂao(x)gao(x) . (216)

The reader is invited to verify that this expression
commutes with all the generators of the Poincaré
group. (The only nontrivial commutators are, of course,
with M;.) That is, the noncovariant part of the time-
ordered product (Schwinger terms) exactly cancels the
noncovariant part of the second term (seagull). Simi-
larly, one can check covariance to all orders. In fact,
however, this model satisfies a general sufficient
condition for covariance of the .S matrix, namely,
Schwinger’s'® condition for both 6,,% and 6,,, together
with

/d% B0:7 (x) =/d3x w00 (x) =0, j#i.

The proof of this sufficient condition will be given
elsewhere.!

We end our discussion of this model with the comment
that, evidently, our analysis suffices to give a Feynman-
graphical interpretation to semistrong interactions (in
the mass-mixing model), and to current-current non-
leptonic weak interactions (with a nondiagonal Dg3).
The details of the weak theory will be given in Sec. III.

Perturbation by Canonical Field

As a simple example of perturbation via a canonical
field, we shall discuss the case of SU(2)®SU(2) non-
leptonic weak interactions with ¥ mesons. We begin
with the Lagrangian for W’s coupled to the massive
Yang-Mills field

L= —iFan(@)F** (@) +3mteape™+Lw,
Bap= Qapt ()‘/go) EatW o,
£a6= 0410011042002,
Lw=—1Gou G+ Fud Wy, W,
Gour=0,W4,—8,W,.

(2.17)

The internal index on ¢, runs from 1 to 3, while the
internal index on W, runs over 1 and 2; uo is the (bare)
W mass, and X is the weak-coupling constant. As usual,
a trivial chiral index (say, in &) is implied which
guarantees that W couples only to the left-handed
combination of @ay.

This system is structurally analogous to electro-
magnetism?; taking the usual limit, we obtain the

18 T, Schwinger, Phys. Rev. 130, 406 (1963); 130, 800 (1963).
¥ D. J. Gross and M. B. Halpern (unpublished).
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current theory with W mesons.
0uy="0,5(J)406,."7, (2.18)
where 6,,5(J) is the symmetric SUQ2)®SU(2)
Sugawara tensor, and
00" =3[ Goin,Go* 3L W s, Wi 1+
—gnv _%Gb)\aGb)\v-i_%MOsz)\Wb}‘) (2.19)

would be the free-IW-meson stress-energy tensor, except
that

Wyo=(1/1e*) (NavJ ao— 9:Groi) - (2.20)
This is to be taken with the algebra
[Jao(x),J 60 (y) 1= iCabc{cO(x)a(s) (x—y),
[V a0 (%), 3i(¥) 1= iCape ci(x)8® (x—)
+1C8459:W8® (x—y), (2.21)

[Gu0i(x),Wai(y) 1= —8406:8® (x—y) ,
[Jai(x),Go0i(y) ]J= — INC£460:56® (x—y) ,
7au= Jau+)\cfabWbu )

all other commutators vanishing. Taken together, 6,,
and the algebra imply the dynamical equations

3,,.7,1,,— 8,,.7,1,,= (I/ZC)CabCEjbﬂ:jcv:'+ )
a“Jan= _%)‘Cab0$cdtjbu:wd":l-r ) (2-22)
a“Gbnv+ﬂ02va= )\Sabjav .

This completes the model. The task again is to calcu-
late the perturbation.

As in the mass-mixing model, the first step is to
eliminate the interaction from the algebra. This is
accomplished by rewriting the theory in terms of the
frame-dependent four-vector®

Jow= Jao,T as) - (2.23)
The algebra becomes
[Ja0(x),g50(¥) ]=1Caped oo (x)8® (x—y) ,
[Jao(x),g5:(¥) J=1Cabedei(x)0® (x—y) (2.24)

+1C8459:26® (x—y),
[Go0i(x),Wai(y) ]= —0a18:0® (x—y) ,
all other commutators vanishing. This is the algebra

then of the symmetric theory in the presence of free
W mesons. The stress-energy tensor goes over to

Oo0="0005(g)+000F " +0007

00i=00:5(g)+00" 7,
and so on, where 6,,5(J) is the symmetric tensor,
given in (2.7), 0,7 has the form of a free-stress-
energy tensor for W’s,
000" " = 3G 50:Groit (1/2u0%) 9:G50id;G boj

+ 30 W oW bit G oiiGris,

00" " =3[ Gr0;,Gv?i 1+ — [ 0,Gv0ss Win 5

20 In the frame-dependent language,
Jan=JautACEas (gur—numr) W,

(2.25)

(2.26)

CURRENTS AND NONSTRONG INTERACTIONS

1439

and the interaction term is
800 =N puW %4 (N/2u®) Go0J 00t FNCW W vi.  (2.27)

In 600!, and from now on in this section, we mean
Wro=—(1/p?)3:Gro:; that is, we have used (2.20) to
eliminate the interaction from Wy Moreover, all
isospin summations in 6o’ run only over 1 and 2.

To go to the interaction picture, we seek again a
U(#) which leaves ga, with the symmetric space-time
dependence, and W, a free field, i.e., the space-time
dependence of the first two terms in 8¢ and 8o;. The
result for the .S matrix is

S=T exp(—i/d"x ooof(gD,WD)) ,
(2.28)
000 (2, WP) =NGu,PW 2 4 (N2/ 2u¢®) I 50P J 50°
+INCW o PW 3P,

where now, as before, §o,2 and Wp,2 are four-vectors
(with respect to the interaction-picture Poincaré

. generators).

S is evidently covariant to zeroth and first orders
in X. The second-order perturbation is (suppressing D’s)

e f di / &y T{Gou W (), Gor ()W (30}
N
—ﬁ /d4x Jro(®) Jso(x)

—1C f & Woi(@)Wei(x).  (2.29)

As in the mass-mixing model, one can check explicitly
that this expression commutes with the Poincaré
generators, so that Schwinger terms cancel seagulls.
With intermediate boson theories, it is customary
to be more explicit about covariance, exhibiting the
results in terms of W propagators and covariant time-
ordered products. Consider (2.29) between arbitrary
(symmetric) states. The fact that [§,W]=0 allows us
to write the first term as one time-ordered product for
the g’s, times another for the WW’s. Because the sym-
metric states contain no W’s, we can drop the normal-
ordered part of the W time-ordered product. Thus
(2.29) is proportional to ‘

T{Jau (%), Jos () }O| T{Wer(x),W ()} | 0)
+ (8/16®) Go0 (%) Joo(%)0® (x— )

FiCTW 33 () Wi ()59 (w—5) . (2.30)
Now define
(O ! T{ Wan(x),va(y)_} | 0>
=8us[ AP (x—y) — (4/16*)8,08,00 D (x—9) ], (2.31)

T*{ Jou(%),J65(9)} = T{ G (%), (3)}
"iaabc(gyp_ﬁyoayo)‘s“) (x—y) .
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Then A# is the usual covariant W propagator;

Arr=(gw+0%9"/uP)3Ar(x—y),
(O -ue?)Ar (x) =269 (x)

and T* satisfies

3@ *T*{Jau(%),d15 (9)} =1Cape) o» (x)0® (x—y)  (2.33)

as well as, in an obvious notation,

[M;.W,T)\p*(xao)]: _i(xuav_xvaﬂ)T)\p*(x;O)
+i(gaTwo*— g T5,*)
+7:(gva)\n*_gupT>\v*) .

Thus T* is the covariant time-ordered current product.
Not surprisingly then, Eq. (2.30) is precisely equal to

T*{Jou(®),gus ()} AP (x— ). (2.35)

A similar analysis can be carried out to all orders. In
fact, however, the sufficient conditions!® mentioned
above are again satisfied for this model. The S matrix
is covariant to all orders.

An entirely analogous discussion can be given for
electromagnetism.2 Again all the noncovariant terms
(including now the peculiarities of the Coulomb gauge)
cancel. Thus, e.g., the Cottingham formula follows in
the current theory.

(2.32)

(2.34)

Scalar and Pseudoscalar Densities

Our last model is the simplest. A model of semistrong
interactions has been proposed? in which the algebra
of currents stays the same, but scalar and pseudoscalar
densities are introduced. As an example, we give the
perturbation theory for the broken SU(2)®@SU(2)
model. The theory is defined by A8, (%) = — gu, fru?o (),
and the algebra

[Aeo(x),0(y)]=—i0a(x)0® (x—y),
[4a0(x),05(y) =10 (x)8a:3® (x—)
[Vao(x): ‘Pb(Y)]= ieabcﬁac(x)s(a) (X_y) )
together with the symmetric algebra among Agu, Vau
(axial-vector and vector currents). All other com-
mutators vanish. Because the algebra is already free

of the interaction, going to the interaction picture is a
simple matter. The .S matrix is

S=T exp(——if,,uz/d“x GD(x)> )

to be taken as usual between states of the symmetric
theory. The space-time dependence of ¢? is, of course,
that of 6,,5(VP,4P); that is,

anaD = (1/20) [A anpz WGD:L}- )
ay @aD‘_‘ (1/2C) { fabc[VlmD) SDGDJ-}-_ [A a#D7GD]+} )

where V2 and A4,,” are the currents of the symmetric

(2.36)

(2.37)

(2.38)
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theory. ¢P is a scalar, which commutes with itself, so
that S is trivially a scalar.

III. REALISTIC MODELS: WEAK AND
SEMISTRONG INTERACTIONS

In Sec. II, we outlined the general methods for
performing perturbation theory around Sugawara’s
theory of currents. We shall now present in some detail
realistic models which include the weak interactions of
hadrons and leptons (with and without W mesons), in
the presence of semistrong interactions; in particular,
we shall incorporate the Cabibbo theory?' together
with the mass-mixing model® for semistrong interactions.
We shall omit the details of attaching the weak inter-
actions to the symmetry-breaking scheme using scalar
and pseudoscalar densities,? since this is relatively
straightforward. We shall also omit electromagnetism,
which was introduced into the theory in Ref. 2, and
for which the passage to the interaction picture is
similar to the case of W mesons.

Current-Current Cabibbo Theory

The theory and its perturbation expansion can be
derived in two ways. As in Sec. II, we can start with a
massive Yang-Mills theory, including nondiagonal
mass-mixing and leptonic weak interactions, take the
limit, and go to the interaction picture. Alternatively,
we could take the symmetric energy-momentum tensor
to be the free tensor in the interaction picture, and add
to it a suitable interaction tensor in a way that preserves
Poincaré invariance of the total theory. The second
approach will be described in Sec. IV. Here we shall
follow the usual method.

We begin with the Lagrangian

L= —T}Faqua“v_I_%mO?Dabﬂoanﬁob“"i"’;(ia_M)lp

—giGV2C o a £l £l ]— 5V2Gl ol
Our notation is as follows. The SU(3)®SU(3) Yang-
Mills fields are ¢.,, where Roman letters e, b, ¢ go
from 1 to 16, 1 to 8 being vector labels and 9 to 16
being axial vector. The lepton currents are lo,=V2¥y,
X (1—v5)7% where greek letters o, 8, y=1, 2; ¢ is a
16-component spinor:

Ye

3.1)

(3.2)

Y,

where ¢« are the Pauli matrices. M is the usual (di-
agonal) lepton mass matrix, and the weak leptonic
currents are, of course, [,£=3V2(l,'4i,2). The sym-
metric matrix D, is given by

Dab:naaab—“GCﬁna(Eu+$b~+fa—£b+)’7b,
21 N, Cabibbo, Phys. Rev. Letters 10, 531 (1963).

(3.3)



179

in which the diagonal part 740, describes the semi-
strong interactions,® while the second term describes
the current-current weak interactions. G is the Fermi
coupling constant, and &* is defined by the Cabibbo
form for the hadronic fields (6¢ is the Cabibbo angle),
Eai<pa“= [(5a1—‘5agﬂ:’i542q:i5a10) COSBC
+ (5a4_5a12ﬂ:i5a5:f:5413) sinﬂc]goau. (3‘4)
Taking the limit in the usual manner? leads to the

total stress-energy-momentum tensor for the current
theory:

0,“,= (1/2C) (D_l)ab{[jau;jby]+”‘guv~7a)\-7b)‘
—3V2GCnLEt A E bty T s
—3V2GCna[ £l £, Tault)
+ii[‘i/ (Yu® v 0 )¢ — au‘/-/'Yv‘l/— av‘l-/'Yu\b]
—3IV2Ggulant®. (3.5)

Here J,, are the SU(3)XSU(3) currents, but the more
convenient variable at this stage is

jﬂﬂE]an—F\/ZCG’?a(Euﬂkln*_{' Sa_lu+) .
Note that the hadronic weak current is simply

]W”i= [(5a1—5a9:l:’i5a2:f:i3a10) COSBC
+ (5a4'— 5‘112:':1'6(,5:,:1'5(,13) SiIlBC]Ja”
= Eai_]'a” .

This is to be taken with the algebra

[Jao(x),]b()(y)___lz'L.Cabcjcﬂ(x)a(g) (X—y) )
[jdo (x);Jbi(Y)j: iDbd (D—l) ecCadejci(x)5(3> (X— y)
41D C3;(D6® (X— y) ,
[jui(x);jbj()’):,z [jai(x)rlﬂu (Y)]
=[a0(x),0u(y) ]=0,
[a0(X),05,(y) ]=t€apylyu(x)0® (x—y),
plus the usual anticommutator for the lepton field with
itself. In addition, the time derivatives of the lepton

fields are to be evaluated (in the usual manner) via
the lepton equation of motion

(iy- 0= M)Y=3V2G,(1+s)roi=*
+%\/2'G(D-l)ab-7buna(£a+7—+Sa_'r—‘_)
Xyr(1+ys)¥.

It is easy to see that when D,;=68.3 and G=0, the
energy-momentum tensor becomes 8,,5(g)+0,,(free
leptons), and the algebra is the symmetric algebra of
fields. It is much harder, but possible, to show that
the system is Poincaré-invariant (and that Jaules
transform as four-vectors).

3.6)

(3.7)

(3.8

(3.9)

22 During the limit, we define time components of the hadronic
currents as the usual form Jqo=— (o) 28imai+Cascppimes; that
is, the charges are “purely hadronic” in that they will not rotate
the leptons. If desired, one can think of adding /a4, to Jo, (with
appropriate internal indices), and constructing the charges from
these. As mentioned in Ref. 23, this is purely a matter of definition
and does not change the theory.
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The resulting equations of motion are
a“]an= (1/2C)Cab¢ (D—l) bd[]dmjc"]+ »
(9“.7,,,4——— (1/2C)Cabc (D_l) bd[Jdec“]+ ’ (3 10)

anjw— avja;t: (l/zc)cdefDad(D_l)ea (D—l)fh
X[]amjhv]+-

The current-current interaction is rather well hidden
in this system, but the perturbation theory will find it.

We can think of perturbing in the semistrong inter-
actions, the weak interactions, or both. All cases can
be done, but the semistrong perturbation was described
in Sec. II, and the most interesting perturbation is
presumably only in G anyway, so we shall confine
ourselves to this case. To pass to the interaction picture,
we define the frame-dependent four-vectors

JaOEJaO,
(gaiE"]a(D—l)abei-

As above, these structures are defined so as to remove
the weak interactions from the algebra. That is, the
algebra of J,, is the mass-mixing algebra, and hadron
variables commute with lepton variables. In terms of
Jau, the stress-energy-momentum tensor may be re-
written as 6,,=6,,7+0,,7, where

(3.11)

11
0" =EE—{[50M;5m']+—gnv5a>«ga)‘} 6%, (3.12)
Na ‘

H#VL = %7'[‘/; ('Yuav"“’)/vau)\b - a#‘Z'YV‘/‘ - avJ"YMﬁ] ) (3 13)

where now the lepton time derivatives are to be
evaluated via the free Dirac equation. 6,,” has the
algebraic structure of the strong and semistrong
interactions in the presence of free leptons. The inter-
action is described by

eﬂi'r: 0 )
Ouo"=3V2G[gwit,gw 1+ GC (D arnams

X (£t gwo+EJwoh) (3.14)
X (&t gwi+Egwdt),
where
(gW}li= Sa:{:gtm_i_lpi (3.15)

will be the total weak-interaction current in the inter-
action picture. As above, the transition to the inter-
action picture is achieved by the unitary operator

U(,0)= Tlexp[ —i /0 e eoor(gn)]}

and the S matrix for the perturbation is U(e, — ).
In the interaction picture J,2 and 2,? are four-vectors.
We see immediately that, to first order in G, the theory
describes the current-current Cabibbo interaction.?

2 If we had followed the suggestion of Ref. 22, the Heisenberg
theory would have looked different, but we would have insisted
that 6,* remain 6,,(Sugawara)-6,, (free leptons), leading to
the same perturbation. The point of Ref. 22 is still good: One
might want to think of the interaction-picture charges as being
constructed out of structures like (3.15).
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Again, the S matrix may be (formally) shown to be
Poincaré-invariant to all orders; that is, the non-
covariant second term in 64 (seagull) always cancels
the noncovariant Schwinger terms arising from com-
mutators of o7 with itself.

Cabibbo Theory with W’s

The mechanics of such models were outlined in Sec.
II for the case of SU(2)QSU(2) with no semistrong
interaction. In the case of SU3)XSU(3) with mass-
mixing symmetry breaking, we begin with the
Lagrangian

£= ‘—iﬁauvﬁaﬂy'i'%moﬁznaﬁoan@a”_%Gavaa’“’
+%ﬂ02WanWa#+‘p(7:'Y -0— M)‘p— gWaula” )

~ 3.16
Fanv: an‘;av_ ay¢au_ %gﬂcabc[{ébm@w]q— ) ( )
Bap= Qapt (8/80) (EW W),
where
&/ui=1VIG.
In the usual limit, we obtain

Opr= (l/zc)na_l{tjam]av:h—gw(]a)\]a)‘)}

+0,,7 40,5, (3.17)

where 6,,7 is given by (2.19), and would be the free-
W-meson energy-momentum tensor except that

Wot= (1/ud)[9:Git+g(Jwet+1vE)].
The form of 6,,% is given in (3.13), except that now
Pyodp= (77:0i+ M W+3V2gW ety r(1—vs)¢.  (3.19)

In addition to the usual algebra among the leptons,
the nonvanishing commutators are

[V a0 (x),T50(y) = iCape/ co(x)8® (x—y) ,

[]10 (X)yjbi(Y)] =i c_lcabcjvi(x)‘s(s) (x—y)

+’i7]a5abcai(x)5(3) (x—y) 5
[Goif (x),W;*(y) = —i8asdii8® (x—Y),
[Goi(x),753(y) J=i8Cnoks*0:i0® (x~y),,
Jau= ]au+7Ian(£a+Wu—+ W),

(3.18)

(3.20)

The equations of motion are
a“]au= - (I/ZC)Cabcnc_l[]bu:jc“]+:
G“Guri+ﬂ02in= g(]WVi—l_lvi) P)
aujav_ avjauz (1/2C)Cabc’7a7lb—lncq[jbmjdv:h .

(3.21)

In order to perform perturbation theory in the weak
interactions, we define the usual frame-dependent
vectors;

Jau= (T a0, T as) - (3.22)

The algebra of gu. is free of weak interactions (in
particular, it commutes with all W-meson variables).
In terms of Ja,, the stress-energy tensor 6,,=0,,740,,7
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has the form

0" = (1/2C)n{ [JanrJar e — gur(JarJ“M) }
+6,,7 (free)+0,, - (free) ,

Ooo? = gL W, gwt—+ W= w14 (g% 2uc?)

XLgwot,gwi +38Cna

X (ESAWi+EWit)?2, 047=0.
64" and 6,,~ have the forms of Egs. (2.19) and (3.13),
respectively, but are free in the sense that now
Wot= (1/u?)3:Gict, #yoday= (Fy:d:i+M)y.

This is to be understood in 6o’ as well. The unitary
transformation

U(t,O) =T exp(—z/ 0001(5D>d4x>

(3.23)

(3.24)

leads to the usual interaction picture in which §,,.%,
W2, and [P are all four-vectors. The interaction is
evidently the usual Cabibbo form, and the S matrix
U(w,—w) is formally Poincaré-invariant to all
orders. As in Sec. II, the Feynman series can be re-
written in terms of W propagators.

IV. GENERAL PERTURBATION

In the previous sections we have shown how to
incorporate semistrong, electromagnetic, and weak
interactions into Sugawara’s theory, and in particular
how to pass to the interaction picture and construct a
covariant perturbation theory. We now address our-
selves to the problem of the most general perturbation.

Sugawara! has shown that if one demands that (a) the
currents satisfy the algebra of fields, (b) the energy-
momentum tensor 6,, is an SU(3)XSU(3) scalar, and
(c) 8y, is a finite polynomial in the currents, then the
proposed quadratic form is essentially unique. The
restriction to this form follows from Lorentz invariance,
which requires 8,, to satisfy the Schwinger relation

[800(x),800(y) J=14[00s(x)+00:(y) ]0:70® (x—y) . (4.1)

It is easy to see that, given conditions (a)-(c), 6.,
must be quadratic in the currents to be consistent with
(4.1). However, if one adds symmetry-breaking inter-
actions, then, at least from our work above, conditions
(a) and (b) are not satisfied. What, then, are the most
general perturbations? By working primarily in the
interaction picture, we shall be able to carry over some
parts of Sugawara’s reasoning.

Let us abstract what we know about the interaction
picture. In general, the total energy-momentum tensor
has the form

0" = 6Mvs(<ﬂD)+H#vF(<PrD)+0;w1(ch:<PrD) s (4-2)

where g,” is the interaction-picture current and ¢,”
is some set of additional (canonical) fields in the inter-
action picture. 6,,% has the functional form of the
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symmetric Sugawara tensor, and 6,,7(¢,?) is the free
tensor for the ¢ fields. The algebra of g? is the sym-
metric algebra, and g commutes with ¢,”. The time
dependence of gP and ¢? is that of 6,,5 and 6,,7 (¢.?),
respectively. Thus gP carries the symmetric time
dependence, while ¢,” are free fields. Finally, the
Poincaré generators are constructed from 6,5
+6,,7(oP), so that the g’s are four-vectors. We can
say, then, that the interaction 6,,7 is a function of the
original Sugawara currents together with some canonical
free fields.

To assure Lorentz invariance, 6,7 must satisfy (4.1)
in the Heisenberg picture. However, since the Schwinger
condition contains no time derivatives, it must also be
true in the interaction picture. In general, 6,,"
=0,,5(gP)+0,.7 (o) satisfies the Schwinger condition
by itself; we thus have the following restriction on
0" (JP,0:7) :

[000” (x),000% (y) J+[000” (¥),000" (x) ]
+ 800" (x),000 (y) ]= [ 00s" (x)+00:" (y) ]
X 8;(6® (x—y).

Now we can make a systematic investigation of
possible perturbations. From here on we are in the
interaction picture, so we suppress the label D. Suppose
first that there are no extra (canonical) fields. As
a subcase, suppose also that 64 is a polynomial in
the currents. Then Sugawara’s reasoning can be
repeated to show that either 607 is quadratic or it is an
infinite polynomial. What about interactions involving
derivatives of currents like 4,9,9*9”? Using 0#9,,=0,
3uJar— 0Jan= (1/2C)Copcl ou,Jer ]+ to eliminate time
derivatives, we learn that such interactions are effec-
tively of higher order in g, and not consistent, unless,
again, one goes to infinite polynomials. Another way
of saying this is via the § matrix. If we assume
S=T exp[—i/ d* 0o’ (x)], we find that for any but
quadratic interactions, we need add infinite numbers
of contact terms to maintain Lorentz invariance to all
orders. Thus, excluding infinite polynomials, the
general form of the perturbed Sugawara theory—
with no additional canonical fields— is the mass-mixing
model.

We can say a little about infinite polynomial theories.
Assuming for the moment that such an interaction
can be constructed at all, then the Heisenberg-picture
currents will be infinite polynomials in the interaction-
picture currents. This is because the terms that must
be added to g to obtain a J that transforms as a vector
in the Heisenberg picture will be proportional to the
Schwinger terms in [6607(9),Jo]- In fact, for the
theories described in this paper, one has

(4.3)

J () = 9u() i f Py (im0 (1), 90 (0) ] (4.4)

For the general case, see Ref. 19. Thus, in the Heisen-
berg picture, both the energy-momentum tensor and
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the commutators of the currents will contain infinite
polynomials in the currents.

What about theories with other (in general ca-
nonical) fields? It is, of course, possible to introduce
interactions of the form g*C,, where C, is some inde-
pendent (canonical) vector field operator (W field,
electromagnetic field, lepton weak current, i.e., the
“hybrid” theories of Ref. 2, etc.), or Af,,=g,,c (the
scalar and pseudoscalar densities of Ref. 2). What about
other interactions of the form, say, (g,C*)?? The
commutator of this with itself contains terms of
fourth order in g, and so on; again we have to go to
infinite polynomials. Similar troubles are found with
forms like 9,9,*G**, 8,9,0*C”, etc. In particular then,
if infinite polynomials are to be avoided, nonminimal
electromagnetic coupling? is ruled out.

In summary, the exclusion of infinite polynomials
restricts the form of the perturbing Hamiltonian to be
N5 Gang* +Nap? gauCP*+0+contact terms.2® The in-
ternal symmetry of these perturbations (i.e., the
structure of A\gp!%, etc.) is unrestricted. Moreover, the
o approach appears to be the only way of introducing
semistrong interactions without modifying the original
algebra.

In conclusion we want to say a few words about a
“finite” current theory, in the spirit of Lee' and of
Gell-Mann et al.'? Because we have essentially the
usual freedom in introducing scalar bosons and W
mesons, the program of Ref. 12 can be carried out with
relatively little change, yielding a finite (off-diagonal)
weak interactions. To adapt Lee’s approach, we would
have to introduce octets of W mesons and identify
these with the real currents. Although this is probably
not in the spirit of the game, it may be interesting.
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APPENDIX: COVARIANT PASSAGE TO
INTERACTION PICTURE

In this Appendix we shall reword the analysis of
Sec. IT in a manifestly covariant form. We first derive
a manifestly covariant form for the commutation
relations of the currents. Assume that the currents
Jap satisfy the equal-time commutation relations of
the mass-mixing model (2.2), with D,p;=8.3\.. By
performing an explicit Lorentz transformation one
can then construct the commutators on an arbitrary
spacelike surface o. For simplicity, we shall only con-

% Nonminimal couplings of spin-1 fields to one another seem
always to lead to infinite polynomials. See, e.g., T. D. Lee and
C. N. Yang, Phys. Rev. 128, 885 (1962).

% A possibility for determining the internal symmetry may lie
in requiring, say, the symmetric algebra of fields in the Heisenberg
picture, by virtue of finding a complicated cancellation among,
say, all the perturbations.
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sider flat spacelike surfaces. Such a spacelike plane o
is determined by specifying the constant timelike
vector n* (n*n,=1) normal to the plane. We obtain
the manifestly covariant algebra on o,

5[(95"3’) 'n:":jﬂ#(x) )Jbv(y)]= icabc[npjcv(x)xbxc_]
F 12, ()N AT H 12,1, T A (2) (L= Noh s T—NaA 1) ]
X8@ (x—y)+idapha (D) +1,D,)6® (x—y), (Al)

where D,= d,—n,n,9* has only components tangential
to . When n#=(1,0,0,0), the algebra reduces to the
usual form (2.2). Alternatively, when A\,=1, we have
the covariant algebra of the symmetric theory. The
interaction can be removed from the algebra on ¢ by
defining a new current,

ga,‘(x,n)s (1/>\a)]un+ (1—‘ 1/)\11)71;;71;;]“”.

Jaulw,m) satisfies the symmetric covariant algebra on
o, and is a Lorentz-vector, now explicitly frame-
dependent, i.e., has explicit # dependence. The gen-
erator of displacements normal to ¢ is

(A2)

(o) =ntP,= / 140, (x)n*d(x-n)dx.  (A3)

The interaction picture is designed to remove the
dependence on the interaction from this displacement,
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but it will also remove the frame dependence of Jau.
As a function of g, 6,, splits into two parts, a free
tensor 6,,5(g) and an interaction tensor 6,,7(J,n). In

this case,

Bo0” (g,1) =

1—Xo

1—>\,,/
Joug -+ (nﬂ)> (A4)

2 \

2C\

Note that 6¢07(g,n) is itself a frame-dependent tensor.
This is, of course, always the case except when 6,,7
=g, (scalar). The unitary transformation that re-
moves the interaction from the ‘‘time” generator
satisfies

n-0)U(s)=—1i3C1(a)U (o),

3¢ (o) =/d4x 8(x-n)0007 (g,n). (A5)

U(o) can be solved for in the usual manner. It has the
explicit frame dependence of 8¢?(g,m). In fact, its
frame dependence is just what is needed to make
9o (x) a frame-independent four-vector [where the
interaction-picture Lorentz generators are constructed
with the frame-independent 0005(gP)]. As emphasized,
e.g., in Ref. 13, such procedures are natural for theories
with derivative coupling or spin-1 fields. Evidently,
there is no loss of generality in restricting ourselves,
as in the text, to the flat surfaces 7*= (1,0,0,0).



