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A general method is developed for the calculation of the conductivity tensor, collisional con-
tribution included, associated with a wave in a plasma in a magnetic field. The method is based
on an iterative procedure and is applicable to any kinetic equation. With the Landau collision
term a result valid to all orders ln O'XD' is given ln integral form, and the electron current
contribution is calculated explicitly to order k ~D . The leading contributions resulting from
the ion motion are also obtained.

I. INTRODUCTION

The dispersion relation for a small amplitude
electromagnetic wave may be written in terms of
the following determinant

1(cd' —c2k')5. . +c'k. k. +4vi&uc. . ) =0,
i2 2j U

where (d is the frequency, k2 the wave vector, and

az& the conductivity tensor associated with the
wave. Neglecting two-particle correlations (or
"collisions" ), the conductivity tensor for a uni-
form plasma in a constant magnetic field has been
calculated by a number of authors. ' " No solu-
tion of comparable generality exists to the problem

of determining the collisional contribution to the
conductivity tensor. It is to this problem that we
shall address ourselves here.

The calculations in Refs. 1-10 are based on the
Vlasov equation (the collisionless Boltzmann equa-
tion). This is justified as a first approximation
in the sense that the effective collision frequency
is usually small compared to the wave and/or
cyclotron frequencies. For some purposes, how-
ever, it is essential that the collisional damping
rate, though small, be known. In that case one
must go beyond the Vlasov equation, and retain
the appropriate collision integral in the kinetic
equation. Since the collision term is usually
small, an iterative procedure" " is used to solve
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the linearized kinetic equation. The collisional
contribution to the conductivity tensor is first ex-
pressed as an integral over an arbitrary collision
integral. Subsequently we specialize with the Lan-
dau collision term. A result valid to all orders in
k'&D' and first order in the collision parameter is
given in integral form. For the electron current
contribution to the collisional-conductivity tensor,
the integrals are carried out explicitly to first
order in k'XD' (i. e. , the lowest-order thermal
correction to the cold plasma result is obtained).
The leading contribution resulting from the ion
motion is also calculated. All the particles are
assumed to be nonrelativistic, a restriction that
is easily lifted. "

f= fl+f =f —A 'exp[i(being —ap)]

x f dp'C(f) exp[i(ap'- b sin@'}]. (8)

1 0 I I

where pi(v, A) is given by'

p ] iq g [nwJ (b)/b, iwJ '(b), v 8 (b)]P P P 2& n ' n 'zn

Here f, is the solution to the collisionless equation,
and may be written in the form

H. CONDUCTIVITY TENSOR FOR ARBITRARY
COLLISION INTEGRAL

x exp[i(b sing —n g)]/(a —n) A (10)
We consider a neutral plasma consisting of s

species of charged particles in a constant mag-
netic field B,. The distribution function of the
ith species (mass m('}, charge q(~)) is assumed
to deviate by

f exp[i(k r —cut ]
(i)

from a Maxwellian distribution f,(~) at the (com-
mon) temperature T, where

f (e) (s}(&(z)/ )~

x exp(- P v }, P -=m /2E&. (3)
(i) i 2 i) (i

In what follows we shall suppress the species su-
perscript whenever possible. The distribution f
satisfies the linearized kinetic equation, '

—+i(a —b cosy)f= " — . (4)
sf . qE sf„C(f)

Here E is the wave electric field and C(f) the
linearized collision term. We have fixed the co-
ordinate system as follows:

B =Be, k=k e+k e
O Oz' xx zz

and introduced cylindrical velocity coordinates,

Equation (8) is in a convenient form for iteration.
The solution to first order in the collision parame-
ter is simply obtained by replacing C(f) by C(f,).
We shall carry the exact expression for fc along a
bit further, however.

The conductivity tensor Okl is obtained by calcu-
lating the current density

(i) td3 (i) (i) (i)
"k

2=1
('4 I ~ X ( ~ a

where f"'-=f1"'+fc"' satisfies Eq. (8). The col-
lisionless part Dpi'", obtained by integrating over
f, (~) only, has been determined previously. ' " It
gives rise to the well known phenomenon of reso-
nant damping" (Landau damping, cyclotron damp-
ing). We have nothing new to say with regard to
the collisionless damping; our concern here is the
additional damping due to collisions. The col-
lisional part of the conductivity tensor okl

( } is
given by

(c)E g (i) td3 (i) (i) (i)

i =1

Substituting for fc from Eq. (8), expanding
exp(ib sin&/ into

v=u cosine +m singe +vx Z Z
(8) Z J (b)exp(iny),

as well as the shorthand notation

A= qB /mc, a-=(—v —k v )/A, b=—k w/A.0 ' z z ' x

With the Bernstein' integrating factor, the kinetic
equation, as shown by McBride, "can be recast
into the form Here p (v, A) =-pk(v, —A) (14)

and integrating by parts in the Q variable, we ar-
rive at the result

(c) g yd3 (I)- (i)C(i)(f(i)) (13)kl l 2=1
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We recall that C~~~) has been linearized in f,
and f,(&), so that in substituting for f, from Eq.
(9), we are permittedto extract the common velocity
independent factor Ei/KT from the C(~j) terms.
The resultant o~f(c), valid for an arbitrary col-
lision integral, is

(c) KT
-1 g g ( 3 (i)- (i)

i=lj=l
„C(~j) (i)f (i). (j )f (j))

I 0 ' I 0

HI. CONDUCTIVITY TENSOR FROM THE
LANDAU EQUATION

(16)

A. General Results

In this section we shall calculate the conduc-
tivity tensor with the Landau collision inte-
gral. ' 2 The valjdjty of thjs colljsjon term
for a plasma in a magnetic field will be discussed
in Sec. IV. Inserting the linearized Landau term
into Eq. (16), and integrating by parts in the v

variable, we obtain immediately

is the vector given in Eq. (10) with 0 replaced by
—Q. With Eq. (13) we have succeeded in expressing
the conductivity tensor as a direct integral over
C(f) rather than over fc. This represents an
important simplification.

From this point on we shall limit the discussion
to terms of first order in the collision parameter,
i. e. , replace C(f) by C(f, ) in Eq. (13). We also
recognize explicitly the dependence on all s dis-
tribution functions in writing

('(f ' )- & C" (f ' f '
)

j=1

S S

i=1 j=1
(i) (j) (i)}2 rd3 (i)

3 (j) (i) (j)

(i) (g 3 )
yn

(j) )l

(j) )n

The vector g~ is the relative velocity

(i) „, j)
m m m

and InA( j)( = InA(j }) is the usual Coulomb loga, -
rithm of the ratio of maximum to minimum impact
parameter. Recalling the definition of jbk in terms
of pp as given by Eq. (14), we verify explicitly
that the conductivity tensor has the required sym-
metry,

o~l (0) =o (- D).(c) (c)

This symmetry is obvious for the contribution
from the first term in the last parenthesis in Eq.
(17), and is easily checked for the remaining
term by considering jointly the (i,j) and (j, i) con-
tributions. With the symmetry of Eq. (19), it is
clear that only 6 of the 9 components of o~i(c)
need be calculated.

B. The Electron Current

The dominant contribution to the conductivity tensor in a plasma comes from the electron current.
we neglect the ion motion altogether, o~i(c) may be written as the sum of an electron-ion collision term
and an electron-electron collision term,

(c) (ei} (ee)
kl kl kl (20)

where

(ei) 4 A(ei} 2 3 k mn m n l
Bt} 5 v v Bp

0'
kl e e 0 Bv v v' Bv

m n

IItI (II II g
) (

IIP BP

)
m rE n

(22)

In Eqs. (21) and (22) all the quantities (f0, Py, gm =—vm —v'm, etc. } are electron quantities excePt for Z,
the "average" ion charge, which is defined as follows,
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Zne -=Z n (q )
(f) (f) 2

8 i=1

Note that for a neutral plasma we also have the condition

(f) (f)
n q =n e.

ef=1

What remains to be done is to carry out the velocity integrals in Eqs. (21) and (22). Turning to Eq. (21),
and using cylindrical velocity coordinates, Eq. (6), we find that the $ integration can be carried out ex-
actly and that the double sum of Bessel functions reduces to a single sum. The remaining double integral
over vz and sv is more troublesome. However, if the following conditions are satisfied

(k /QWP[«l,x

~k /(&u-nQ)uP ) «1,
z

(25)

we can expand pg in a power series in kv. We find that ph has the structure,

p =A .v. +B ..kv. v. +D .. k'v. v. v + ~ ~ ~,
h hs z hg z j hick i g k

(28)

where the coefficients are independent of vi and of k. For j5@ we have a similar expansion with coeffi-
cients Akf, etc. With those expansions the velocity integrals in Eqs. (21) and (22) can clearly be per-
formed. We shall retain terms to second order in k, which actually represent the lowest-order correc-
tions to the "cold plasma" results, since terms linear in k integrate to zero.

The ion-electron collision integral gives a k =0 term bilinear in the 4 and A coefficients, and a k term
involving the products AD, DA. , and BB. The electron-electron collision integral gives no k = 0 contribu-
tion. Physically this results from the fact that electron-electron collisions do not alter the mean elec-
tron velocity. We do get an electron-electron term of order k, however, which is bilinear in the B and
B coefficients. This term is equal to the corresponding electron-ion BB contribution divided by ZV2,
provided we ignore the difference between InA(et} and lnA(ee}. In the Landau equation the value of A is
in any case ambiguous in the sense that it depends on the impact parameter cutoffs. The precise value
of A must be determined with a completely convergent collision term, e.g. , "Balescu-Lenard" plus
"Boltzmann" minus "Landau. " The uncertainty in A, however, is not very important if lnA»1. In this
paper we shall choose A to be defined as follows:

A-=12mn X
e D

where XD=—(KT/4vne'}'I' is the Debye length.

Carrying out the integrals in Eqs. (21}and (22) to second order in k, we obtain

= (2/&) Z&u lnAK /4wu A
(c) —,

' 3 2

P kl (28)

where &up =—(4vn e'/m }'I' is the plasma frequency, and where Kkf is given by

=~ (~'+Q )/(~'- Q')'+(1+3/5v2Z)k '(o'((u +8&v'Q' Q )/P((g' Q2)4
z

2' 2

8(~ +2Q ) (1+ I/~2Z)(4ur'+31(u'Q'+280')
5P (~2 Q2)2((g2 4Q2) (~2 Q2)2(~2 4Q2)2

K =(d ((0 + Q )/((g2 —Q2)2 ~ (I ~3/5~2Z)k 2(g2((g4 ~8~2Q2+ Q4)/P (~2 Q2)4
z

k '
x 2(o ((a&'+14Q') (I+ I/v 2 Z)(3(u'+4P~ Q' ~4(g'Q +18Q )

5P ((g2 Q2)2(~2 4QB) (~2 Q2)2(~2 4Q2)2 )
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2(d2 4(1+3/5v 2Z)kz2(d2((d2+02)
xy yx ((d2 —0')' P((d' —0')' (29)

k 2

8(2 ' ~ 12') (1 ~ 1/&2Z)(19 ' ~ 28 '12' ~ 16(2)
)+

5p (~2 g2)2(~2 4 g2) (~2 g2)2(~2 4@2)2

K =K =[A k /5P((d' —0 )'] [(5+ I/v 2 Z)(d'+(14+13/0 2 Z)0'(8)' —(3+ & 2/Z)0'],xz zx x z

K = —K = —[iQk k /5P(d((d2- 0')'] [(15+7/v 2Z)(d'+(2+7/v 2Z)02(d'- (1+2(2/Z)0'],
$'z + x z

K =1+2k 2(1+ 2(2/5Z)/P(d'+(k 2/5P )[2/((d2 —02)+3(I+ I/v 2 Z) 8(d2+ 0')/((d2 —0')'] .

Here p is defined by Eq. (3), and the reader is reminded that in accord with Eq. (7), 0 is negative. In
Eq. (29) the terms containing the factor Z ' arise from the electron-electron collision integral, Eq. (22).
The remaining terms, in particular all the k =0 contributions, come from the electron-ion collision inte-
gral, Eq. (21).

Note that the assumption stated in Eq. (25) implies that okf(c) as given in Eqs. (28) and (29) is not cor-
rect for (d within -kz(KT/m)v' of the cyclotron frequency and multiples thereof. In order to study the
collisional damping in these frequency intervals, the vz integration in Eqs. (21) and (22) would have to be
carried out exactly. In just these intervals, however, the collision-free damping will be dominant. For
that reason, Eq. (25) is not a very serious restriction as far as vkf(c) is concerned.

For the convenience of those who may wish to study the dispersion relation, Eq. (1), in detail, we will
write down the collisionless contribution' ' to the conductivity tensor ok~"~ to second order in k, again
valid only under the conditions of Eqs. (24) and (25). From the electron current we obtain,

(T
' = i(d T /4v(d

kl p kl (30)

where Tk~ is given by

T =[(d'/((d' —0')][1+k '((d'+30 )/2P((d' 0')'+3k-'/2P((d' —40')]
XX z x

T =[(d'/((d'- 0')][1+k '((d'+30')/2P((d' —0')'+k '((d'+80')/2P(d'((d' —40')]
XX z x

T = —T =[i(dQ/((d'- 0')] [1+k 2(3(d2+0')/2P((d' —0 )'+3k '/P((d —40 )],

T = T =k k (d2/P((d2 —0')'
xz zx x z

(31)

iQk k (3(d2 02)/2P~(~2 02)2
pz zg x z 7

=1 y3k ~/2P(d2+k 2/2P((d2 02)zz z x

We obtain a similar contribution from each ion species with the obvious changes in mass, charge, and
density. In expanding Ok~'", we do of course throw away the collisionless damping. In order to include
the collisionless damping, or to study wave propagation in the frequency intervals violating Eq. (25), we
must use the exact ok~'", which is well known' " and will not be displayed here.

The dispersion relation for an electron plasma wave propagating at an arbitrary direction with respect
to B, is now given by Eq. (1) with ai& equal to the sum of the terms given by Eqs. (28) and (30). In writ-
ing out the determinant of Eq. (1), it must be remembered that only terms linear in the collision parame-
ter A 21nA should be retained, since o~" ( ) is correct only to this order.

C. Effect of Ion Motion

The effect of ion motion on oi&(c) will be negli-
gible except at low frequencies. There are really

two effects: the electron current calculated in
the previous section will be modified, and, in
addition, we must include the ion currents. In
Eq. (17) we have given the complete result for a
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Z'm '&d'(a&'+ Q. ')

xx yy m. '(&d'- Q. ')'
2 2

2Zm &d'(&d'+Q. Q )e 2 e
+ m. (&O' —Q.')(&u' —Q ')

2 2 e

22Z tP1 (d 0
K I I e i

xy yx m . '(&O' —Q.')'
2

22Zm (O'0
e e

+ m. (&d' —Q. '}(&O' —Q ')
2 2 e

The corresponding Kzz
' term of (Zme/mf)'

(32 }

plasma consisting of electrons and s —1 species of
ions. To keep the discussion of reasonable length,
we shall now limit ourselves to a single species
of ion with mass mf, charge Ze, and density ne/Z

The contribution due to ion-ion collisions has in
effect already been calculated. It is identical to
the electron-electron contribution [t. e. , the terms
containing the factor Z ' in Eq. (29)j except for
the obvious changes in mass, charge, and density.
From Eqs. (28) and (29) we see that for high fre-
quencies, w» Qf, the (like species) ion-ion term
is of order (me/mf)'I' as compared to the electron-
electron terms. A factor of m. '~' comes from
&dp' and a factor of mf

' from p
' (collisions be-

tween ions of different types would contribute k =0
terms of order (me/mf)'I' relative to the electron
terms). Because of the (&u' —Qf') and (&d' —4Qf')
factors in the denominators, however, the ion-
ion terms must be included at low frequencies,
~~; ~

Turning to the effect of the ion motion on the
electron-ion collision terms in Eq. (17), we shall
consider only the leading contributions, namely
those which arise from the k = 0 parts of pk and

p~. %e discuss first the contributions coming
from the first term in the last parenthesis of Eq.
(17). For the electron current this is the term
that has been written down in Eq. (21) after set-
ting g equal to v(e}. Retaining the exact g, how-
ever, does not alter the frequency dependence of
the result obtained previously„ in particular there
are no new resonances at multiples of the ion cy-
clotron frequency. %e merely obtain small cor-
rections to Eq. (21) in the mass ratio m /mf
which are negligible at all frequencies. The cor-
responding k = 0 term in the ion current may be
obtained from the k =0 part of Eqs. (28) and (29)
by multiplying by (Zm /m }2 and replacing Qe by
Qi. Combining these terms with the leading elec-
tron and ion current contributions from the second
term in the last parenthesis of Eq. (17), we finally
obtain the following additions to Kkz as given in
Eq. (29):

+2Zm /m can be ignored for all frequencies.
In summary: at high frequencies ~ » Oz the

neglect of ion motion is justified, and the results
of Sec. B are applicable. At low frequencies
~ & 02 the dispersion relation is again obtained
from Eq. (1) with of& equal to the sum of o; &'&

and of~( } Eq. (28); but in Eq. (28) the Kz& is
now to be taken as the sum of the terms in Eqs.
(29) and (32) as well as the ion-ion collision terms
identified in the second paragraph of this section.

IV. DISCUSSION

The collisional contribution to the conductivity
tensor associated with a wave in a plasma in a
magnetic field has been given in a convenient
integral form, Eq. (16}, valid for any collision
integral. The corresponding result for the Landau
collision term is given in Eq. (17). Neglecting
the ion motion, the collisional conductivity, valid
to all orders ink'A. D', is given by the integrals of
Eqs. (21) and (22). These integrals are carried
out completely to second order in the wave vector
with the result as displayed in Eqs. (28) and (29).

The k independent and the kz' parts of K~~,
K»„and E&& lead to the same dispersion relation
as that obtained by Buti. " In calculating the
damping rate, however, Buti commits an error,
as pointed out by McBride. " The k independent
kz', and k~' parts of Kzz are all in agreement with
the dispersion relations obtained by McBride. "
We confirm his important observation that in a
moment equation approach, the heat flow tensor
cannot be neglected if all the k' terms are to be
included. Earlier work relating to the Kzz term,
including that reported in Refs. 11 and 13, is dis-
cussed by McBride" and found by him to be partially
in error. %'e agree with his conclusions.

The Kxz(=Kzx) and K&z(= Kzy)terms have, t-o the.
best of our knowledge, not been considered previ-
ously nor have the kx' parts of the Kxx, Ry~, and
Kx&(= —K&x) terms. Since we have calculated
all the components of the conductivity tensor to
order k'XD', we are now in a position to study all
the modes of wave propagation to that order,
including those propagating at an arbitrary angle
to the magnetic field. In all cases the collisional
damping rate to order k'XD' is obtained without
difficulty from the general dispersion relation
Eq. (1) with of~ given by Eqs. (28) and (30).

We have also calculated the relevant additions
to the conductivity tensor resulting from the ion
motion. As discussed in Sec. III C, these additions
become significant at low frequencies, co & A2.

The results given in Eqs. (13) and (16) are valid
for any kinetic equation. The later results are
obtained with the Landau" collision integral. It is
well known, "however, that the magnetic field
modifies the collision term unless
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(33)

The results obtained with the Landau equation are
therefore subject to this restriction, Eq. (33). To
extend our results we must use a collision integral
valid for strong magnetic fields, such as the one
derived by Rostoker. " We also recognize" that
the Landau collision term, or even the Balescu-

Lenard term, "is not strictly applicable for high
frequencies ~ & ~~, where the one-particle dis-
tribution function and the pair correlation function
vary on the same time scale. Starting with Eq.
(16), we are now in the process of extending the
results obtained in this paper and the accompanying
paper by McBride and Pytte" to collision integrals
of wider applicability.
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