PHYSICAL REVIEW VOLUME

179,

NUMBER 5 25 MARCH 1969

Existence and Analyticity in s of the Solution to Non-Fredholm
Bethe-Salpeter Equations for Scattering of Spin-1 Particles*

Joun ConNELL}
Depariment of Physics, Michigan State University, East Lansing, Michigan 48823
(Received 27 November 1968)

A large class of non-Iredholm Bethe-Salpeter equations for the scattering Green’s function of spin-
particles is considered. Many commonly treated equations belong to this class; an example is the quantum-
electrodynamical (QED) electron-positron Bethe-Salpeter (BS) equation in the ladder approximation. Tt
is proven that a solution of these equations by successive iterations exists. A domain of analyticity of the
solution in the s plane is derived. For small coupling constant, this domain is very large. The domain shrinks
to the point s=0 when the coupling constant is increased to a limiting value (of order unity). A simple and
general inequality is derived for the binding energy of any bound state in terms of the coupling constant.
It is proven that Goldstein’s pseudoscalar homogeneous solution to the QED equation at s=0 does 7ot
correspond to a bound state when the fine-structure constant is less than of order unity. The method of proof
of the existence and analyticity is to use majorization to show that an infinite series of analytic functions
is uniformly convergent. No Hilbert-space techniques are used, so no difficulties arise from the non-Fredholm

nature of the BS equations.

I. INTRODUCTION

JQOLUTIONS of model Bethe-Salpeter (BS) equa-
tions have been quite extensively investigated in
the last few years. Some recent motives for this work
have been the hope of a derivation from a relativistic
dynamical model of such properties as Regge trajec-
tories,"* O(4) invariance relations and daughter tra-
jectories.®* More generally, there is always hope that
the properties of the solutions of the model BS equations
which have been investigated so far may be shared by
the solution to a relativistic quark model of the hadrons,
if a realistic model is ever found.

Any BS equation is difficult to solve, because it is
an integral equation in four dimensions. The usual
procedure has been to consider an equation for the
interaction of two scalar particles in the ladder approxi-
mation (that is, exchanging one or more scalar parti-
cles). Such an equation can be expressed in the form of
a Fredholm equation and then the standard formulas
of Fredholm theory can be exploited with the use of
small coupling constants,! numerical integration,* or
general arguments® to derive whatever results are
required.

Unfortunately, a BS quark model, for example a
model of a meson as a quark-antiquark pair, must
start from a BS equation for spin-3 particles® since
quarks are undoubtedly spin-3 if they exist. However,
it is well known that BS equations for the interaction
of two spin-} particles usually cannol be reduced to

* Supported in part by the U. S. Atomic Energy Commission,
Contract No. AT (11-1)-1051.

t The idea for this work is contained in a Ph.D. thesis at the
University of Washington, Seattle, 1967 (unpublished), which was
supported by the U. S. A. E. C. under Contract No. AT (45-1)-
1388, Program B.
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Fredholm form.2% An example is Eq. (2) below, the
quantum-electrodynamical (QED) equation for the
interaction of an electron and positron in the single-
photon-exchange ladder approximation.® The non-
Fredholm property of such equations prevents use of
the standard techniques which have been described
above. Indeed, Fredholm BS equations for the inter-
action of scalar particles appear to differ from the non-
Fredholm equations for the interaction of spin-}
particles in at least three ways, as follows.

The usual BS equations for a scattering Green’s
function of scalar particles have the following properties :

(i) An iteration solution always exists when the
coupling constant is sufficiently small, since the Fred-
holm kernel has a finite norm.

(ii) The existence of a solution to the homogeneous
equation at a particular value of the c.m. energy (for
fixed coupling constant) implies that the scattering
Green’s function has a pole in the c.m. energy variable
there, which is to say that (by the definition of the
word) there is a bound state at that energy.

(iii) If the solution is a sum of planar diagrams (as it
is in the ladder approximation), the solution has no
Regge cuts.”

On the other hand, the sole example of electron-
position scattering in the ladder approximation [Eq.
(2) below ] shows that non-Fredholm spin-} BS equa-
tions may differ in all three of these properties, as
follows:

(i) Conditions for the existence of a solution have
not been established.

(ii) The existence of a homogeneous solution at a
certain energy does not imply the existence of a bound

¢ G. Tiktopoulos, J. Math. Phys. 6, 573 (1965).

"R. ]J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, The Amalytic S-Matrix (Cambridge University Press,
Cambridge, England, 1966), Sec. 3.8. This statement does not
apply to diagrams whose vertices have more than three particles
(see Sec. 3.5 of reference).
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179 ANALYTICITY OF SOLUTION
state at that energy, since the Fredholm alternative
does not hold.? In fact, Goldstein® and Kummer® have
given solutions at zero total 4-momentum to the
homogeneous part of the QED equation (2) below, and
it has not been rigorously shown whether or not those
solutions correspond to zero-mass bound states.

(ili) An infinite sum of planar diagrams can have
Regge cuts. Lee and Swift? and Willey'® havefound them
in the crossed channel forward scattering solution to
spin-3 BS equations in the ladder approximation.

This paper will give some answers to questions raised
by points (i) and (ii) above. (i) When does a solution
to the scattering equation for spin- particles exist? (ii)
When does a homogeneous solution correspond to a
bound state? No discussion will be given of point (i),
the question of when Regge cuts exist.

It will be shown that conditions on the kernel and
propagators of a spin-3 BS equation can be given,
under which the iteration solution exists and is analytic
in s (the invariant square of the c.m. energy). The size
of the domain of analyticity in the s plane depends,
of course, on the strength of the coupling constants in
the equation. Then within this domain of analyticity,
question (i) is answered: The solution exists. Also
question (ii) is answered there: There are 7o bound
states since the solution is analytic in s.

The technique used is majorization. The majoriza-
tions are not very stringent and appear to be applicable
to quite a large class of spin-3 model BS equations; in
particular, they apply to the QED electron-positron
ladder-approximation equation already metioned [ Eq.
(2) below]. The procedure is to show that for suitable
values of s the iteration solution to the BS equation,
which is term-by-term analytic in s, can be majorized
term by term by quantities independent of s. When the
resulting series converges, a theorem on the uniform
convergence of an infinite series of analytic functions
implies that the original iteration solution is analytic
in s. The conditions on s, for all the foregoing to occur,
determine the domain of analyticity of the iteration
solution in the s plane. This method avoids any attempt
to use Fredholm techniques.

The proof of these results requires several steps,
though it is quite easy. To help the reader not to get
lost on the way, an outline of the paper is given in
Sec. II. A complete summary of the problem, assump-
tions, results and the steps in the proof is given there.

It should be emphasized here that the solution to a
BS equation will be defined as the ileration solution,
when it exists, that is, when it converges. If the value
of sis such that the iteration solution does not converge,
then s must be given a value such that the iteration
does converge. Then the resultant iteration solution may
be analytically continued in s to the required value of s.

8 J. S. Goldstein, Phys. Rev. 91, 1516 (1953).
¢ W. Kummer, Nuovo Cimento 31, 219 (1964).
R, S. Willey, Phys. Rev. 153, 1364 (1967).
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This definition is in accordance with the idea that the
solution to a BS equation should indeed be an infinite
sum of Feynman diagrams. If the coupling constant is
so great that there is no value of s such that the itera-
tion solution exists, then it will be said, by definition,
that no solution exists at all.

In the rest of this section the results of this paper
will be put into context by giving a brief review of
some of the rather scarce work on spin-4 BS equations.

As has been mentioned, Goldstein® found a homo-
geneous solution to the QED equation (2) at zero
4-momentum, soon after the BS equation was in-
vented.!! See topic (ii) above for further discussion of
its meaning. Kummer® later added more homogeneous
solutions to Goldstein’s.

Lee and Swift? examined the VN scattering equation
with exchange of pseudoscalar particles in the ladder
approximation. They managed to sum the singular
(non-Fredholm) part of the iteration solution under
several approximations using a technique due to R. F.
Sawyer, and they found the crossed-channel forward
scattering to be dominated by a Regge cut. Willey!
has found the exact form of an additive component of
the solution to the QED equation (2) below, at zero
4-momentum, and his solution is also dominated by a
Regge cut.

Neither Lee and Swift? nor Willey'? put a cutoff in
their equations or used any other artifice to change
their equation into a Fredholm equation and create a
Hilbert space. Such artifices have been used sometimes.
Under the assumption that the homogeneous solutions
to the QED equation (2) (slightly transformed) are
square integrable, Tiktopoulos® has proven, by Hilbert-
space methods, that the spectrum of bound-state
energy eigenvalues of Eq. (2) approaches that of the
Coulomb problem to lowest order in the fine structure
constant. Unfortunately, there is no proof of his crucial
initial assumption that the solutions lie in a Hilbert
space. Quite recently, Lipinski and Snider® have ex-
amined the VN BS equation with scalar exchange in
the ladder approximation with s small but not zero.
Their interest is in possible Regge trajectories of the
pion. In order to use conventional perturbation theory
(with s as the small parameter) they introduced a
cutoff by subtracting irom the kernel the exchange of a
more massive particle of the same nature and coupling
constant (that is, they added a “ghost” exchange to the
kernel). Their resultant equation is Fredholm, and they
can derive numerical answers from it.!'2

No technique seems to have been invented yet for
solving spin-3 BS equations for s#0 without using
such artifices as these. On the other hand, the use of

1 E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951); 37, 456
(1951); M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

Ua Footnote added in proof. In addition to Ref. 5, a cutoff single-
particle-exchange BS equation for spin-} particles has been con-
sidered by P. Narayanaswamy and A. Pagnamenta, Nuovo
Cimento 53A, 635 (1968). They obtain some numerical solutions.
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cutoffs or other assumptions to create a Hilbert space
may completely change the nature of the equation and
the solution. Therefore, the discovery of a new tech-
nique is needed. The results of this paper, while by no
means established by any useful new technique, do
show that in discussing a spin-} BS equation with 550,
it is not always necessary to start by changing the
problem to create a Hilbert space.

For completeness, a result of Yatsun'? will be men-
tioned. He has shown that an iteration solution exists
to the BS equation for massless leptons interacting by
massive spin-1 exchange (which, of course, is not
renormalizable) in the ladder approximation, in the
particular case when the 4-momentum of each of the
final particles is zero. The conditions are that the
coupling constant lie in a certain domain of the complex
plane. Yatsun’s result is remarkable because the tensor
part of the spin-1 meson propagator causes the kernel
to be so divergent that even the proof of the present
paper would not apply to his equation.

II. SUMMARY OF PROBLEM, HYPOTHESES,
RESULTS, AND PROOF

A. Problem

The problem is to show when iteration solutions to
the spin-3 BS equations below exist.

The case of fermion-antifermion scattering will be
considered for definiteness, but the proof will apply
equally well to the fermion-fermion case. The general
BS equation for the Green’s function Tag;,0(p,q; K)
(see Fig. 1 for the notation), is illustrated in Fig. 2(a).
In full it is

d'k
Tagios (9,05 K)=Iaﬁ;p0(qu; K)+/

(2m)
X Gse(k+3K)Gro(k—3K) T egno (kyg; K). (1)

An example from QED which will be used throughout
as an illustration is the equation for electron-positron
scattering in the ladder approximation [Fig. 2(b)]:

Tap;oo(p,q; K)= —ie*y agYuos(1/(P—8)D)
d*k 1
+f
(2m)* (p—k)?

1 1
aesreevorml | Bxrmroreid
v (k+3K)+m e v-(k—3K)+m L,
XTeﬂ;)sa'(k;q; K)' (2)
In the above examples (1) and (2), Wick rotation
on the variables #°, ¢° &° is assumed to be allowed and

already to have been performed. Then k°= ks, k4 real,
etc. Also d*k has been taken to mean dkdks. The

4Iaﬂ;p0(P:k3 K)

12V, A. Yatsun, AN Ukrainskoi SSR, Inst. Teor. Fiz., 1968
(to be published).
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Fi16. 1. The Feynman diagram for the Green’s
function 727 ug.,, (9,q; K).

metric used is defined by a-b=a-b—a%’=a-b+a4b..
Then k2>0 always. The total energy-momentum K
may be complex. Define s=— K2,

B. Hypotheses

Assume that Wick rotation, as performed above, is
possible, and that it can be reversed at the end without
changing any analyticity properties of T as a function
of 5.

If the BS equation (1) is written symbolically as
T=I+4IGGT, then the iteration solution is of course
T=I41GGI+IGGIGGI+ - - -.- Assume, as described
in Sec. I, that the solution to a BS equation is the itera-
tion solution if it exists for some value of s, and that it
is the analytic continuation in s of the iteration solution
for other values of s.

Let m be the mass of each fermion. The fermion
propagator will have the Killén-Lehmann repre-
sentation®

* 1(x?) Kkpa(k?
G<p>=f e "”,]. )
0 Yy ptr—ie pPP4i’—ie

IOROX

(a)

O

F1c. 2. (a) The general BS equation (1). (b) The
QED BS equation (2).

18S. S. Schweber, An Introduction to Relativistic Quanium
Field Theory (Harper and Row Publishers, Inc., New York,
1961), Sec. 17b.
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Define a constant go, which arises in the propagator
majorization (Sec. IV), by
1 0
—= o [ e tml @)
8o 0

Assume that this integral exists. (It usually does; see
Sec.IV.) Note thatif G(p)=1/(v- p+m), asin the QED
example (2), then go= 2.

Assume that the kernel 7(p,q; K) is analytic in s
below the elastic threshold at s=4m?.

A simple norm || || for finite-dimensional matrices
will be introduced in Sec. ITI. Assume that the kernel
Lag, 00 (p,q; K), treated as a 16X 16 dimensional matrix,
can be majorized according to

17(p,0; K)I<g"/ (p—0) )
for all p,g with g a positive constant. [Recall
(p—9)*>0.]

In the QED example (2), the kernel is certainly
analytic in s, and the majorization (5) is satisfied with
g=2e, as will be shown in Sec. III.

Kernels definitely excluded by these requirements
[the analyticity in s, and the majorization (5)] are
those which contain low-mass annihilation diagrams,
such as in Fig. 3(a), and those containing diagrams
derived from nonrenormalizable field theories, such as
the massive J=1 exchange shown in Fig. 3(b). It is
possible that the requirements might be satisfied in
QED to all orders of perturbation theory when annihila-
tion diagrams do not occur, as in electron-electron
scattering. This question is discussed in Sec. III, where
the majorization (5) is described in detail.

C. Results

The result found is that the iteration solution
T(p,q; K) to the BS equation (1) exists, and is analytic
in s, in a certain domain D(g/g,) of the s plane. This
domain is specified by a relation between s/4m? and
g/80, Eq. (35) below in Sec. VII. g must be less than g,.
When g approaches g, the domain D(g/g,) shrinks to
the single point s=0. The domain D(g/g,) is sketched
in Fig. 4 for various values of g/go.

When s is real the condition (35) simplifies, and shows
that the part of the real s axis lying in D(g/go) is
given by

—4m*(go*/ g —1) <s<4m(1—g/g0)?. (6)

The right-hand side of Eq. (6) immediately gives a
very general inequality for the binding energy of any
bound state that may appear in the solution T of the
BS equation (1). If the bound-state mass is M, then
the binding energy B is 2m— M. Since the Green’s
function 7" will have a pole in's at s= M?2, the analyticity
condition (6) implies that M >2m(1—g/go), which
is to say

B<2mg/gq. (7

SOLUTION TO BETHE-SALPETER

EQUATIONS 1377
Fic. 3. (a) Low-mass an- (a)

nihilation diagrams, which do

not obey the kernel analyticity

requirement in s. (b) Massive

J=1 exchange, which does not
obey the kernel majorization (8).

J=| (b)
3

PN

Therefore, when any model BS equation obeys the
hypotheses described above, the inequality (7) gives
an upper bound on the possible binding energy of its
bound states. Conversely, if a certain binding energy
is required, the inequality (7) places a lower bound on
the possible coupling constants which can give it.

If the QED equation (2), which is being used as an
example, does have the Coulomb binding energy
B=1a?m in its lowest bound state when the fine
structure constant a=e€?/4r is small (which has ap-
parently never really been proven®), then (7) is verified
in this model. Indeed, g=2e as will be shown in Sec. III,
and go= 27 as was shown in part B of this section, and
when « is small it is certainly true that fa?m<2m2e/ 2.

The left-hand side of the inequalities (6) is rather
surprising. When g is nearly as great as go, the method
of this paper has only succeeded in showing the itera-
tion solution to be analytic for quite a small range of
negative s. (The small range of analyticity for positive
s in this case is not surprising, because when g is nearly
as great as g, a deep bound state of mass M<2m
may occur.) On the other hand, when the coupling

4m2

Fic. 4. Sketch of the boundaries of the proven domain of
analyticity of 7°(p,q; K) in the s plane. A: g/go small. B: g/go=3%.
C: g nearly equal to ge.
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constant in the BS equation is small, as in the QED
model equation (2), then the magnitude of the left-
hand side of Eq. (6) is very large indeed since g/go can
be small, and so the domain of analyticity extends very
far out on the negative s axis. See the sketches of the
domain D(g/go) in Fig. 4.

The inequality (7) proves that Goldstein’s solution
to the homogeneous part of the QED equation (2)
does not correspond to a bound state when « is small
(Sec. VII).

D. Proof

The method used is to show that the kernel 7 and
the product GG of the propagators can be analytic in s
while the iteration solution T'=I-+IGGI+IGGIGGI
+--- to Eq. (1) converges uniformly in s. When all
this happens, T" will be analytic in s.

In Sec. III a discussion is given of when the kernel
I(p,q; K) may be majorized by a function g2/(p—g)?
which is independent of K, and hence of s. This majori-
zation is assumed to be possible.

In Sec. IV it is shown that the propagators G(k+3K)
may be majorized by a function L/(k24-p®)'2, L a
constant, if s obeys a certain condition and if the
integral (4) over the propagator spectral functions,
which defines the constant go, exists. The majorizing
function is again independent of s.

In Sec. V it is shown that when the majorizing
functions are substituted for / and G in the iteration
solution, the resulting series converges if L, g, and go
have a certain relation.

The analyticity in s of 7 and G is discussed in Sec. VI.
I is assumed to be analytic in s in the domain of the
s plane of interest. (It will be, if there are no annihila-
tion diagrams.) G is proven to be analytic in that
domain.

All the conditions arising in the parts of the proof
occurring in the previous sections are collected in
Sec. VII to give relations between the variables s/4m?
and g/go which define a domain, called D(g/go), in the
s plane. In this domain, the iteration solution I'=1
+IGGI+ - - - is analytic in s because it is a uniformly
convergent series of analytic functions. The relations
defining D(g/go) are given in Eq. (35), and the depen-
dence on g/go of the size and shape of D(g/go) is shown
in Fig. 4.

III. KERNEL MAJORIZATION
The hypothesis
[ Zas:oe (p595 K <[g%/ (p—9)*] (8)

will now be explained, and illustrated by the QED
equation (2).

Let the norm ||4 || of any finite-dimensional matrix 4
be defined to be the greatest of the absolute values of
the eigenvalues of A. Then if {y%y’}=—2g* (u,
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v=0, 1, 2, 3), the following facts may be verified:

[v¥l=1, )
[ (v-kt-m)~!| = (R*+m?)~112, (10)

if % is a real vector in Euclidean space (that is, k, &4
are real) and m is a real constant.

In the case of the QED example (2), it is evident
that

1 Zag; 00 (£,05 K= ll€#7*as (0= ) Vol
<yl (p—) vl (A1)
as can easily be seen upon considering all possible
vectors in the 16-dimensional space upon which I acts.
Equations (11) and (9) show that the majorization (8)
is satisfied for this QED example with
g=2e. (12)
Also, the kernel is certainly analytic in s.

For what other kernels I will the majorization (8)
be true? If I is a sum of single-particle exchanges,
whether the particles have mass or not, then (8) will
be true as long as the vertices are bounded and the
propagators drop off as fast as 1/|¢] for large |¢|
(thus, excluding massive J=1 exchange).

A result of Johnson, Willey, and Baker! suggests
that (8) might be true for some QED BS kernels in
every order of perturbation theory. They show that in
QED (under certain conditions), the kernel I(p,q; K)
for electron-position scattering has the property that
I(p,q; K) is finite in each order of the unrenormalized
fine structure constant ag, as long as both p and ¢
are very large and either p?<K¢? or ¢><p? Since [ has
the dimensions of 1/¢* or 1/4?, this result shows that
l7(p,q; K)||<const/q?in the first case, and || I(p,q; K)||
<const/p? in the second case. These results also hold
for the BS kernel for electron-electron scattering, which
contains no annihilation diagrams and so has the re-
quired analyticity in s below the elastic threshold. The
asymptotic behavior described above, and the single-
photon-exchange kernel of Eq. (2), both satisfy the
majorization (8). Therefore, it is tempting to speculate
that the results of Johnson, Willey, and Baker!* can be
applied to electron-electron scattering and generalized
until (8) can be proven to hold in each order of per-
turbation theory for all p,g. (The total energy-mo-
mentum K would perhaps have restrictions on it
similar to those which occur in the next section.) If
such a general result were true, then the results of
the present paper would be true in equal generality,
as go is also finite in each order of perturbation theory
according to the treatment of Johnson, Baker, and
Willey.

4 K. Johnson, R. Willey, and M. Baker, Phys. Rev. 163,
1699 (1967).
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IV. PROPAGATOR MAJORIZATION

Let the four-vector K be an arbitrary complex vector,
but the vector £ be real in Euclidean space (k, &4 real).
Then it will be shown that under certain conditions on
K, to be derived, there exists a constant L such that
for all &,

1
v (k+3K)+m

L
< ’
T ety

O<u<m. (13)

The conditions for this to be true are unchanged when
the sign of K is changed. Evidently L>1.

Since the Killén-Lehmann representation (3) can
be written®®

G(p)_/i ‘2[:91(“2)“{_%172(13) %Pz(ﬁ):l
v ptx v p—k ,

it follows from [|[A+B||<||4||+]|B|| that if (13) is
obeyed, then the propagators can be majorized ac-
cording to (since x> m)

[Gk£3K)||< 2n/go) L/ (*+w2)'", O<u<m,

(14)

where 7 is the fermion mass and the integral 2m/gq
over the spectral functions is defined in Eq. (4).
Since!® 2p;>p2>0, the convergence of the integral de-
pends upon the convergence of Jp;d«?, which usually
occurs, as (y-p)G(p) usually has a high-p limit.

The proof of Eq. (13) starts with the following
observations. If the vector K is written in its real and
imaginary parts as K =K g+ iKr= (Kp+iKs, Ez+iEr),
and if real Euclidean vectors a, b are defined accord-
ing to

a=KR, as=FEr, (15)
b= K[ y b4= -'ER )
then
v (k+3K)+m=7-(k+3a)+m+iiy-b.  (16)

Now imagine two operators 4,B. If o~ '=|l47,
B8=||B||, and a>m>p, then it is evident from the con-
vergent formal expansion of (4-+B)~! in powers of
A™'B that ||[(A4B)™Y|| < (a—B)~". Then it follows that

It 1(A+B)~1[| < (1—B/m)~1a.

2 dm?,

17
this result can be applied to the case of Eq. (16) with

A=v-(k+%a)+m and B=%iy-b. Using Eq. (10), it is
apparent that for all %,

By (3RO +mT | <N-LCh+3ay+mt e,
J=1—(82)'12/2m.

(18)

(19)

Then to prove Eq. (13), it is sufficient to find when
the right-hand side of Eq. (18) is always less than or

TO BETHE-SALPETER EQUATIONS
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equal to the right-hand side of Eq. (13). That condition
is equivalent to

(k+3a)+m*> (k+u?)/LAN?. (20)

Inequality (20) is quadratic in %2. Completion of the
square shows that Eq. (20) is satisfied for all £ under
the two conditions

p=(L2N?)1 1, (21)
n(1—n)'a?+dmu? <4m?. (22)

Equation (21) contains condition (17) which need not
be imposed separately.

Equations (21) and (22) are the conditions on K
needed so that the majorization (13) holds. However,
the definitions (15) of ¢ and b show that these conditions
are not Lorentz invariant. The reason for this is that
Wick rotation specifies the time component of a four-
vector, so it is not an operation independent of the
Lorentz frame. On the other hand, this fact can be
turned to advantage, because it means that it is possible
to consider all Lorentz frames and see whether there is
any in which conditions (21) and (22) are satisfied.
If there is one, then all the steps of the proof of the
existence and analyticity in s of the iteration solution
to the BS equation (1) may be carried out in that frame.
(These steps are Wick rotation, the majorizations, the
proof of the convergence of the majorizing series, the
proof of term-by-term analytcity of the original series,
and the Wick rotation’s reversal, which is assumed to
be possible in the final solution.) It will be shown that
there is indeed a Lorentz frame which is “most favor-
able” in that the left-hand sides of Egs. (21) and (22)
are simultaneously the least possible, and that in this
frame the conditions take a covariant form as a func-
tion of the single variable s.

Inspection, with the definition (19), shows that
when L is constant the left-hand sides of Eqs. (21)
and (22) both decrease as a* and b* decrease. The
definitions (15) show that @?= Kg?+ (Er*+Er%) and
2= K2+ (Eg*+ Er?). The first term in each is Lorentz
invariant, so ¢? and &* simultaneously reach their
minimum when FEg?>4FE;?2 does. The minimum of
Er*+E;? under all real Lorentz transformations can
most easily be found by minimizing |K-X|? with re-
spect to variations of a real vector X which satisfies

?=—1. The minimum found is 3(|K?|—K*-K),
which gives the result (recalling s= —K?) that

mina?=1%(]s| —Res)= (Ims?)?,

mind?=1%(]|s|+Res)= (Res!2)2.

(23)
(24)

It is particularly surprising and satisfactory that the
values (23) and (24) depend only on s, and on none
of the other available covariant quantities defined by
K, such as K*-K.

Therefore, there is a Lorentz frame in which condi-
tions (21) and (22) can be satisfied, and hence in which
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all the steps in the proof of the existence of an itera-
tion solution to the BS equation (1) can be carried out, if

N=1—|Res"?|/2m, (25)
7= (L2N?)1<1, (26)
7(1—n)~ (Ims"2)*+dnpu* < dm?. (27)

It is assumed that after T'(p,¢; K) has been found in
this most favorable frame, the Wick rotation of p° ¢°
can be reversed without destroyving the existence of 7'
or changing its domain of analyticity in s. Then, an
arbitrary Lorentz transformation can be performed,
showing that these properties of 7" hold in any frame,
that is, always.

Conditions (26) and (27) still contain the majoriza-
tion constant L, introduced in Eq. (13). L has not been
specified except that Egs. (10) and (13) show that it
must obey L>1. It will now be shown that there is an
upper bound to L, determined by the requirement that
the iteration solutions to the majorizing equation
converge.

V. CONVERGENCE OF THE MAJORIZING
EQUATION

The majorizations of the components I and G of the
BS equation (1), given in Egs. (8) and (14) of the last
two sections, show that the iteration solution T°(p,q; K)
to Eq. (1) is majorized by the iteration solution to
the equation

2

F(pg)=———
ooy

, 2 2L d*k 1 1 Flhg)
+ (_) 2/ »q)
oo/ ) ot p—m bt

the convergence of the latter therefore implying that of
the former.

The convergence of the iteration solution of Eq. (28)
depends only upon the coefficient of the integral in
(28), as will now be proven. If the substitution F(p,9)
=u~2F(p/u,q/x) is made in (28), it is evident that the
resultant equation for the function Fi(x,y) is inde-
pendent of u. [This scale invariance of the integral
operator in Eq. (28) is an example of a characteristic
of BS equations for the interaction of fermions which
has been exploited by Baker, Johnson, and Willey!
in QED.] Then the convergence, or otherwise, of the
interation solution of the equation for Fi(x,y) is
independent of 4, and hence that of Eq. (28) is also.
Therefore, the convergence of the iteration solution of
Eq. (28) can equally well be tested for the special case
u=0. [The reader may verify this by looking at the
explicit solution of Eq. (28) with x>0 which has been
found by Willey.]

(28)
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Let C.(cosf) be the usual surface harmonic of Eu-
clidean four-space,' such that

1 i 1<P<)n+1c 0 (29)
= _—l — n f)'A )
(=g =0 PO\Q. '
P P
P=(p2)12, -izmin(—-—, g>’
0> e r sin(n+41)0
Calcosf)=————. (30)
sinf

Then the iteration solution to Eq. (28), with =0, may
be explicitly verified by induction to be

LF () Jumo=8 2

=0 €,

e.=[(n+1)7— (Lg/go)*12,

if Lg/go is small enough so that the series converges.
[The induction is most easily carried out on powers of
the variable (n41—e¢,), instead of Lg/go.] It is evident
from Eq. (31) that the sum over # converges to a finite
number unless p=g, in which case we expect divergence
since the inhomogeneous term of Eq. (28) is singular
there. The single exception to the finiteness of Eq. (31)
(except when p=¢q) occurs in the zeroth partial wave
(n=0) which becomes infinite when either p or ¢ is
zero, since e<l1. Inspection of Willey’s solution? to
Eq. (28) shows that when u is not zero, the z=0 com-
ponent is finite when p or ¢ is zero. Thus the convergence
of the iteration solution to Eq. (28) is established
everywhere except at the singularity p=g.

Since every function in Eq. (28) is real, the iteration
solution of (28) must be real if it exists. But the zeroth
partial-wave component of Eq. (31) is shown by Eq.
(32) to become first infinite, then complex, as Lg/go
increases through the value 1. Thus, the iteration solu-
tions to Eq. (28) will converge when, and only when

L<go/g. (33)

This is the upper bound on L imposed by the conver-
gence requirement.

In the particular case of the illustrative QED equa-
tion (2), it has been shown that go=2r and g=2e.
Therefore Eq. (33) gives the inequality

L<m/e

——) -0, G
o\o

>

o n+1 1 <P<

(32)

(34)
as the condition for the convergence of the iteration
solution of the majorizing equation of Eq. (2).
VI. ANALYTICITY OF EACH TERM
OF THE ITERATION

The last section has shown the iteration solution of
the BS equation (1) to be a convergent series, under

15 G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).
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the conditions (26) and (27) for s and (33) for L.
Therefore if each term of the iteration solution of (1)
is analytic in s, then the iteration solution itself will
be analytic in s,'® when (26), (27), and (33) are true.

The product GG of the propagators in Eq. (1) is
analytic in the s plane cut along the real axis from
s=4m? to « .7 Therefore GG is analytic in the domain
defined by (26) and (27).

It should be remarked that Wick rotation may in-
deed be carried out on each term of the iteration solu-
tion in this domain. In fact, the condition defining the
domain of analyticity, Eq. (35) below, implies that
|Res'2| <2m which is precisely the condition for
Wick rotation to be possible.!

For simplicity, it is assumed in this paper that the
kernel is analytic in s within the domain defined by all
the other conditions. As mentioned earlier, this excludes
low-mass annihilation diagrams from it.

VII. RESULTANT CONDITIONS

The conditions (26) and (27) on s and (33) on L are
now combined to give the final result of this paper.

The discussion of u in Sec. V shows that u may be as
small as wished, as long as u>0, without changing the
finiteness of the majorizing function F(p,q) at p=0 or
¢=0. Therefore in the inequalities (26) and (27), u can
be left out if the < sign is changed to <.

The left-hand sides of (26) and (27) are smallest
when L is largest. Therefore by Eq. (33), we can replace
L by go/g. In this case, Egs. (26) and (27) finally be-
come the single condition

(Ims/2)2 g0 | Res'2|\ P2
(-]

am? g 2m

As has been explained in Sec. IID, Eq. (35) defines a
domain D(g/go) of the s plane in which the iteration
solution T'(p,q; K) to the BS equation (1) exists and is
analytic in s.

The domain D(g/go) is sketched for a few values of
- g/gin Fig. 4.

The consequences of the limits on D(g/go) for real s
were discussed in Sec. IIC.

As described in Sec. IIC, the result (35) is a proof
that Goldstein’s pseudoscalar homogeneous solution to
the QED equation (2) at K=0 does not correspond to a

(35)

16 E, T. Whittaker and G. N. Watson, 4 Course of Modern
Analysis (Cambridge University Press, Cambridge, England,
1962), Sec. 5.3.

17 Reference 7, Sec. 2.9.
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bound state when a=€*/4r is small [since g2/go*=4a/n
for Eq. (2)7]. It should be mentioned that Willey has
almost proven this already.!” He showed that the
pseudoscalar additive component of Eq. (2) at K=0
has a finite particular solution. Equation (35) com-
pletes the proof'® by showing that the solution to (2)
is actually analytic in s at s=0.

VIII. CONCLUSION

The details of the assumptions and results have
already been given in Sec. II.

The approach used in this paper to prove existence
and analyticity arose from the impossibility of using
any of the standard Hilbert-space techniques on the
usual kinds of BS equations for the interaction of
spin- particles.

The majorization technique used here cannot give
any formal method for calculating any of the interesting
properties of the solution of Eq. (1), such as the actual
bound-state energies and vertex functions, the Regge
trajectories, and so on. Nevertheless, at the present
stage of knowledge about the solutions of equations
such as (1) and (2), it is reassuring that solutions so
easily can be proven to exist at all. It is also interesting
that the general condition B<2mg/g, should emerge,
for this is a limit on the binding energy B of a bound
state in terms of general characteristics of the BS
equation. The value of g depends upon the coupling
constant, and the value of go depends only upon the
spectral representation of the propagators.

There is no reason that the same technique cannot
also be used on the BS equations for the interaction of
scalar particles, since majorizations of the type given in
Sec. IV are even easier to carry out on scalar-particle
propagators. However, since the properties of scalar
equations are well understood anyway, there is not
much need for the information which can be obtained by
the majorization methods given here.
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18 As a matter of fact Willey worked in the Landau gauge
D,y (k) = (guv—k,k,) /R2, because of certain gauge requirements in
the treatment of QED by Johnson, Baker, and Willey. The
conclusion is not changed because g2 just becomes Se? instead of 4e2.



