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factorized:

lim [(& —X,)(&s)-'T„,„(r,1, —X, 1)]

=q„.&~&(~,1,r)~„&»(~,1,r). (A3)

If we neglect the background term, the amplitude
T21,11(s,t) can be written as

Therefore, T» 11(s,t) is given by

T21,11($)f)= Q (1—Xr )+21 (f)1)r)yil (f)1)r)
+1

But asymptotically we know

d 1,—1~{()cc ~X~—1

—1,—1,(])~ ~X,—2

Therefore, we can neglect the second term in (A6).
Evaluating d211' "'($) from the expression given in

Ref. 1 we find

From the symmetry properties of the amplitudes
T&;;q(r, 1, —lt, 1) under space reflection, ' we deduce

and so

' "'($)— (cosh/)"'
1

V21 '(t, 1,r) = —y2 1' '(t)1)r),

qti&'&(1, 1,r) =q, ,&"&(1,1,r). (ASb)

T„,„(s,1)= —(+1S) P [&.,(1)—1]y„& &(1,1,r)
r=+1

'"&(1,1,r)(cosh&)""" ' (A7)

Further,

d211q'q ' ' '($) ~qq'd211 (5) ~

cosh&=
2[(m '+ m ')(m&q'+ ma')]'"

(ASc) along the forward direction.

(AS)
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A simple phenomenological model of nucleon resonances is presented in which a resonance state is assun~ed

to be a bound state of a point pseudoscalar particle and a point spin--, particle. Associated with each resonant
state is a nonlocal field operator which obeys generalized "Schrodinger" equations of motion. Assuming a
relativistic harmonic-oscillator approximation for the "potential, " a mass-spin relationship for members of
a Regge trajectory can be derived, i.e., mz =a+bj (the Regge formalism, however, is not employed here).
Using the field operators in a phenomenological (Lorentz-invariant) Lagrange function, the decays of mem-
bers of a Regge trajectory into a pion and a nucleon are calculated in a systematic way, with no more than
two unknown parameters per trajectory to be determined from experiment (usually only one is needed).
The resulting expressions for the partial decay widths are not an unreasonable approximation to experiment.
One interesting feature of this model is the Gaussian-like form factors that appear in the partial decay widths.
These form factors are a consequence of the nonlocal interaction assumed here; they appear naturally and
are not introduced ad hoc. Another interesting feature —and, at the same time, a check on the calculations-
is the fact that a good approximation to the 7fNN coupling constant can be derived, given the experimental
partial decay width I'(Air~2*(1688& ~ rX). The number obtained is g s s2/4r = 14.2.

I. INTRODUCTION

ECAUSE of the lack of a reliable dynamical theory
of the baryon resonance system, more phenomeno-

logical approaches have often been used in calculating

high-energy resonance reactions. One approach fre-

* A more elementary version of this model appears in a thesis
submitted by the author to the faculty of the graduate school of
the University of Minnesota in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy, 1966 (unpublished).

t Supported in part by the National Science Foundation.

quently used is the "isobar model, "' in which the decay
of one higher-energy level to another is described by an
effective vertex in which a baryon state is represented
by a Rarita-Schwinger field. ' At least one phenomeno-
logical coupling constant is used to characterize the
decay; if only one such parameter is necessary (as in

' See, e.g. , P. Carruthers, Phys. Rev. 152, 1345 (1966); J. G.
Rushbrooke, ibid. 143, 1345 (1966); D. M. Brudnoy, ibid. 145,
1229 (1966).

'W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941). For
an explicit representation of the wave functions, see Ref. 1.
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the case J ~ -,'+0), then it can be evaluated from the
experimental decay width. Information concerning
possible regularities in the system, if at all possible in
this approach, are numerical at best. 3 In addition,
vertex form factor terms ("barrier penetration factors")
can be introduced only in an ad hoc manner, and their
origin is thus unclear. '

The possible existence of systematics in the reson-
ance system can be discerned from present experimental
data, even though the quantum numbers and decay
widths of many of the excited levels presently identified
have not been solidly ascertained. Nevertheless, those
states belonging to the same Regge trajectory appear to
obey the relationship' m' ~ J, where m is the mass of
the state and J its spin; in addition, the slopes of the
lines for different trajectories are nearly equal (see
Fig. 1). This very simple relationship is reasonably
satisfied for resonance energies up to about 3.5 BeV, and
already speculation has been made concerning higher-
energy regions. 5

Although a "true" understanding of the resonance
system may well turn out to be dependent on highly
sophisticated mathematical machinery and, perhaps,
even on physical principles now unknown to us, it is
tempting to conjecture that some of the salient features
might be described by a simple phenomenological model.
It is such a model that is proposed in this paper.

In a sense the model is a reversion to old-fashioned
methods and ideas. As explained in Sec. II, each state is
assumed to be a composite of a point pion and a point
spin-~ nucleon bound in a state of total angular mo-
mentum J. A nonlocal field operator associated with
each state is constructed, similar to the 6eld operator
proposed many years ago by Yukawa, ' to describe the
nucleon as a particle with structure. Equations of
motion are imposed on each field projected onto the
physical state which it represents. In Sec. III appro-
priate approximations are made and the mass relation-
ship mg' ~J emerges. In Sec. IV and in Sec. V mani-
festly covariant Lagrange functions are constucted to
describe the coupling of "families" of states (Regge
trajectories) to the nucleon and pion. From these
Lagrange functions, the partial decay widths of a
family of states decaying into pion and nucleon are
calculated. In Sec. IV, it is assumed that the nucleon
itself is a member of the resonance system; in Sec. V,
it is assumed that it is an independent point particle.
In both calculations no more than two parameters (and
usually only one parameter) are needed to obtain the
partial widths for each family of states. It is interesting

'" P, Carruthers and J. Shapiro, Phys. Rev. 159, 1456 (1967).
' V. Barger and D. Cline, Phys. Rev. Letters 16, 913 (1966);

16, 1135 (1966);V. Barger, Rev. Mod. Phys. 40, 129 (1968).
' See V. Barger, Rev. Mod. Phys. 40, 129 (1968), especially

Sec. III.
' H. Yukawa, Phys. Rev. 77, 219 (1950); 77, 849 (1950). The

"relative time" function in Yukawa's field is a b function B(P r),
resulting from the Born reciprocity principle LM. Born, Nature
136, 952 (1935)].
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FIG. 1. mz' versus J for the three resonance families (Regge
trajectories) (j, 1=odd, i '„y= =—-1), (j, i=odd, i= ,', &=+1),-
and (j, i=even, i=-,', y=+1). The spin and parity assignments
are the same as those of V. Barger and D. Cline, Ref. 4.

that both calculations give quite similar results, in
reasonable agreement with experiment (see Tables
II—VII). As an additional check on the calculations
of Sec. IV, the conventional xEE coupling constant
can be derived to good approximation (g ~~'/4tr
=14.2) given the experimental partial decay width of

Arty*(1688) ~ 7rftf

II. GENERAL THEORY

The central assumption of this model is that an ex-
cited nucleon state can be described as a bound state
of a point pseudoscalar particle and a point spin- —',

particle of positive parity. These latter need not be
"real" physical particles, such as the 138-MeV pion
or the 938-MeV nucleon, and indeed for the purposes of
the calculations presented in this paper, the masses of
these constituent particles need not be known.

Each resonance state is characterized at least by the
following quantities: (a) a rest mass mg, (b) a spin and
s component of spin j and m, , respectively; (c) isotopic
spin i, which can be either —,

' or —,'; (d) an intrinsic parity
or, equivalently, the relative orbital angular momentum
of the core particles in the resonance rest system. This
latter parameter we denote by l, where l= j—-,'or
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l= j+2 depending on the intrinsic parity of the state
p; = -(-1)'.

The states are created (annihilated) by the particle
operators A, ,h t(p) (Aj, z, (p)) and the antiparticle
operators Bj,.i, t(p) (&jm, i,a(p)) which obey the con-
ventional anticommutation relations

(~ -;i'-(P),~'-;1' - (P'))
(+jm ilia(P) &le'mj'l'4'a'(P ) )

= (jl&-;1'-(p),flj -; 1 ' - (p') }
=(~ -; '1-(p),fl,'-; 1'-'(p'))=o,

(-4- -(p),jl'-; '-'(p')~
= {»-;1'-(P)A -; 1 ' -'(P'))
= (Ejl/ms) 8,,'8, , l'zlz h..b;,'zz'&'j(p p'—)

The subscript o. is a collective label for all other quan-
tum numbers not mentioned above but which might be
needed to characterize a resonance state. Eg is the
resonance energy and m& its rest mass.

Associated with each resonance is a Geld operator, a
function of the space-time coordinates of the con-
stituent point particles, which describes the internal
motion of the latter as well as the free-particle motion
of the particle as a whole. ' The free-particle motion is
described by a plane wave e'" x of four-momentum P,
at the generalized "center of mass"

mo(xo) +m1/2(xi/2)
X„=——

m0+mi/2

Here, mo and m~/2 are the masses of the core pseudo-
scalar and spin--', particles, respectively, and (xo)„and
(xl/2)z& their respective space-time coordinates. The in-

ternal motion is represented by a function dependent on
the generalized "relative coordinates" r„=—(xi/2) „—(xo) s.
Ke will refer to this operator as a "wave function" or
a "wave operator. "

The wave operator may be written

Al'-(X/) =—Z d'P ~(P'+m~') e(Po)
mi

Xfe '" «f m;~ia(P&Z') jfjmjlia(P)

+antiparticle], (2)
where 0(po) is the step function

8(po) =—1 for P0) 0
—=0 for Po(0

and f;,l; (P,r) is a func. tion containing the details of
the internal behavior. A linear sum of these operators
is constructed and associated with all particles in the
resonance spectra

+(X,r) =—Q l&jl;.P,z; (X,r),

where the b, ); are constants.
Two equations of motion are imposed on %(x,r)

projected onto an arbitrary state of the system. The

first is the free-particle Dirac equation

/ 8
I
z„—aa)io~(a(rr)~( jazz;p &=o.

& "ax„

This equation simply states that we have chosen
double the needed two components to describe spin -,';
hence, the additional two are really superQuous. The
second, and Inore important, equation is~

P(a'/cjX')+(8'/ar')g(ol e(X&r)
l
jm&liu& p/1)

= v(.)(ole(x,.) I jm, iz. ; p.), (s)

where V(r) is a Lorentz-invariant function of the rela-
tive coordinates only, i.e., of r only. Using Eq. (2) in
the above gives

L '+&' (~'/~ —o')jf -, '-(P )
= V(r') f,„,l, (P jl,r). (6)

It will now be shown that in order to satisfy the above
requirements, f;,l; may b. e written in the following
form:

f,„j„(p/l,r) =p C(l,'j; m, zr-o)N—'(Pjl)

xv, , .(L; (P.) .)Il- (P.)'l
Xl 1'-(I & '(P~) rl,L '4.(P~) ~.)

4zr2'(l!)2 '"
x . (7)

(2l+ l)!
Here C(ls j;m, —a. o) are Clebsch-Gordan coefficients';
24&'&(pjl) is the Dirac four-spinor

1 /(mjl+Eji)xi j)
2 "(P~)=

)2m/i(E/1+m/i))'/2 k ir p/zX& i j
where e are the 2&(2 Pauli matrices, and X'~ the two-
component Pauli spinors; L '„„(P/4) is the Lorentz boost
transformation, which takes the vector (P jl)„ into its
rest frame,

B m

L ' .(p/1)=& .+
m/l(E/2+ma)

L-'. (P.) = —L-' -(P.) ='(P.)-/ .,

L,4(P,) =E-,/m~. ,

Vz,„.. .(L '(P jl) r) are the sPherical harmonics' of order
l and argument

L-'..(P.) '.
L'(P )r=

LL 'j, (P/1) r,L '2„(P/z) r„]"'—
This equation for most intents and purposes is equivalent to

the generalized Schrodinger equation (2mp) '8'/Bxp'+(2ml/2)
Xa'/»& /2, which is P(2&&zo+»zz&2) J 'a'/ax +C(z&zo+»zz /2!/
201 pHsl/2]B /8r . Using this latter equation would only change
the definition of the parameter P in Eq. (21); however, it would
introduce another parameter into Eq. (27).

8 M. E. Rose, E/ementury Theory of Angular 3fomerltNns (John
Wiley R Sons, Inc. , New York, 1957).
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which is similar in form to a nonrelativistic wave func-
tion associated with a particle of spin —, coupled to
angular momentum / to form a state of spin j in a
potential field. ' In our case, l assumes a comparable
physical meaning in this limit, as required. f;,&, (pz,r).
can be written in a different, perhaps more familiar, way,

fjm(&(p(p )i, r) = r~, . r«u~, ...«(~() (p&i)

Xh)'-Ll L '(p~). rl, L '4.(p~).r.], (7')

where u, ... ,
( () (pz) is a Rarita-Schwinger-type

tensor spinor, ' i.e.,

u-i --((-"(p~)=
m1, ~ ~ -,m), a

C(112; mi m2 —mi)

XC(l—11l; m( im( mi i)—
XC(t-', j; miom, )u(')(pa)

1 (p )E (m4-mi)(p ). . .

(m( my) (p
(—) (g)

where C(n1 m+1;m„m„+i—m„) are Clebsch-Gordan
coeKcientss and e „( ")(pg) are four-dimensonal

and the function h, (, (I L '(p)i) r~,J 4„(p)4).r„) is an
i(nknown function of the two variables

~

L '(p)4) r~

=LL 'k„(p)4) r„L '„„(pr4) r„]'"and 1. '4„(p~) r„, which
is to be determined from U(r') in Eq. (6).

First, Eq. (7) satisfies the Dirac equation (Pz+m)4)
Xf;,~; (pii, r)=0, where p~= i—y„(p)4)„Second, both

~

L '(p~) r! and L '4„(pa) r„are manifest Lorentz-
invariants,

(p .r)2 1/2

I" '(('R) rl =(r'+-
ma'

(pI r)
1.—'4 (p)i) r = i—

SS+

ln the limit ~p)i~ —) 0, f, , i; becomes

P C(@j;m,— )u(.&(0)U, , .(') ~r~'
0

4~2)(i()2 1i2

X h;,.(Iris ),
(21+1)!

spherical vectors' defined by
p&(tn~)~..„(-&(0)=

I

k 0 )'
1

g( ) ———
~0.

0
g(o) —0 7.1

g(—&)—

0-

where li+l2=l. )P, (, (X,r) is, thus, a scalar product of i
number of r 's with a nonpoint Rarita-Schwinger —type
field,

)P, $; (X,r) =r, r, g d'p 0(po)5(p'+ mg')

X [~ (p xu -(m() (p)

Xh;(;~(Lr'+ (p r) ~/mi4'] "~, ip r/m—r4)

XA, ,(' (p)+antiparticle],

where the spinor index has been excluded for conven-
ience. In this form it is not difficult to see that all the
fields )P, ~, (X,r) will have the same transformation pro-
perties under a proper I orentz transformation A."
The particle-annihilation operators, for example,
transform as"

U(h.)A, ,„.(p) U-'(X) =P A, , „.(Xp)D„,„, ( )*(R),
m7'

where U(A) is a unitary operator which acts on the
Hilbert space of physical states, and D, , "&(R) is the
representation of the signer rotation R for spin j.
Thus, the vth spinor component of a resonance field
operator transforms as

Equation (7a) is obtained from Eq. (8) by the use of the
equation sro

P U(,„,(r) U(, ,(i)C(til2l; mi m —mi)

(2li+ 1)(2lg+ 1)
C(l, t~l; 00) V(„(i)

4ir (2l+ 1)
and"

(2ii)'(2i2) (i )'
C(tit2l; 00) =

(2i)' (ii')'(i2 )'

U(A)t)P;(,.(X,r)].U '(A)=Q r, r., O'P .b(P'+my') (0P )0(u, .,( ()(P). ...
'rnj

Xh, i; (Lr'+(p r)'/mr4']'(', ip r/m~)e —'i' pA;; (,'(hp)D, , ")*(R)+antiparticlei
I

=Q r, r, d4(Ap)B((Ap)'+m~')e((Ap)0)Lu, ... , ("&)(A. 'Ap)„

Xh;(;~(DAr)'+(Ap Ar)'/mI4']'(' iAp Ar/mg)e '4—& 4x p A, '4; (1ip')D '(')*(R)+antiparticle].

9 Ref. 8, Chap. IX.
"Ref. 8, Chap. IV, Eq. (4.32)."A. Messiah, Quantum Mechanics (John Wiley Bz Sons, Inc. , New York, 1962), Vol. II, Appendix C.
"The arguments used here are those of S. Weinberg, Phys. Rev. 133, B1318 (1964); see especially Sec. VIII.
"See, e.g. , S. Gasiorowicz, Elementary Particle Physics (John Wiley 8z Sons, Inc. , New York, 1966).
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We put AP—=P', and note that L(h. 'P') =3 'L(p')8, where I (A 'p') and L(p') are the boost Lorentz transforma-
tions of their respective arguments. Hence,

e i"~&(h.—'P') =L. (A.
—'P') e ™l(0)=h..—'L.,(P')8,.e. i"'(0)=h.—' .L.p(P') D„ i'&(8) e, '""'

where e & "&(p) is the spherical four vector defined above. '" Hence"'

I- - -i'-"(~ 'p'). =~ '- ~ ~ '-i.lL.,(P') L-i, i(P')D.,""&(~ ')D""'"(L(P'))
pl) ' ' ' iP li&

C(112; &ii &ig
—&ii)

and"

&&C(l—11';~i-i& i
—~i—i)C(!2j~ ~«')ii. "(0)e,i""(0) e, &'"' "' "(0)D-'i+""'(@

2 D-,-,' "&*(~)D-;.r+" "'(~)= b-; .i+"
ml'

Here D&'~'&(il) is a representation of the Lorentz transformation for spin -', . Thus,

U(A) (P,i;.(X,r))„U—'(A) =P r., r.,A '..., . .A
—'...,

—D„,~'"&(i1-') d'p b(p'+mii')0(PO)
mj

X[I., i' »(p),h, i, (I (Ar)'+(p Ar/m&i)']'", ip hr/mr—i)e '." "xA, ,i; (p')

=D„.&'~'&(4 ')(&&!,i; (AX,Ar)), .

Hence also,

U(h) +(X,r) U '(A) = D&'~'& (A
—') +(AX,Ar) . —

Note that under the parity transformation I', defined by

I'
I
jrm xiii' p&i) =i&i'Ijm tiki p&i')

the field transforms as

UP') Ai'-(Xr) U '0') = ~~( 1) 'v 4'i'-(i.—X,i.r),
where (i~x) = (—1)'4+'x and»r is the intrinsic
parity of the state. The latter, however, is —(—1)', so
that all fields transform alike under parity even though
the states themselves do not.

As a result of these transformation properties, the
coupling of two nucleon resonances to another particle
can be described by a Lagrange function similar to the
one that describes the coupling of two spin-~ particles
to that other particle. For example, the coupling of two
spin--', particles to a pseudoscalar is written gi~,gi~2y~

Xfi]ihip,

t'ai)2 being the spin--', fields; hence, the coupling
of spin j to spin j and pseudoscalar is written g'I'p lifo,
4 being the resonance operator. In this latter example,
j'+—', amplitudes are needed to describe the coupling
(j &~ j, say), assuming parity is conserved. These
terms emerge automatically from the expression
4y5%'@0. If, in addition, the functions h, ~, are known,
then there is only one unknown over-all parameter, and
not j'+~ parameters, to be determined. The resulting
expressions are not only more easily calculated, but
they are also manifestly I orentz-covariant. In this
paper we shall be concerned only with j--,'-0 coupling
of nonstrange particles, so that in addition to the above-

"This last equality can be found, e.g. , in Ref. 8, Chap. IV,
p. 64.

"Ref. 8, p. 58.
"Ref. 8 p. 59.

+antiparticle j

mentioned I.agrange function, we may also write

+i/i)gfo with P the resonance field, and &&!'i~& the spin--,'
point field. These matters are discussed in detail in
Secs. IV and V.

Before concluding this section, we remark that the
states are normalized so that there are E/(2ir)'m par-
ticles per unit volume, i.e.,

p X O'X

O'X dr(jm, lan,'pI +t(X,r)%(X,r) Ijm, liei; p)

and, thus,
— 2'(l!)' --'

(2l+1)!

III. HARMONIC-OSCILLATOR APPROXIMATION

Equation (6) can be written

m&i'+ v,'— Fi,(r')
I
r'I 'h, i, (I r' I,r4')

~~0

where r „'=L '„„(pri) r„. We attempt a solution to this
equation by assuming a four-dimensional harmonic-
oscillator approximation for V(r"), V(r") = —V,+Vir"
(Vo) 0). Writing h, i; ( I

r' I,r4') —=R( I
r'

I )T(ro'), we
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where the integer nt, , n& ~&0, is contained in the solution"

=constI'/, (r') Ir'I '+(Ir' I)T'(rp')

mg'+ Vp— +Usurp"
02

where H„,((2v)'/'ro') is the Hermite polynomiaP' of
order n, T.he constants in Eq. (12) have been chosen so
that (T,(rp')) are orthonormal, "i.e. ,

The first of these equations is the familiar three-
dimensional harmonic-oscillator equation, '~ from which
we obtain'~

Tnt*(&o )Tn~(ro')«0 ~n~o~ ~

The formula obtained for the resonance mass spectra,

const= I 2n, +t——,'$(4v), 4v=—2+Vq (10) m z' = —Vo+ 4v $2n, r/, +t —1$, — (13)

where the integer n, is the "principal quantum number"
contained in the radial solution'~

Here I'(n, +t+-', ) is the gamma function, "

is the associated Laguerre polynomial" of order (n,, 1)—
(hence e, ~& 1), and ~F~(—m,+1;t+ oo; 2v

I

r'
I
') is the con-

Quent hypergeometric function. "The constant factors
in Eq. (11) have been chosen so that ( I

r'
I %&„,( I

r'
I )}

are orthonormal, "i.e.,

relating the mass squared of a particle to its spin, dis-

plays the manifold degeneracy of the harmonic-oscilla-
tor states, i.e., those states for which (2n, —n~+t —1)
= const are all degenerate. We wish to remove as much
of this degeneracy as possible and toward this aim we
will make the following arguments.

First, we ask the question whether or not the nucleon
itself is a member of the resonance spectra. If it is, and
specifically if it is the ground state of the system, then
it is represented by that field operator of spin 2, isospin

~, and parameter /= 1, the latter resulting from parity
P„„,~,.„=—(—1)'=1. Since it is the ground state, we

may assign it the lowest possible principal quantum
numbers, n, =1 and r/, =0. From Eq. (13) the choice
n, = 1 is clear, but not so for the choice e&= 0. Neverthe-
less, we make this assumption and later we shall give
other arguments in support of this choice (see dis-
cussion at the end of Sec. IV). If, on the other hand, the
nucleon is not a member of the resonance spectra, but
an independent particle, we shall represent it by the
field operator"

XL u&"&(p)e 'v'~A (p)+antiparticle),

From the second equation in Eq. (9), the one-
dimensional harmonic-oscillator equation"

I
—mg' —Vp+ (2n,+t——,')4v+(oj'//ojrp )

—Vgrp" jT(rp') = 0,
we obtain"

(2n,+t——,') (4v) —m ~' —Up ——(n,+-', ) (4v),

"See, e.g. , A. de-Shalit and I. Talmi, Nuclear Shell Theory
(Academic Press Inc. , New York, 1963), p. 40."I.N. Sneddon, Special Functions of Mathematical Physics
and Chemistry (Oliver and Boyd, London, 1961).

"Ref. 18, Sec. 44.
0Ref 18, Sec 11

"Ref. 18, Sec. 40.

which is the conventional point-particle field for spin —,.
There is no a priori way of determining which view-

point is preferable. Therefore calculations of, say, decay
widths based on both will be presented. in this paper.
In discussing two-body decays, we will limit ourselves
to the case of resonance interacting with nucleon and
pion, i.e., excited state denoted by quantum numbers

(j, m, , l, i, n„n&, n ) decaying into point pion and (1)
theground state, of quantum numbers (p ml/o

1, 0, u') from the one point of view, or (2) a point
nucleon, from the other viewpoint.

The second case is discussed in Sec. V; the former is
discussed in this and the following sections. Thus, con-
sider a pion impinging on the ground state, exciting it

"Ref. 13, Chap. 2.
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TABLE I. Nucleon-resonance table, from Ref. 33.

+
2
7+

~+(~)

V+(')
3—
2

V (')
'2' (?)

~+
5+
2

1+
2
1—
2
5—
2
1—
2

N2 g
(MeV)

1236
1950
2420
2850
3230

1525
2200
2650
3030

938
1690

1470
1550
1680
1710
1640

(SeV)2

1.53
3.80
5.86
8.12

10.4

2.33

7.02
9.18

0.88
2.86

2.16
2.4
2.82
2.92
2.69

into a (j, m, , l, i, n„nt, , a') level In th. is process no less
than (l—1) units of angular momentum are introduced
into the nucleon system by the pion. Neglecting the
recoil of the more massive excited state, " the operator
connecting the nucleon states connects states contain-
ing (2n,+l—2) three-dimensional enharmonic-oscillator
quanta and one three-dimensional;harmonic-oscillator
quantum. Thus, if the lowest-order term in ~p ~

is to
contribute to the decay width, then l—1&~2n,+l—3,
or n, &~1. Thus n, =1.

As regards n&, the "time principal quantum number, "
we may argue that, in the same limit, it must be equal
to the value of the ground-state quantum number. The
matrix element in the decay amplitude, to lowest
order, contains 1'T„,*(ro)To(ro)dro, which, by the
orthonormality condition, gives 6,0.

The above arguments, of course, are not compelling
proofs; they are, nonetheless, some justification for
restricting the states to (n„n,) = (1,0). With this restric-
tion Eq. (13) then becomes

m g' ———Vo+4v(l+ 1) . (13')

We de6ne a "family'"4 of states to be those of equal
parity, equal isospin, and equal "p parity". " This
latter quantity distinquishes between states whose 1

and 2 angular-momentum vectors couple antiparallel
or parallel; the former are defined to have positive y
parity, the latter negative p parity. " If we wish to
consider the mass spectra for a particular family of

"See the Appendix for a more detailed treatment of these
arguments.

'4 A "family of states" is the same as a Regge trajectory. In
our formalism, however, there are no "trajectories, " only states;
hence, we prefer the name "families. ""P.Carruthers, Ref. 1, and Ref. 3. The convention of the first
paper was changed in the second; that of the later paper is
adapted here.

states, we must remove the degeneracies remaining in

Eq. (13') due to the spin-, isospin-, and parity-
independent choice made for V(r'-').

We assume that the following are small perturbation
terms and are added to V(r'):

where II, and II; are projection operators for spin and
isospin, respectively, and P is the parity operator.
Specifically,

II; (+g(2
——(l+1+2L S)/(2l+1),

11,=) g)2= (l—2L s)/(21+1),
&=3/2 3( ' + ) ~

Il,=y(2= —(1—21' T),

where L is the angular-momentum operator, S the spin

operator, T the isospin--,' and I the isospin-1 operators,
respectively. The simplest choice for V;; is to take all

equal to constants, thereby leaving the slopes of the
mz'~ j lines equal for all families. This is only ap-
proximately correct. For the (8=+1, i= —',, 7= —1)
family (see Table I), 4m= 113.5X10' MeV' and Vo

——74
&&104 MeV' for the (P= —1, i= ,', 7=+1)-family,
4v= 113.5X10 MeV and V0=88X10 MeV; how-

ever, for the (8=+1,i 2, &==+1) family, 4v=98&&10'
MeV and V0=108X10 MeV'. A term 2vbr may be
added to the above function; b is calculated to be
—15 5X104 MeV'.

Apart from the levels included in the above dis-

cussion, there are other energies at which xÃ partial-
wave amplitudes become purely imaginary, suggesting
the existence of other resonance levels (see Table I).
It is not clear, however, if or how these possible levels
can be interpreted within the framework of this model.
For those states whose spin, parity, isospin, and p parity
are identical to those already given, it might be con-
jectured that their principal quantum numbers are
different from those assigned, i.e., different from

(n„n&)=(1,0). We may speculate that there are, say,
(n„n,)= (2,1) levels, whose mass squared is, thus,
(4v) MeV' above those of the (n„n,)=(1,0) family.
Taking 4v=113.5X10 MeV' and the ground state,
m~'=88X10' MeV' this new P~i level has mR=1425
MeV.

IV. DECAY OF AN EXCITED STATE INTO
PION AND NUCLEON

In general, the coupling of two nucleon states to a
pion may be represented by the Lagrange density
function

Z(X,r) = 4(X,r)7,+(X~,r)p(X.)+H c , (14)..

where 4'(X,r) is the resonance 6eld operator at center-
of-mass point X, P(X~,r) the resonance 6eld operator
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at center-of-mass point X/v, and it(X ) the pseudo-
scalar point pion operator'6 at point X . Here

X/1/
——X+(m. /m/1/+ m. ) (X// —X.),

X.=X—(m/1/m ~+m. ) (X/1/ —X.),

X/1/ —X =pr,

where P is a constant depending on the masses of the
nucleon and pion, ns& and ns, respectively. The matrix
p5 is inserted in order to conserve parity, since the two
resonance fields transform alike under parity (see Sec.
II).

Specifically, if we are interested in the coupling of a
family of states to a nucleon and a pion, we write

M, „,=g—(j m, lip; p/2 I
dXdr 1T/(X, r)youp(X/r, r)

Xy(X.)l-;m,, 1-,'+;p lo; p.), (1S)

where the coupling parameter g is assumed to be the
same for all members of the same family; p& is the
resonance three momentum, p~ and p the nucleon and
pion three momentum, respectively.

Using Eqs. (2) and (7) in the above, we obtain

M, ,»=g(2')'0' '(p/2 —
p/v

—p ) p C(l,oj; m, oo)u—&'&(p )/y2Co(1 22m,* o'o—')/4&" &(p&)F„(p/2, P&, P ), (16)

where

F„.=— d4r Y&. . .*(1. (Pz) r)IL '(p/2) ri "h;/, ~*(IL '(p/2) rI,L '4„(peal) r„)e'e"""

x Y, ,„„...(L,
—

'(P/1) r) IL-'(P/1/) rlh;1;+(I L—
'(P&) rl, I 4, (P&). r). (17)

F„.is, in a sense, a "vertex form factor. " In Eq. (17) we have defined the four-vector

p rel— (P/r)
m/r+mr

BSQ

(P-)'
m~+ mr

In the center-of-momentum system, i.e., p&=0, the vector p"' becomes p"'=p&= —p
—=p. In the harmonic-

oscillator approximation, restricting the states to those with (n„n,)= (1,0), F; becomes

F...=N/ d'rY/ .*(r)lrl'e "~'~'e """e'»'Yi „2;(L '(p) r)IL '(p) rle "~L "»."~'e "'" "' &'e e"""4

where
4 t'2(2v) "+"2"il /) '"
2r k 3(21,+1)!

(17')

t 3 )1/2
F...=N

l
l—

I g C(1ll, ; ml/2 —o' m, /r —m+l/—2)Co(11,1; 00)Yi,~, mr»+ *(P)
'&4~)

2/p rel 2- /ir )1/2/m ) i 2l/g&~—
Xexp —P'

Sv E Pil (2v~ (Po~ (2v)" ""'+

m/lr X' m/1///PO" ')
x — 1— (~'—ll')+ —

I I

—(4 )"'(r"+') '
p, n po E po &

/3 1/2

p C(1/l, ; ml/2 a' m, —o —ml/2+&')C(1—&1; 00) Yim; e mr/2+, e *—(P—)
'E4~

Xexpl —p (2m/' i//S)v( p"o' /p)o']&''ii, ,1(1S)
where we have dined

P~lpl Po"'
g- G=1

(Sv)'/' po
and

The calculation of I',. is straightforward but lengthy, and the details are given in the Appendix. Here we cite
the result I Eq. (A12)$:

l'-I i =—Zl, r '+ e " J/(/2/0I pl r)dr „

2'Ref. I3 Chap. 1.



DAVI D M. BRUDNOY

jt(kr) being the spherical Bessel function of order /. 22 Using this result in Eq. (16), we obtain

1 )'('( 1 )'/2 mN'(p "')'
~-;-"=~(2-)'~"(p.-p p-—)~, —

I I exp —P'
I I II I

«2/'+ 1)
42r/ (2mN(EN+mN)/ - Sv & po

XC(/, ',j;—m,—ml/2 ml/2) Vl;, r/2 (p) 2 LC(1/, /; 00)j X(-',/;j; 212, 1//;)8 &1,.l, (19)

where X(—,/, j; 212; 1//, ) is the 9-j symbol. "This result can be obtained from the formula'

23
' (0)you'" (p) =

I 1&I (42r)'(2I 2mN(mN+EN) j '('C(122; &r
o'—o') V.l, e ,*(p),

and from Eq. (11.31) of Ref. 8. Now"

P LC(1/, /; 00)]2X(—', /, j; —', 1—',; 1//~) = 1/6(2/~+ 1)

Q I
C(1/ / 00)]'X(-2,/, j; -', 1-', ; 1//, )(r"+')ll ——

1/2 'l;—1 l,—1 —zei x e
X2

6(2/~+ 1) E42r (2v) &'") & "+'&

1 ) 1/2 21;—lxl(—1~—e

(*'—/'),
6(2/+1) 4&r(' (2v) &'"&"'+'&

2=t' —2

/r+ 2

( 1 1(2 21(—lxl(—lg—z2

S...(x).
6(2/;+ 1) E42r (2v) &'/'& "'+'&

These equations can be obtained by using Eq. (A10) of the Appendix.
Thus we arrive at the relatively simple result for the decay amplitude,

(If~( 1(e=g(22r) 0 '(P(2 PN P )-Vle252mN(mN+EN) j ' IpIC(/, —'
j2; m, ml»—ml(2)V1 r('2, ('p—)

N2 p rel 2-2ll—1X(~ lg—e mN mN) 1 mN Po"'&
p —p — — 1— I("——;/,)+-" I+&,';(x) (2o)

p (2v) &1/2) &1(+3) po po / &2 po po

The partial decay width for the two-body decay is"

where

I'z, '=
(22r)3

m/7

I ~-,- ( I
'd'PN&'P-

2P ePNe 2j+1 er/rel(2

22(;/ I (x2)1;-1&—2re mN2 p rely 2-
—exp —P2 —

I
I&z "(x)I',

m/2(mN+po) (2/, +1) (po/mN)' — 4. po ('-

mN x2 mN porc&
rl, &()(x)—= — 1— — (x' —-', /, )+—— — +S(1;(x)

po & po po

(21)

and we have redefined g to include constant factors not
explicitly appearing in Eq. (21).

The decay width Eq. (21) contains a number of
interesting features. For decreasingly small IyI, I'1,'
goes as IyI21'+' as it should, " but for increasing IpI
it need not increase in spite of the rapidly increasing

"Ref. 18, Chap. IV.
"Ref. 18, Chap. XI.
~9 Cx. K aHen, Ii/ementary Particle Ph ysics (Addison-wesley

Publishing Co., Inc. , Reading, Mass. , 1964), p. 109.
'0 Ref. 8, Chap. XI.
'Ref. 13, Chap. 9.

'~ Ref. 11,Vol. I, Chap. X,

factors IpI ox21' 'Irf(,. &')(x) I'. The Gaussian e '*' and
the two factors (m/po)'2"'/, !/(2/, +1)!decrease in such
a way that the net effect on I'1,.', for appropriate p, is a
relatively slow decrease (see Tables II—IV).

The constant P is determined from the experimental
data, . We choose the first two members of the (j, /= odd,
i=2, y= —1) family, the A3/2(1240) and 63(2(1920)
resonances. Inserting the proper kinematic and spin
factors into Eq. (21), we obtain

I' 3/2(P2) 3.41 (0.025P2 —0.98$
&

(q(p2) — g1.025(2I
I

(22)
p 2/2(p2) (P2)2 (0.226P2 —2.6'/ (
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TABLE II. Partial-decay widths P(6-+ 7rN) for the (j, i=odd, s s=s, 'r= —1) family, assuming the
nucleon is the ground state of the resonance system.

jP (MeV)

1236

1920

P&,&', Eq. (21) (MeV)
P2=1.09 P~=2.4

120' 120

90 90

120'

124"
80k
85~

124'

146i
103k

125.1g

70i
801

120

FI;&, experimental (MeV)
Data' Averageb

'2'+(P) 2850

3230 1.3

20

3.5

0.55

13n

35n
45@

11o
3 8r

1.3'
0.11'

32o
17'

34

The experimental partial widths as listed in Ref. 33. This includes,
essentially, the work of the last five years. Whenever the spin assignment
of a level is not, certain, it is usually the quantity (j+$)(I'el/I') that is given
by experiment, and not (I;I/I'). Thus the partial widths listed here are cal-
culated from experiment by assuming our spin-parity assignments.

b Reference 33.
e g2/4m. ( p2 I.pp 43.
d g~/4~ ( P& 2,4 =50.
e M. G. Olsson, Phys. Rev. Letters 14, 118 (1965).
& G. Gidal, A. Kernan, and S. Kim, Phys. Rev. 141, 1261 (1966).I C. Lovelace, in Proceedings of the Heidelberg International Conference on

Elementary Particles, edited by H. Filthuth (Wiley-Interscience, Inc.. New
York, 1968).

h G. Holder and G. Ebel, Nucl. Phys. 48, 470 (1963).
I T. J. Devlin, J. Solomon, and G. Bertsch, Phys. Rev. Letters 14, 1031

(1965).
'

j P. J.Duke, D. P. Jones, M. A. R. Kemp, P. G. Murphy, J.D. Prentice,
J. J. Thresher, H. H. Atkinson, C. R. Cox, and K. S. Heard, Phys. Rev.
Letters 15, 468 (1965).

& A. Yokosawa, S. Suwa, R. E. Hill, R. J. Esterling, and N. E. Booth,
Phys. Rev. Letters 16, 714 (1966).

I P. Bareyre, C. Bricman, and G. Villet, Phys. Rev. 165, 1730 (1968).
m A. N. Diddens, E. W. Jenkins, T. F. Kycia, and K. F. Riley, Phys.

Rev. Letters 10, 262 (1963).
n A. Citron, W. Galbraith, T. F. Kycia, B. A. Leontic, R. H. Phillips,

A. Rousset, and P. H, Sharp, Phys. Rev. 144, 1011 (1966).
o V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966).
& V. Barger and D. Cline, Phys. Rev. 155, 1792 (1967).
& F. N. Dikmen, Phys. Rev. Letters 18, 798 (1967).' S.W. Kormanyos, A. D. Krisch, J. R. O'Fallon, K. Ruddick, and L. G.

Ratner, Phys. Rev. 164, 1661 (1967).

The ratio I'i'~'/I's ~'= as is taken from experiment"; the
four values of P' which will satisfy 6IQP) =-,'are P'= 1.09,
P'=2.4, and two solutions P'=38.8. Only the first two
values will give reasonable results because P'=38.8
in the exponential causes Fl,.' to decrease much too
rapidly (for Ps =38.779531 such that (R(P') = ss, I"(1240)/
I'(2420) =10'r). Tables II—IV lists the partial decay
widths for those families of resonances for which we

have at least two possible members. It is seen that for
both values of P', Eq. (21) is a reasonably accurate
approximation to the experimental partial widths. It is
interesting to note that had the choice et= 1 been made
instead of n&= 0, the resulting expression for the decay
width would have been somewhat similar to Eq. (21)
for the low-lying resonances, except for an additional
over-all factor of (m/ps)'. The resulting expression

TABLE III. Partial-decay widths P (N* —+ sN) for the (j, I= even, i=-'„y = +1) family,
assuming the nucleon is the ground state of the resonance system.

jp (MeV)

1518

I'4, Eq. (21) (MeV)
P2=1.08 P2=2.4

63c 63 67e
66C

6pe 65' 63

Ft, experimental (MeV)
Data+ Aver ageb

7—
2 2190

2650

3030

39

3.5 1.7

26i
17m

2.4l
0 8m

661

32"
18

90'

281

2.8'

75

27

2.5

a The experimental partial widths as listed in Ref. 33. This includes,
essentially, the work of the last five years. Whenever the spin assignment
of a level is not certain, it is usually the quantity (j+$)(I'ei/I') that is
given by experiment, and not (I' I/I'). Thus the partial widths listed here
are calculated from experiment by assuming our spin-parity assignments.

b Reference 33.
o g2/4~I p2-1.pp =160.

g~/4' I &2-s.4 =82.
& P. Bareyre, C. Bricman, and G. Villet, Phys. Rev. 165, 1730 (1968).
f C. Lovelace, in Proceedings of the Heidelberg International Conference

on Elementary Particles, edited by H. Filthuth (Wiley-Interscience Pub-
lishers, Inc. , New York, 1968).

& P. Bareyre. C. Bricman, A. V. Stirling, and G. Villet, Phys. Letters
18, 342 (1965); B. H. Brandsen, P. J. O'Donnell, and R. G. Moorhouse,
Phys. Rev. 139, B1566 (1955).

h A. N. Diddens, E. W. Jenkins, T. F. Kycia, and K. F. Riley, Phys. Rev
Letters 10, 262 {1963).

I A. Yokosawa, S. Suwa, R. E. Hill, R. J. Esterling, and N. E. Booth,
Phys. Rev. Letters 16, 714 (1966).

& A. Critron, W. Galbraith, T. F. Kycia, B. A. Leontic, R. H. Phillips,
A. Rousset, and P. H. Sharp, Phys. Rev. 144, 1101 {1966).

& V. Barger and M. Olsson, Phys. Rev. ISI, 1123 (1966).
& V. Barger and D. Cline, Phys. Rev. 155, 1792 (1967).
m F. N. Dikmen, Phys. Rev. Letters 18, 798 (1967).
& S. W. Kormanyos, A. D. Krisch, J.R. O'Fallon, K. Ruddick, and L. G.

Ratner, Phys. Rev. 164. 1661 (1967).

33A. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri, I.. Price, P. Soding, C. Wohl, M. Roos, and W. Willis, Rev. Mod.
Phys. 40, 77 (1968); see especially "Baryons Table, "p. 83.
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I'i;, Eq. (21) (MeV) I' t;, experimental (MeV)
l j (MeV) i y p' =1.09 p' =2.4 Dataa Averageb

$+ 938 & +
3 g+ 1688 i 85e 85d 124' 146f 70g 85

80h 103' 80
85j

a The experimental partial widths as listed in Ref. 33. This includes,
essentially, the work of the last five years. Whenever the spin assignment
of a level is not certain, it is usually the quantity (j+~s)(i'ei/I') that is
given by experiment, and not (i el/I"), Thus the partial widths listed here
are calculated from experiment by assuming our spin-parity assignments.

b Reference 33.
e g2/47r &82 z 09 —820
d g2/4)r !82=2 4 =250
e G. Holder and G. Ebel, Nucl. Phys. 48, 470 (1963).
f T. J. Devlin, J. Solomon, and G. Bertsch, Phys. Rev. Letters 14, 1031

(1965).
. g P. J. Duke, D. P. Jones, 'M. A. R. Kemp, P. G. Murphy, J. D. Prentice,

J. J. Thresher, H. H. Atkinson, C. R. Cox, and K. S. Heard, Phys. Rev.
Letters 15, 468 (1965).

h A. Yokosawa, S. Suwa, R.. E. Hill, R, J. Esterling, and N. E. Booth,
Phys. Rev. Letters 16, 714 (1966).

1 P. Bareyre, C. Bricman, and G. Villet, Phys. Rev. 165, 1730 (1968).
l C. Lovelace, in Proceedings of the Heidelberg International Conference on

Btementary Particles, edited by H. Filthuth (Wiley-Interscience, Inc. , New
York, 1968).

TABLE IV. Partial decay widths I'(N* —+ x-N) for the (j,
l = odd, i=-,', &=+1) family, assuming the nucleon is the ground
state of the resonance system.

g;.m. '/42r
I
p'=&. oo ——45.6, g;, ~.2/4&r

I
p~=2.4= 14.2 .

With the latter value of P2, P2=2.4, we have obtained
a good approximation of the xSX coupling constant
(gi. m. I l, =l, m&2=m~ gwivN) ~

Conversely, we could take the ~EX coupling con-
stant as given, and obtain a prediction for the experi-
mental value of F&,. 2'="'(1688).

Por the (j, &= odd, 2=-2'-, y=+1) family, for which the
nucleon is the first member, we have obtained the results
(see Table IV) g'/42rl p2=& pp

——820, g2/42r
I
p2 2.4 ——250,

gnonx~a'/42rl pn 2 op
——820/3=2'/3,

g. „» *"/42r
I p =2.4

——250/3=83.

These numbers are calculated from the experimental
partial decay width F(1688)=85 MeV. We formally
extend these results to the case of mES coupling by
putting t, = 1 in Eq. (23) and taking the limit m&2 —& m»&. .
In that limit we obtain

6t(p') = 7~2"(p')/Fo "(p')& for reasonable values of p',
will not permit a value of P2 for which (R(P2) ( 2. This
adds confidence in our original choice.

We may compare the expression obtained for the
partial decay width, Eq. (21), with that obtained from
an isobar-model calculation. This latter expression is'

g
' 2"(22!)2 E~aM~ IPI) "+

m„,
4&r (222+ 1)! m&2 m I

j=l'+2

where n= j——,
' and m is the mass of the-pion; the sub-

script (i.m. ) designates "isobar model". Especially
interesting is the case j= 1i—~. Putting I &,.

j=" 't"
= I';,„'=" '" we obtain

g. 2 g2 (222+ 1)! 22 4) .! ( g2

4&r 4&r (2t,+1)!2"(22!)2&l1&l'/m )
22 m~ pp

X e'p —O'
I

~& "(~)I' (23)
(po/mv)' 4v pp

V. DECAY OF AN EXCITED STATE INTO
PION AND POINT NUCLEON

We now consider the nucleon to be a point particle
represented by the field

+(x) =Q d'p 8(p2+m&22) e(po)
)n

XI u' &(p)A (p)e '"*+antiparticlej,

and the I agrange density function describing the cou-
pling J—

2
—0 can be written

Z(X,r) =%(X,r)tP(X~)g(X )+H.c. , (24)

where 4(X,r) is the resonance operator at the center-of-
mass point X, and &P(x~) the point pion operator at
point x; it is assumed that x~—x =~. In this case no
matrix p5 is needed for parity conservation because

+(X,r)~ y4+(2~, 2„r—).
The matrix element describing the decay of a family

of states into 7r and Ã, characterized by the parameter
g) is

&t' m ( m~
~-;-«~2=g(jm, l'2v; 1&p I +(X,r)&pl X+ r 41 X+ «X«I 2m&n 2+; 1&~10& 1&.)

m~+m ~ m~+m

=g(2&r) 46&4&(p&2 —p~ —p~) Q C(l;2j ) m, —o a)u'&(p&2)u&"'&2&(p&)F, (p22) p»p~), (25)

where

F,= d4rP~, ,„, .*(L '(p ) r—) I
L-'(p ) rl "h

& ~*(1L '(p&2) rI, I '4 (p&2) r„)e'v""

is the "form factor" expression. In this case the form factors are simply the Fourier transforms of the "wave
functions. " Again, we have defined

(p~). (p-). —
m~+m, m~+m,
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In the harmonic-oscilla, tor approximation in the center-of-momentum system (pz= 0),

F,= 1'~. . .*(r)
l rl 'Rtt, .*(l rl )e's'dr drsTe*(rs)e '"'"'"

This calculation is immeasurably simpler than the previous one. We easily obtain'4

(22(2p) l ~+3/222l~) 1) t/2

F,=l —
l (—1)'*' '" P dr I'&. . .*(r) lrl'e "~'~'i'j&([pl lrl)P'&~, *(r)F'&,*(p)e &&0"'&"'"

(2i + 1)!

(26)

Therefore, the partial-decay width is

g-' 2'"l, ! Ev+nz~—e l~l'""e (

4m- (2l,+1)! mg
flpI )s4

xl -
I lil, (27)

2p

where, again, g has been redeined to include all con-
stant factors not appearing explicitly in Eq. (27).
Similar to the previous calculation, I' t,.' goes as

l p l

"'+'
for small lpl, as it should, " and it does not increase
with increasing lpl (and 1,) because of the Gaussian
factor and the /, factor, 2"'l, !j(21~+1)!.Tables V—VII
give the numerical results.

We cannot use Eq. (27) to derive the ad% coupling
constant as we did previously by taking the limiting
case of mg —+ m~, because of our assumption here that
the nucleon does not belong to the resonance spectra.

VI. SUMMARY AND DISCUSSION

Because of the simplifying features of this model,
beginning from the central assumption that a reso-
nance state can be represented as a bound state of point
particles, together with the harmonic-oscillator approxi-
mation for the "potential, " a framework is provided in
which such physical quantities as mass spectra and
decay widths can be calculated in a systematic way. As
it turns out, in effect, it is unimportant to the calcula-
tion of the partial-decay width whether or not the

TABLE V. Partial-decay widths P(A ~ ~N) for the (j, i=odd,
i=-„&=—1) family, assuming the nucleon is a point particle
not belonging to the resonance system.

nucleon itself is a member of the bound-state spectra
(see Tables II—VII). The arguments in support of the
choice (n„n~) = (1,0), however, do depend on the
assumption that the nucleon is the ground state;
similar arguments are not given for the point-particle
assumption. As regards these "principal quantum num-

bers, " it has implicitly been assumed that the states
(n„m&)W(1,0) are superfluous states not co'rresponding

to physical resonance states, although we cannot dis-
count the possibility that they may well correspond

TABLE VI. Partial-decay widths I'(E*—+ 7!-X) for the (j,
i=even, i=2, p=+1) family, assuming the nucleon is a point
particle not belonging to the resonance system.

j'P

3—

' (p)
I 5 —

(2)

(Mev)

15&8

2180
2650
3030

Fi,-, Eq. (27)
{MeV)

63'
34
9

a g~/4~ =4.53.

to other subfamilies of states (see discussion at the end
of Sec. IV). These latter, however, are represented by
decay amplitudes whose lowest power of Ipl is not

l y l

' but rather
l p l

'+' or higher (see Appendix).
The results obtained for the physical decay widths

lend encouragement for the use of these methods, for
they predict a relatively slow decrease of F&,.& with in-

creasing energy. Whether this is a singular feature of the
harmonic-oscillator potential or is a feature of a'more
general set of relativistic potentials is not clear to us
at this time. Equally encouraging is the fact that a good

3+
2
7+

~2'+(~)

V+(~)
z 9+(p)

mg
(MeV) i
1236
1920
2420
2850
3230

a g2/4' =6.

'4 Ref. 18, Sec. 33, Eq. (32.15).

F&,~, Kq. (27)
(MeV)

120~

85
24
10
2.2

jp
1+
2
+

2

mg
(MeV)

938
1688

I'), , Eq. (27)
(Mev)

' g'/4m. = 18.7.

TABLE VII. Partial-decay widths F(E*~ 7i-X) for the (j,
i=odd, i=-'„y=+1) family, assuming the nucleon is a point
particle not belonging to the resonance system.
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approximation to the +ST coupling constant can be
derived from our equations in the limit ming

—+no~,
namely, g ~~'/4s. =14.2.
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APPENDIX

Derivation of Equation (18)

First, we derive an expression for IL '(p) rl Ft„,(I='(p) r) in terms of r and p. L 's„(p) r„can be written

L»(p) r„=r&+p&, p&—=p&Lp r—(m&+ps)rsj/m~(ms, +ps), where we have used the explicit representation of
the boost transformation as given in Sec. II. In general, we can write"

4s-(2/+ 1)!
IL-'(p)'I'Fi-, (L-'(p)') = 2 (—1)'-

I
C(L/ L l; mi—, mi —mz, )

esse ((2/ —2L+ 1)!(2L,+1)!

X lel' 'Fi-~,---.(p) lrl'F~, -.(') (A1)

where C(L/ —L l; mL, mi —mr, ) are Clebsch-Gordan coefficients, and p= p. Equation (Al) is derived by considering
the expansion of e'" "=e'~'e'" & (r'=r+9) into partial waves, multiplying by lkl 'Fi, (k) on both sides, inte-

grating over k, and then taking the limit
I
k

I
~ 0. The radial part of the vector p can be written

I el '-'=I
4 m~)

E,(p. r) is the Legendre polynomial of order s."It is straightforward to show that

(A2)

C (l—L)
2s+1 (/ —L).

i I( 1)-
(m~+ ps)rs&

sFt((s —l+L+1)/2; (s—/+L)/2' s+s I li I I
rI/(m~+Po)ro&')

X (A3)
I'((/ —L—s+ 1)/2)1'((/ —L —s)/2+ 1)I'(s+ s)

where I' is the gamma function" and sFt the hypergeometrc function" (which in the above is a polynomial of
order ts(l —I.—s) or ts(l L s—1), wh—iche—ver is integral). Hence,

4r(2l+1)!
IL '(p) rI'Fi, (X, '(p) r)=p p (—1)"' W( )iL')/ L;sl)C(s/ LX'; 0)

—0(COL, ; 00) —
I

J,s )t, )~', m), 'E(2L)!(2l—2I.)!)

XI I lrl C, &' &Cph'/; mimi —m~)F&, „(r)Fi;, , „(p), (A4a)
km /

where W(XLX / L; sl) is a Racah coeff—icient. "Equation (A4) is obtained by using'

4x
I'.(0 ') = Z F.-.*(p)F.-.('),

2$+ 1 ms

and

((2/t+ 1)(2/s+ 1)
Fi, i,(i)Fi,„„(*")=Q

I
C(/t/s)i; mi, mi, )C(/, /sh; 00)Fi, „„+„„(x)

4s-(2)~+1)

P C(abe; nP)C(edc; n+P y n P)C(bd f;—P y—n P) =L(2e+—1)—(2f+1)g "C(afc; n y n)W(abed; —ef) .

"M. Danos and L. C. Maximon, J. Math. Phys. 6, 766 (1965), Eq. (21).
'6 Ref. 18, Chap. III.

z Ref 18, Chap VI
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For the special case /= 1,

~

L '(P) rt Y1,(L, '(P) r) = P (—1)"'L3(41&.)j'"LW(&OV1; 01)C{01X';00)C(OOX; 00){)y)/m~)ro
)„'h', m, y

+8'(X1X'0; 01)C(OOX'; 00)C(01K; 00)
~

r~ —W(XO& '1; 11)C(11&I.'; 00)C(10K; 00)

X(~y)'~r~/m~(mx+po)jC(»'1; m& ml m1)Y1 „(&')Y1', —„(p)

(—1)"'(f1""'rp+fp""'~r~)C(»'1; m1m1 —m&)Y1 „(r)Yq.,„,„„(p). (A4b)
X, )&, ', m)&,

Also, we can write
&
—v)L (y) r& ~

—v tL p~(p) ~ e~] &
—vr ~

—2v(L p~(p) r~) ~
—vJrj &+vrp&&—2v(y r/m~)2

Hence F„becomes

F„=X P (—1)"'C(V.'1; mq m1 —
mq) Y&, , „(P) drdro Y1 „(r)(f1""'rp+f,""'~ r j)Y&,~, *(r)

X ~r['*t: '"~r~'1F1(—e,+1; i;+,', 2vtr-)'-)H„, ({2v)'"ro)e+v'e »o'"roe —'"~v' ~&' (A3)

where m&,.
—=m; —a and m1 =—m&~p

—o.', we have assumed that for the ground state (N„n,)= (1,0). S includes all
normalization constants.

The time integration is, thus,

where n=0 or 1.

(Po y'q'T„"'—= drpH„((2v)'"rp)e +&""'"exp —2v~
— rp

~

ro",
&m~ m 1

( 1 ) n+1

2 nr

k(2v)'")
dxpH„, (xo)e *""noe &n*o o&'xon,

where

With
(2v)'"ro= xp, a= pp/mz &

h= (2v)'~'y r/ m&,op '= pp "'/(2v)'~'

(summation from either 0 or 1 to n&)

H„,(xp) = Q h, &n&&xpr

~-0/1

y"+' -1 ) d y+"r„-=
k(2v)'") oi1r( dpor)

dX0e 'j'P' oe (

1 )"+ ni / d ) "+"1
hr&"

( p ---
~

-e 'vo'pin e '~vo'~'»e-v'dy
E(2v)'"I r=W1 E dpo') a

1 )n+I, gm nt ( d ) r+n

— P h„'"r
~
i —

[
e '~"»o'e lvo'&"—

4(2v)"') a w1 E dpo')

p(2v)'" ~
'

t po'n'
y mx'/'porn'q '

6, &"&/ /y/ /
jr/'(p r)'exl&/ ip y—r

/
exp —p'

&mN ) E p, ) 8vEP2

where we have put

Ne define

—= Z a.'"'lrl'(p ')'exp' ip y r
[ exp —p'

e 0 8. k p, )

((2v)1/2 ) s

n:a n
I (y
Em

SZg
~—= 1—(Po"'/Po) =2-

m~+m, m&p'1m~' —m '

(A6)
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so tha, t Eq. (As) becon&es

m&2(pore lq
2-

F... =& g (—1)'C(U, '1; m/ mi —m/, ) &/, , i /, (p) g exp
X, ){,',mg .=o 8p ( po )

dr I'/, ~, *(r)

/

7v ow

so that

X I'/, ,(r)(P r)'I rl '+'e'e &'~F~( n—,+1; /+$& 2ml rl')e -'""'(f~ "'a "'+f."~'ae{"
I rl), (A&)

(0)=n&S=n &+1 = ~

S S 4z
(P ')'= Z d-"&-(p r)= Z d-" —Z y'-.*{p)I'-.{r),

e=o/& m=o/1 2u+ 1 me

8 ((2K+1)(2l+1)i '»
«1'/, ,*(r)1'/. (r)e"'(p r)'= Z Z d "/'j/(&Plpl lrl)I I

C(/u/~' oo)
u=o/1 l, l1 4a(2/, +1) )

XC(/&u/; 00) (—1)" " "fC(/, k/~, 00)C(X/~/, ; m/, m/, —m&, ) V/, , ,„„„(P),
where j&(k I rl) is the spherical Bessel function of order /."

Thus,

m,-'/ p, -'q-'- -+i ~ (2@+1)(2/+1)(2X'+1)~'"F... =(V — exp —P' ( 1)e+X'+1
4z 8p E po ) — XX' e=O O/e1 t /g l

)4m

XC(/u/g, 00)C{l,ul; 00)C{/,X/g, 00)C(/{'/gl; 00)W(1/{'/;/g, Xl)C(1//;; mg m/, .—mg)

X p'- (p)(f xva {l)(rlg+e) +f xx'a {0)(rl;+a+1) ) (A8)
where

(r )«, F.r='dr r qF{(—r/, +1; /, +~; 2vr')e '""'y/(aPlplr).

Using the definitions of fp"' and fp"' given by Eq. (A4b), we can write

5 "' =P(2K+1)'"C(/, k/g 00)W(1X'/, /{, X/) f{'"'

=v3(4~)'/2 W(1V/, /i, Ol)W(OOX'1) 01)C(01K') 00)8/;/, )

TSAR

Sg'&=—Q(2X'+1)'"(—1)'CP '/g/; 00)Sg'"

Ipl= —(4~)'" C(1/g/; 00)B/;z„
m~ (2/j+1)'"

Sg—=g C(lul, ; 00)C(l,ul; 00)5, '&

, Ixl= —(4~)'/2 C(lul ' 00)C(l.ul' 00)C(1/, l; 00),
m~ (2l;+1)'"

52""=p(2&+1)'"C(/,X/g 00)W(1X'/ l, ),/)f, ""'

Ix I'
=3(4~)'»C(/, 1/g, 00)W(1V/;/, ; 1l) W(11VO; 01)C(OOV; 00) —W(10('1; 11)C(11)',00)

m~(m/{/+ po)

Sg"—=P (2X'+ 1)'/&( —1)"'C(y'/, /; 00)SP'/i

= (4~) '" C(/'1/~; oo)(2/+ 1)-{'"'/' -+C(1/, /~; oo)(2/, +1)-{»»C(1/,/; 00)
m~(m/{/+ po)
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S»—=Q C(/u/i, 00)C(/iu/; 00}S»"

= (4')"'C(1/, /; 00) (2l+1) ""'C(lul; 00)C(lul; 00)— Q C(/u/i, 00)C(/iu/; 00)C(/, 1/i, 00)
(2l,+1)'" ii

la I'
XC(liil;; 00)—

SPY~ flan~- p

1
= (47r)'"C(1/, l; 00) C(lul; 00)C(lu/; 00)—

(2l+1)'" (2l+1)"' m~(m~+po) 2u+1

XLuC(/u —1 l;; 00)C(l;u —1/; 00)+ (u+1)C(lu+1 l 00)C(l u+1 l 00)j
Thus, Eq. (A8) becomes

nl~ 1 8

p, , =p'~ —
I + C(1t/, ; mi m), m,—)C(.1//;; 00)Fi.. '.*(p) exp —p»— (4ir)'i» Q Q Q (—1)"d &'&

(4~) Br po l s=p u=p/1

( 2/+1 "»
) p[ ( 2/+1) '" 1 [p('

ii, &' &

(

—— (r'*+') ii,C(/ul;; 00)C(l,ul; 00)+a, 'Oi(r'+'+') ii,
(2/, +1 n»~ (2/;+1) 2u+1 rn~(n»~+Po)

XfuC(/u —1/;; 00)C(l;u —1 l; 00)+ (u+1)C(l u+1/, ; 00)C(l; u+1 l; 00)j
2/+1

C(/u/; 00)C(lul; 00) . (A9}
2i+1

In the nonrelativistic (N.R.) limit, as (jp~/m) becomes decreasingly small, the dominant term is the i», =0& i

term (hence u= 0). Thus, in this limit

XC(1ll, ; 00)»i r»dr r'+'+'e »""' F (—n+1 l-+-,'; 2.r»).

l assnmes the two va&ues /, —1 and l;+1. If, for small (( p~ /rn), the amphtude is to go as
I

pl�'"+',

then

r»dr ri~'+&+li &e »vr~ P ( n + 1 l '+—' 2pr») +0

However, this integral is easily evaluated,

r'dr r"'e '""'iF»( n.+1; l;+—»; 2vr') ~»P&( n, +1; /;+»; /,—+—'; 1)

~*—i (—1)"(n,—1)!
m=o (n, —1—n»)!n»l

g.=1

=0, otherwise.
Here we have used the equation"

Ay' ' 'ApI
P~C

Px . Pa- ai n„; —p,
' &b»/a»

,Pi .Pq

where Q, is the generalized hypergeometric function. "In general, from Eq. (A9) we can see that the lowest power

ss R+f ~8~ p 48
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of
I pl in the decay amplitude is I pi" (the power of

I pl in F, ~ is I pl
" ') if and only if n, = 1. We may, thus,

restrict ourselves to this choice.
In Eq. (A6) for small (I y I /m), i.e., neglecting terms of (I p I

'/m'), I"p"& will be

dxpH„, (xp)e *"=8„,p

and, hence, we make the choice n& ——0 (see the discussion at the end of Sec. IV).
With these choices, the integrals (r )«,. become"

1 ) i/p(~pl pl ) &

(r ) &,
&=i' dr r™+'e'""'j /(e/Pl pl r) =i' —

I I I exp( P'&&" Ipl'/Sv)
4~) ((Sv) '/Pf

I'(p (i+m+2+1))X— —&F&(-',i—-', m; i+-P P'o'ipi'/Sv) (A10)
(2v) &&/P& &m+8&P(&/+ P)

Hence, it is straightforward to obtain the following:

(2)+1)) p ( 1 )1/2 x&;e-x

Z ("')«'I—
(21,+1) (4m.) (2v) &'/'& &'~+'&

( 2l+1) '/' ( 1 ) &/2 i&/-& -sP l;—&

P (r "+')&&;I —
I C(lil;; 00)C(t;1/; 00) =

I
—

I

—(x' ——,'l~),
(2l;+1~ (4~/ (2v) &'"& & "+'&

and we have defined x=nPlpl/(Sv)'"
Also,

7r
go(o)—

(2v)'" pp/m/r

p (m~) (pp" ) m~ ap& )

(2v) '/'k pp 3 k pp I (8v)'"

(A11a)

(A11b)

so that Eq. (A9) becomes

g~ (&) — go(0)

0

(3)'/2 m/r' pp"')' (n- '"m~ F' 'x" 'e-*'—
F...=E&,

I

—
I g C(1ll;; m~m/; m&)V& —.. . (p) exp —p — —

I
C(1ll;; 00)I—

E4n) r — Sv pp / E,2v pp (2v) &~/2)&&&+ )

m~) (pp"'), , l pl'(i+(*'- pi') -I --—
I

-(4 )'/'(r&'+'); (A12)
(Sv)'" ppJ E pp ) m~ Epp+m/r pp//

This is just Eq. (18) of Sec. IV.


