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Spin-One Particle in an External Electromagnetic Field*
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Equations of motion for a spin-one particle and its antiparticle in an external electromagnetic Geld are
developed using a (1,0) 8 (0,1) six-component wave function. Anomalous magnetic dipole and electric qua-
drupole effects are included. The wave equation is manifestly covariant and has no auxiliary conditions.
The invariant integral for the system is derived, and the nonrelativistic limit is discussed. The semiclassical
approximation for a relativistic spin-one particle in an electrostatic 6eld is set up; then the problem of cal-
culating the change of polarization reduces to a set of three coupled total differential equations.

I. INTRODUCTION

ECENTLY Joos, ' Weinberg, ' and Weaver, Ham-
mer, and Good' have developed new descriptions

of a free particle with spin s=G, —,', I, . These de-
scriptions are of interest because they are closely
analogous to the Dirac theory for a spin- —,

' particle, and
they permit many of the well-known discussions for
the spin--', theory to be extended to apply uniformly to
particles of arbitrary spin. Joos' and Weinberg' gave
their description in a manifestly covariant form.
Covariantly defined matrices as developed by Barut,
Muzinich, and %illiams4 appear as the generalization
of the Dirac y„matrices. Weaver, Hammer, and Good'
gave their description in Hamiltonian form and found
an algorithm for generalizing the Dirac Hamiltonian
o. p+Pm to any spin. The wave functions in these two
approaches are identical for odd-half-integral spin and
are equivalent in the sense of being related by an oper-
ator that has an inverse for integral spin. In any case,
the wave function forms the basis for the (s,0) $(0,s)
representation of the I orentz group. Also the wave
function corresponds to the momentum-space wave
function used by Pursey' in his treatment of free par-
ticles with spin.

In later works, most of the properties of the free-par-
ticle theory have been worked out. Sankaranarayanan
and Good' studied the spin-one case in detail and Shay,
Song, and Good, the spin-~ case. Sankaranarayanan
and Good gave general discussions of the polarization
operators' and the position operators. ' The density
matrices for describing orientational properties were

*Research was done in the Ames Laboratory of the U.S.Atomic
Energy Commission.

t Present address: Physics Department, University of Okla-
homa, Norman, Okla. , 73069.

f On leave 1968—9 at Stanford Linear Accelerator Center,
Stanford University, Stanford, Calif. , 94305.

1 H. Joos, Fortschr. Physik 10, 65 (1962).' S. Weinberg, Phys. Rev. 133, 81318 (1964).
3 D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys.

Rev. 135, 8241 (1964}.
4 A. O. Barut, I. Muzinich, and D. N. Williams, Phys. Rev.

130, 442 (1963).' D. L. Pursey, Ann. Phys. (N. Y.) 32, 157 (1965).
A. Sankaranarayanan and R. H. Good, Jr., Nuovo Cimento

36, 1303 (1965).
~D. Shay, H. S. Song, and R. H. Good, Jr., Nuovo Cimento

Suppl. 3, 455 (1965}.
A. Sankaranarayanan and R. H. Good, Jr., Phys. Rev. 140,

3509 (1965).

set up by Sankaranarayanan and by Shay, Song, and
Good. ~ Mathews" and Williams, Draayer, and Weber"
obtained definite formulas for the Hamiltonian for any
spin.

The descriptions have been applied so far only to
free particles, and a question is how to include effects
of an external electromagnetic field. In view of the suc-
cess in treating all these properties of the free particle
uniformly for all spins, one might hope that electro-
magnetic interactions could also be introduced for any
spin. The problem becomes more and more complicated
as the spin increases, since a particle of spin s can have
anomalous electric and magnetic multipole moments up
to the 2" order.

The purpose of this paper is to give the theory of a
spin-one particle, described by a (1,0)6(0,1) wave
function, interacting with an external electromagnetic
field, and having arbitrary magnetic dipole and electric
quadrupole moments. This new formulation turns out to
be worthwhile because it permits a complete treatment
of the system (some aspects involving the anomalous
quadrupole moment were not covered before). The
results apply exclusively to spin one and have not so
far suggested a generalization to higher spins.

The spin-one particle in an external field was originally
studied by Proca" and Kemmer" using a 10-component
wave function. Corben and Schwinger" showed how
to include an anomalous magnetic dipole term in
Proca's theory, and Young and Bludman'5 took account
of an anomalous electric quadrupole. Specializing to
time-independent electric fields and space-time-inde-
pendent magnetic fields in the anomalous quadrupole
terms, they obtained a Hamiltonian of the Sakata-
Taketani" type which included the eAects of the anoma-
lous moments. This Hamiltonian formulation involves
a 6-component wave function which has complicated
Lorentz transformation properties.
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The wave equation given here is manifestly covariant
and requires no auxiliary conditions on the wave func-
tion. The equation has the usual symmetries with
respect to space reQection, time reQection, and charge
conjugation. It leads to the definition of a Lorentz-
invariant inner product that includes a contribution
from the anomalous quadrupole term. It was found that
there are two possible choices for the anomalous quad-
rupole term in this wave equation, each having the
correct transformation properties and giving the same
type of contribution in the nonrelativistic limit to
order m '.

For any spin of particle, the values of the normal
electric and magnetic moments depend on the wave
equation used to describe the particle. Here, the normal
magnetic moment g factor is —,'and the normal electric
quadrupole moment is —fi'/2zrz'c'. The values of the
moments were found by making a Foldy-Wouthuysen'
type of transformation, leading to a nonrelativistic
Hamiltonian correct to order m '.

properties of y6, p,„,are

(Sa)+6,aP, ttzv +6,Pa, pv )

(Sb)+6,aP, pv +6,pv, aP )

'ye, ap, ev+ ye, a tv, v p+76, av, pe (Sc)

and therefore 10 of them are independent. One defines
p5 by

and then there are 36 independent Hermitian matrices
1) y5) yap) iy5yap) y5 ap) y6 a~ » WhiCh fOrm a COmplete
set of 6X6 matrices. Some other properties are given
in Ref. 6.

III. LORENTZ TRANSFORMATIONS AND
CHARGE CONJUGATION

The Lorentz transformation properties of the wave
function are assigned to be the same as that of the free-
particle wave function. However, this assignment does
not settle the question because, in the free-particle
discussion, a different wave function is used in the
Hamiltonian formulation from that in the manifestly
covariant formulation. The relation between the two
functions was given in Eq. (62) of Ref. 6. For the
transformations continuous with the identity, the two
functions behave the same and the notation of Refs.
3 and 6 is used. For the reQections and charge conjuga-
tion there is a difference. As shown later, for zero fields,
Eq. (1) specializes to Weinberg's formulation and so his
assignments for the ' discontinuous transformation
properties are the appropriate ones to use.

For Lorentz transformations continuous with the
identity

II. WAVE EQUATION

The equation is

fm rrpy p+zr zr +2m'+(eX/12)y, , pF p

+ (eq/6rrz')ye p,„(BF„p/Bx„)zr„jg =0, (1)

where zr is i(c)/Bx ) eA —and F p is—the field tensor

F p (4)Ap/Bx ) (a——A —/exp),

~ij &ij k~k) ~i4 ~4i ~+i) ~44

The Latin indices run from 1 to 3, Greek from 1 to 4
with @4=it. Factors of c and 5 are omitted. The con-
stants A. and g are real and adjust the sizes of the intrinsic
moments, as discussed below. The y p are 6)&6 matrices
defined in terms of 3&(3 Hermitian spin-one matrices
si by

/Sa —(SaPSP )

the wave-function transformation rule is8;,—sisj —sjs;

0

0
v', =I

8"—s s —s.s.sj ij js (6)~'(*')=As(*),
2

where x' denotes x', t', and the matrix A satisfies0 is,) $0 1)
v* =v '=I

l—zs; 0) l1 oi (7a)

(7b)

(7c)

(8)

A. 'y pA=a „up,y„„,
A.ty44 ——y44A ',

CA= A.~C,

A 'y5A. =y5.

The other matrices are defined in terms of the p p by
~f

ys, p=zLy e,ape]—

~ "'~~"~+ ' " ~" ~ "'~~" + " ~"' ' ' Here C is the charge-conjugation matrix defined byv~7&2~a g v
—

~V av ~7
—2~av~ ~

The operators x are understood to act on everything
to their right, including the wave function. The gradient
operators inside brackets, such as in the factor
BF /8pxact on the fields F p only and not on the
wave function. They p satisfy' p=yp and p =0 so
9 of them are independent; the p5, p satisfy p5, p

c=l
(0 Ci
lc, or'

where C, is a unitary matrix such that"

C,s= —s*C,. (10)—p5, p and 6 of them are independent, the symmetry
4 U. Fano and G. Racah, Irreducible Tertsorial Sets (Academic"L.L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). Press Inc., New York, 1959), Appendix C.
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The C matrix has the property

Cy;, C '=y;, ~, Cy4„C '= —y4, "', Cp44C '=-y44". (11)

In consequence of Eqs. (6) and (7a), every Greek sub-
script is a vector index in the same sense as in Dirac's
theory and. Eq. (1) is evidently covariant.

For the space reAection

Equations (6) and (7) apply again with A chosen to be
y44. Since ~ and I'"

p are regular under space reRection
the covariance is again evident. For this transformation,
instead of Eq. (8), the equation

A.
—'y5A = —y5

applies. Qy including factors of » the parity non-
invariant interactions can be formed. For example,
(eX'/12)y&y5 eF e is an electric dipole interaction term.

For the time reQection

the wave-function transformation rule is

~'(")=AL«(*)j*, (13)

where again A is &44 and satisfies Eqs. (7). By explicit
calculation, using A and I"

p to be pseudo, one verifies
that Eq. (1) is covariant.

The charge-conjugate wave function is dined by

P =(Cf)*.
It satis6es an equation the same as Eq. (1) but with all
terms proportional to t,'changed in sign. It follows from
the fact that Eq. (7c) applies to all transformation
matrices A that fc has the same Lorentz transformation
properties as f. The charge conjugation has period two

(a')'=~
as follows from the fact that C,*C, is unity. "

If f('& is a solution of Eq. (16) and p(") of Fq. (1),
then the current

J (& ")= (7rep(O)~ ep(n) p(O& ~ p(n)+(~ y()))p(n)
—&)t""s f("'—(eq/6m')P('&(BF /»e)p6 „„eP(n) (19)

is conserved;

()J "")/Bx =0

Here the parenthesis in a factor like (7rep(')) indicate
that the 7re acts only on the P('). Evidently J (™
I orentz four-vector, so the integral of J4" ") over space
is a time-independent I-orentz scalar. The invariant
integral is therefore defined by

0"'Y4eir—p4'")+ (~4/'")f'"' P")7rqg(—"&

(eq/6—m')p(')(aF„„/(&xe)p, „„e,p( )j (20)

An alternative form is

Q (",f("))= i(4m)-' d'xP 2g (&»&«&—4,~,p( &.
+( ~'")'(1+&«)~(-)-y()t(1+p..) p(-)

—(eq/6m')f(')(BF„„/gx, )Z, „„,4p( )). (21)

The factor is chosen to give the right nonrelativistic
limit as discussed below. As in the Dirac theory, the
anomalous magnetic-moment term does not inAuence
the invariant integral formula. The integral is not
positive definite.

For the time-rate-of-change of matrix elements of
any operator T, one finds that

(4'", 0'"')/«=~(4 )-' 'x g«PW, Tj P - (22)
IV. INVARIANT INTEGRAL

Let the adjoint wave function be defined by

4'=O'V44

It satisfies the equation

(15)

where H/ is the operator inside the square brackets on
the left in Eq. (1). This applies in general, even when
the fields and T are time-dependent. Equation (22)
can be easily derived by operating on the equation

0'(x') =4(x)A ' (17)

for isochronous I orentz transformations and according
to

y'(x') = Ly(x) C-'j*A-' (18)

for time rejections.

s 7rpgy e+7r s. /+2m'g+(eX/12)F ega,
(eq/6m'—)(»-e/», )~,A ~.e„=a, , (,16)

where s. is i((&/(&x —)+eA It follow. s from Eq. (7b)

that the adjoint function transforms according to

W(TiP("))=Py, T) 11, ( )

from the left with P('), and on Eq. (16) from the right
ith (—Tp), and adding; the terms on the left can be

rearranged into i times the divergence of a current J
built from g('& and TP(").From Eq (22) it is .seen that
matrix elements of a symmetry operation of the system
are time-independent. The point is that if T is a sym-
metry operation and P(") satisfies the equations of
motion then TP(') also is a solution. Then Wf(") and
8'T|t ("& are both zero and the right-hand side of Eq.
(22) is zero.
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V. NONRELATIVISTIC LIMIT

As was first emphasized by I'oldy and Wouthuysen
in the spin--, case, the nonrelativistic approximation
corresponds to an expansion on m '. For a Dirac
particle, they developed the series by making unitary
transformations of the Hamiltonian which removed odd
parts of the Hamiltonian to higher and higher orders
of m '. Their process cannot be applied directly here
because there is no Hamiltonian to begin with. In the
Dirac case, it is appropriate to consider unitary transfor-
mations because the invariant integral is J'd'xP~'~tP(e)
and the unitary transformations preserve this form into
the nonrelativistic limit. With the different invariant
integral that applies here [Eq. (21)j, it is not appro-
priate to keep wave-function transforrnations unitary.
The basic idea used in finding the limit here is to take
out the rest-energy part of the wave function, make a
nonunitary transformation that removes odd parts of
the wave equation in a certain order, and then expand
in powers of m '.

The first step is to convert the wave equation [Eq.
(1)j into a nonrelativsitic type of n otation. The
appropriate matrices are

to 1q
p=v44=I oi'

|'s; 0 )
n'=~V«V*4= —V.s'=I-

&0 —s;i

In terms of them, the y5, p matrices are

+5 ij ~jk~k&iy +5 i4 6o'i ~

The y6 p „„type of matrix is easily converted into terms

of e and s by using the result

v6, -p, "=—(1/12) [v",-p,v","j+
+4(b „hp. h—,hp„) 4—e p„„7g .(23)

It is assumed that the external fields F p satisfy the

homogeneous Maxwell equations

e~ppyBP~p/Bxp = 0

so the third term in Eq. (23) does not contribute in the
wave equation. The second term in Eq. (23) leads to
terms proportional to BP „/Bx. in the wave equation;
this type of term is retained so that all the results below

apply even in the case when the wave function overlaps
the sources of the external fields. With this notation
change and after multiplication by m ', the wave equa-
tion reads

((~ /m)(n. /m)(1+P) —2P(s m/m)' —2iP(n m/m)(s 4/m)
—(e/m') (p+ X)s. (B+iyqE)+ 2+ (eg/m4)

X(s„sI+sjs„3b„p)(e—;I,)—[B(Bs+iy~E„)/Bx~)mr(

+v.-[B(B.+is~~.)/». 3«
~.[B(B.+'~.~.)/B* ~-.&)~=0 (24)

The second step is to make the substitution

P= exp[(n ~/m) —imt)P, ,

multiply through by

exp[—(n ~/m)+imt],

and expand for small m '. The eGect of the time factors
is just that «becomes im+«. The expansion needs to
be carried out to order m ' to get the quadrupole con-
tribution. The calculation leads to

[(1—P)+2i(s 4/m) (1+P) 2i(n m—/m) («/m)+ 2i(s 4/m) (n ~/m) (1 P)+ (—s 4/m)'(1+P)+ (s'/m') (1+P)
—(e/m') (P+X)s (B+iy~K)+ i(n m/m)'(«/m) (1—P) —2i(n ~/m) («/m) (n n/m)+ i(«/m) (n ~/m) '(1+P)
—(n. m/m) (s 4/m)'(1+P)+ («/m) '(n ~/m) (1—P)+ (-', )(n m/m) 'P —(n ~/m) (n'/m') (1+P)+ (~'/m') (n m/m)

&&(1—P)+(e/m')(n m/m)(P+X)s (B+iy5E)—(e/m')(P+X)s (B+iy5E)(n ~/m)
+i(eg/m') (s~q+ sos„,' h~q) y5B(B„+—iy—5E„)/Bxl]pi =0. (25)

The odd terms only begin in the m ' order.
As a third step, one makes a similarity transformation

so that the same equa. tion holds but with P, y&, n, P&

replaced by P', y, ', n', f&', where
—1 1

y '=2-&&~(
1i

t
—1 oq

p/
4 o

to 1q
"'=~i1

0&~

l 0 —sq

E—s oi
The point of this is that, if Pi is considered as two three-

component functions,

(Iks)

then the upper part of Eq. (25) is

2&p+O(m —')Pp+O(m-')Pl. ——0,
where O(m ') denotes terms of order m 2. The small
components are thus of order m ' compared to the large.
There is considerable simplification in the lower half of
Eq. (25) leading to the result

[4i(m 4/m)+2(s 4/m)'+2(s'/m') —(e/m') (1+X)s B
2i(s ~/m—)(vr4/m) (s m/ )+m2i(s 4/m) (s m/m)'.

+i(e/m')(s m/m)(1 —X)s K+i(e/m')(1+3)s E
&& (s ~/m) (eg/m') (s„s„—+sjs„3h„I,)——

&& (BE,/Bxj, )iver, =0. (26)
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iB%'/Bt=H+, (30)

and + is identified as the nonrelativistic wave function.
It is clear that, from what has been said so far, this

identification is not unique. For example, Pr, might be
taken as the nonrelativistic wave function and the ~4'
term manipulated into a contribution to the Hamilton-
ian in the m order. However, the identification above
is supported by the limiting value of the invariant inte-
gral. Starting from Eq. (21) and disregarding terms of
order m ', one finds

(P~'~ P&"&) =i(4m)-' d' x2Lig&'»n ~f&"&

This can be rearranged into the form

i—~4 (—2m) '~-4'jP, = (H e—~)P„
where B is given by

H =eq+ (s'/2m) —(e/4m) (1+X)s B
+ (e/8m') (1—X—2q) (s,s;+s,s,—-', B,,) (BE,/Bx, )
—(e/8m')(1 —lI,) s (~XE—EXm)

+( )( / ')(1—&)(&'E) (28)

and where p is —iA4.
As a fourth and final step in finding the nonrelativistic

limit, the equation is reorganized into Hamiltonian form.
If the function + is defined by

4= L1+(2m) '(H —eq))ez, (29)

then, to order m ', the a.4' term cancels out, and Eq. (27)
becomes

(P-pe&.e)'= (P-P-)'.

This leads to

(P-p-) V= (P-P-+2m')V

and so gives the Klein-Gordon equation

(33)

where Q is the quadrupole moment. By comparison with
Eq. (28), one sees that the quadrupole moment of this
particle is

Q= (—1+li+2g)/2m',

the normal moment being —1/2m'.
An alternative way to include the anomalous

quadrupole contribution is to use the term (ge/m')
X(BF e/Bx, )7rey, in place of the y6 term in Eq. (1).
The invariant integral cari still be defined all right and
the same nonrelativistic limit applies except for a dif-

ferentt

factor in the V E term. However, the type of
quadrupole term used in Eq. (1) has a universal appli-
cation because the y6, e „„matrices, Lorentz type (2,0)
g) (0,2), exist for all spins greater than one-half, whereas
matrices like p „, Lorentz type (1,1), exist only for
spin one.

The connection between this formulation and other
spin-one free-particle formulations is found by special-
izing Eq. (1) to the case e=0 and rewriting it as

P-P8~-4—= (P-P-+2m')4, (32)

where p is iB/Bx—This e.quation was first given by
Tung" and by Shay. " Here one can operate with
—p.p,q., and use the matrix property

+(~4'")'(1+6)4'"' 0''»(1+—P)~44") P P f= —m'lt. (34)

d'x Pz~'~tfz&"~+i(2m) ' d'x

Furthermore, this combines with Eq. (32) to yield
Weinberg's equation'

p PIY.A'= —mV. (35)

X (a-4gr, &'&)tel, ~"& —i(2m) ' d'x Pz&'»a 4$z

d'x 0 (') t+&~&. (31)

Therefore, except perhaps for further unitary trans-
formations, 0 is the correct nonrelativistic wave
function.

Qe BE;
(s;s,+s;s,—-', b,,s')

4s(2s —1) Bx,

VI. DISCUSSION

The magnetic dipole term in II can be written as
—g(e/2m)s B, where the g factor is —,'(1+X). Thus, for
a particle described by Eq. (1) the normal g factor is ~.
The conventional form for a spin-s electric quadrupole
interaction term is

Thus, Eqs. (34) and (35) together are equivalent to
Eq. (32). In Ref. 6, Sec. 6, the relations between Eqs.
(34)@and (35)~~and/the other free-particle spin-one
formulations were given.

Just a,s in the spin-2 case, the polarization of the spin-
one particle can, in principle, be followed throughout the
interaction. One defines the four-vector polarization
operator by

T„=(i/12m) e„,p,yg, ,p~.
= (—i/6m)ygy5, „.~.. (36)

Wu-Ki Tung, Phys. Rev. 156, 1385 (1967), Eq. (73).
2'D. Shay, Ph.D. thesis, Iowa State University, 1966 (Uni-

versity Microfilms, Inc. , Ann Arbor, Michigan, No. 67—2092)
(unpublished).

This is a gauge-independent notion and it fits in with

the scheme of free-particle polarization operators. '
The fourth component is

T4 ——(i/m)s ~;
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for a particle in an electrostatic field, this is ip/m where o=0, &1. Then Eq. (39) reduces to a 2X2
times the helicity operator s p/p which is central to problem. There are solutions only if
the discussion in Sec. VII.

(41)

VII. APPLICATION: SEMICLASSICAL SOLUTION
OF THE GENERAL ELECTROSTATIC

PROBLEM

As an example of the usefulness of this theory the
semiclassical approximation for the solutions of Eq. (1)
will be set up in the case of a spin-one particle in an elec-
trostatic field. This applies, for example, to a deuteron
moving relativistically through laboratory fields. The
approximation is the generalization of the WEB method
to the relativistic spin-one case. Some of the ideas are
the same as those developed by Pauli" in the relativistic
spin--', problem. The approximate solutions are expressed
as linear combinations of functions that have, in first
approximation, definite helicities and a set of di6erential
equations is given for the expansion coeKcients. The
anomalous quadrupole-moment term does not con-
tribute to the wave function in first approximation.

The equation to be solved is

( Aci ie)—A'V'(1+P)+2k'(s V)'P+2A~ ————g ~n VP
cai c i

where e = &1 and W is an abbreviation for c(p'+ m'c') '~',

the positive root. The particle (antiparticle) solution is
identified as 4=+1 (—1). The final formulas for the
solutions w. ..(p) of the free-particle problem are

1 /us) 1 ((W&ecp)upi)
w. ,s(1)=—

I I w, +i(11)=
K2 t usi v2mc' k(WW ecp)u~ti

where u, (y) are the solutions of the 3X3 helicity eigen-
value problem

(s p/p)u=o. u

normalized so that
N~N= i.

In the representation (s;);q= ie;;s, explicit formulas for
these functions are

pl

uo(p) =—Pz

~zpp~ Pips
( 1 ) 1/z

u+i(p) =
I I

~zppt Pps (4—3)
&2P'(P' —Ps') i

P' —Ps' .

zeA / Ati ze )' ek
+ K n8+~ ———4 ~(P+1)+2m'c'+ —),in E

c
'

E cat c i C

etzs cist 8
+ g rsegkl(s~si+sls~) z

m'c' 8$;Bx; 8$y sPc3 The factors in Eqs. (42) are chosen so as to give a
normalization appropriate to Eq. (21). In the electro-

Bzp / A 8 ie static problem, if the g term can be disregarded'and if f
Xq(s,s,+s;s,—she) has time dependence exp( —zk 'Ei), then

ax;ax, & c a& c i
This is just Eq. (1) specialized to the case A= 0, A4 ——&
time-dependent. The factors of 5 and c have been
reinserted and it has been written in terms of the e and

p rather than the y matrices.
The results are conveniently expressed in terms of the

solutions of the free-particle problem. In this case one
considers solutions of the form

P=w exp[ih, '(p x—Ei)].

The equation determining m is then

where

(P,P) = d'x I,

I= (2mc') '[Ept(1+P)ip cion ppj, (4—4)

and p is i hV T—he nor.malization is such that I=E/mc'
for the free-particle solutions.

The semiclassical approximation is obtained by
substituting

lt = [co+(iz/i) at+ je's~s

LP'(1+P) —2(s p)'P —2(E/c)n pP into Eq. (37) and formally obtaining a solution to first
order for small fi. Applicability of this approximation is
discussed below. In terms of the abbreviations

Sy looking at the problem in the rest frame p=0, one
sees clearly that there are six solutions for each fixed p.
It is easy to find them by supposing they are eigenstates
of the 6)&6 helicity operator, say

p= VS, E= clS/Bt, —

(this is a different use of the symbol p than before),
the terms in 5 give

(s p/p)w=ow

"W. Pauli, Helv. Phys. Acta 5, 179 (1932).

[p'(1+p) —2(s p)'p 2c '(E eg)n —yp— .(4O)

—c '(E—eQ)'(1+P)+2m'c'jae ——0. (45)
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ao= g A.wpz, .(p),
o=o, +&

(48)

where A, are three functions of position still to be de-
termined. The limitation on A is that the approxi-
mation should be solvable to next order to get a~.
Thus, Eq. (37) for the terms in tz' gives

[p'(1+0)—2( )'P—2 '(E—4) PP
—c '(E—ey)'(1+P)+2m'c'$ai

=[(p V+V p)(1+0)—2P(s V s p+s p s V')

—2c '(E—eP)n VP ec 'E —nP ec .9,E—nba, (49).
(Even in this order, the g term does not contribute. )
The matrix of coefficients of ai is the same as in Eq. (45)
and has zero determinant. Equation (49) has a solution
for cj only if the vector on the right is orthogonal to the
solutions of the homogeneous equations formed with the
Hermitian conjugate of the matrix on the left. Taking
that Hermitian conjugate is the same as replacing
(E—ep) by —(E—eP), so those solutions are just
w i,,(p) and the condition for solvability is

w, ,t[(p V+V p)(1+0)—2P(s. v s P+s ps V)
—2c '(E—eP)n VP—ec 'E nP —ec 9,E n$

&(Q A.wpi, ,——0.

Here V acts on everything to the right including the x
dependence in p. Expressed as differential equations for
A this reads

Solutions of this equation are known by comparison
with the free-particle problem, Eq. (39). According to
Eq. (41) it is necessary that

E—ep = ec(p'+ m'c') 't' (46)

In the following, only the particle solutions e=+1 are
considered; then this is the equation for the classical
Hamilton-Jacobi function S. Also only the solutions
with definite energy E are found so that

5=8—Et, (47)

where 8 is time-independent. This means that p is V8
and is also time-independent. Suppose the classical
problem is solved so that 8 as a function of x and three
constants, values of integrals of the motion, is known.
The only problem then is to determine ao. Equation (45)
implies that

left-hand side simplifies to 4P VA, . Let Eq. (50) be
written as

y VA, =Q C,.(x)A. , (51)

where the coe@cients C, can be found given the po-
tential P(x) and choice of principal function S. Since at
every point p is normal to the surface8=const, Eq. (51)
determines A, everywhere if the A, are given on one
particular surface. In this respect the semiclassical
approximation is like the classical problem in which
one can have various numbers of particles streaming on
the various allowed trajectories. For any particular
orbit x(t), since p is c '(E ep) dx/—dt, Eq. (51) is a set of
total differential equations

(E ey)dA, /dt—=c' P g (52)

which determine the amplitudes A, if they are known at
the start.

In the one-dimensional problem, when P and 8
depend on a single coordinate, say s, one can solve for
the A, explicitly. The principal function is

where

5= pd» Et, — (53)

sp= 1 )

.0.
0,.0.

0
Q y= 0

.i.
and their derivatives are zero.

Equation (51) uncouples and simplifies to

p(dA, /d») = ,'A, (dp/d»), —-
the X term dropping out. The amplitudes are then just
p "' and the semiclassical solutions are

t'mc '~'(uo) (
! exp zV '! pd.-Et!, —

&2p Muon
(55a)

P
—c—I[(E ey) 2 m2c4j 1/z (54)

for particles moving in the positive s direction. Only the
» components of the spin matrices occur in Eq. (50),
so it is appropriate to use the representation in which s,
is diagonal. In place of Eq. (43), one has

t PVacp)u~, qP w i,,z[2p(1+P) 2PP(r+o)s+—2c 'WPnjw~i, , VA,
0' (2pmc') '"k(WWcp) u~i

= —ZA. —.'[( v+v p)(1+0)

—2P(s V s y+s p s V)+2c %'Pn V
Xexp zA '! pd» —Et ! . (55b)

)
+ec-imp. n ec—igg. njw, (50) These are eigenstates of the helicity s., as are the exact

solutions of the electrostatic one-dimensional problem.
Hree 8' tsill d entoe s(cp' +m' )c'~'. By sui ntghe explicit Equation (44) is still appropriate for discussing the

formulas for w„, Eqs. (42), one can verify that the normalization, although there, y denotes ifiv whereas—
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in Eq. (55) p is given by Eq. (54). To first order in It

they amount to the same thing and I is L&'/cp. This is a
sensible result since it is inversely proportional to the
classical velocity.

The semiclassical approximation is expected to apply
when terms marked by higher powers of A are smaller
than those marked by lower powers. Typically, the
ptVy terms are considered one higher order than p' in
deriving Eqs. (45) and (49). Using Eq. (46) and con-
sidering E—+ of order ntc', one finds that the relative
size ftV p/p' is of order pteltt/rn'c', where Er is the size

of the electric fieM. This parameter also measures the
size of the e R terms relative to p', as long as X is of
order unity. Another parameter enters in when the g
terms are considered. Their size relative to the 0. K terms
is about AtJVEr/ntcEr. The approximation is expected
to apply, then, when the above two parameters are
small. For example, a deuteron hash=0. 7, q=25 and, if
it moves in laboratory fields Er 10' e—su, VEf/Ef 1

cm ', the first parameter is about 10 '7 and the second
about 10 ".The approximation would surely apply in
that case.
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Leading Divergences in Nonleptonic Decays*
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We show that the leading dive&gences in weak nonleptonic decays can be expressed in terms of time-
ordered products of o. commutators (to all orders in the semiweak coupling constant). We formulate non-
trivial criteria for the o commutators from which the leading divergencies in strangeness-changing non-
leptonic interactions can be shown to vanish in any order. The remaining divergences are then of the same
type as those in the radiative corrections.

I. INTRODUCTION

ECENTLY there has been much interest in the
higher-order weak interactions. The purpose of

these works has been to obtain either a finite theory' or
to accept the divergences as they are and show that the
higher-order corrections are negligible. " In the last
category two different points of view have been pro-
posed. Either one assumes that a finite cutoff can be
rationalized in some future theory, and one then esti-
mates' a small effective weak-interaction cutoff A. 2—8
BeV, or it is assumed that perturbation theory does not
make sense and shown that in some special models one
can deal with the exact theory. ' The unsatisfactory
status of the theory of weak interactions does hardly
allow us the luxury of taking a single point of view to the
exclusion of others. It is obvious, however, that the
problems encountered in the theory of weak interactions
requires an investigation of the structure of the theory
to all orders in order to be sure that the higher-order
corrections are small (this is true also in a 6nite theory).
Such a program is in general very complicated. It is the
purpose of this paper to point out that in strangeness-

* Work supported in part by the U. S. Atomic Energy Commis-
sion.
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changing nonleptonic decays it is possible to obtain a
rather simple result valid to all orders in the weak and
electromagnetic coupling constants.

We formulate algebraic criteria for 0. commutators
which are shown to lead to the following result: If these
criteria are satisfied, the leading divergences in strange-
ness-changing nonleptonic decays are absent to all
orders in the weak, electromagnetic, and strong interac-
tions. This result has previously been obtained by
Bouchiat, Iliopoulos, and Prentki4 in the lowest-order
weak interactions. Our criteria for the 0. commutators
are nontrivial. Recently Gell-Mann, Oakes, and Renner'
have proposed a model of SU(3)SSU(3) breaking,
which satisfies our criteria.

The remaining, nonleading divergences of the weak
interactions are of the same order of magnitude as the
radiative corrections to the strangeness-changing non-

leptonic decays. This result could have very great
theoretical interest since it implies that the weak and
the electromagnetic interactions have the same struc-
ture. It should be mentioned, however, that the radia-
tive corrections to strangeness-changing nonleptonic
decays are nonrenormalizable (in the conventional per-
turbation sense; see Ref. 3).

For the reader's convenience we have summarized our
results in the form of two theorems in Sec. V.

C. Bouchiat, J. Iliopoulos, and J. Prentki, Nuovo Cimento
56A, 1150 (1968).

5 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968).


