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g2 q1/2g ~ 1/2

2 4w L(E+co) (E'+co')7'l'
(B17)

The pseudoscalar-meson contribution is

W(q', q) is obtained from W(q, q') by interchange of the
initial vector meson with the final one.

Now define

(X+7)~ ———er rIs, (B1S)

Zg ——Lr/(2m''qq') 7[qq'co(o'Is

+ (q'co'E'+q "osE)Is+qq'EE'I47, (B19)

W(q, q') ~——( r/4q—'re) fqos'Is+ q'EIe7 . (B20)

All these elements of the potential must be multiplied by
the SU(3) crossing coefIicients tabulated in the main
part of the paper.
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Using unsubtracted dispersion relations in momentum transfer for the matrix element of the divergence
of the axial-vector current between nucleon states, we have examined the hadronic continuum corrections
to the Goldberger-Treiman relation for 7i-+ decay. These are observed to be about +10'po. From a rigorous
unitarity bound and the assumption that the pion propagator 6 (0) is dominated by the pion pole we show
that the continuum states of energy greater than two nucleon masses contribute less than —', /&. The 7rp and
7i-0- states contributed negligibly. Using Weinberg's extrapolation for the ~~ scattering amplitude and chiral
dynamics, we 6nd that the presumably dominant 3m. state contributes with opposite sign and is more than
an order of magnitude too small. In the absence of any simple explanation for the 10% correction, we
conjecture that what is required is a 3m threshold enhancement or possible resonance, the tripion, with the
quantum numbers of the pion and mass near threshold at 4.2 BeV/c' or a possible subtraction in the dis-
persion relation.

I. INTRODUCTION

A S a consequence of the precision measurements of
the x+ lifetime, the rate of Gamow-Teller tran-

sitions in neutron P decay, and the s+ nucleon coupling
constant, one may establish in both magnitude and
sign the correction to the Goldberger-Treiman relation
(GTR)'

(rN, +m„)gg =+0.105&0.026.

This number represents the small 10% continuum
correction to the single-pion-pole term, and it is this
number we will endeavor to understand. We will

approach this problem in the conventional way by
assuming an unsubtracted dispersion relation in the
momentum transfer for the matrix elements of the
divergence of the axial-vector current taken between
nucleon states. Then 6 is simply related to the con-
tinuum integral over the timelike region with the
threshold at three pion masses.

As we discover by proceeding in this way, the
problem is not to understand why the correction 6
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is so small but rather why it is so large. Everything
one can estimate from the known low-lying meson
spectrum gives a value for 6 more than an order of
magnitude too small. The 3m state contribution we
estimate gives a number with the wrong sign and an
order of magnitude too small. This is primarily because
of the very small three-body phase space. Electro-
magnetic corrections (with a uv cutoff at 1—2 BeV)
give at most 1%.

The zp and xo- continuum states are negligible also.
Using a rigorous unitarity bound and the assumption
the pion propagator at q2= 0 is dominated by the pion
pole, we can argue that high-energy contributions from
the region of energy greater than two nucleon masses
are less than —,'%.

Confronted with the absence of any evident ex-
planation for the observed 10% correction in terms of
the known meson spectrum, we conjecture the existence
of large forces in the three-body pion system giving
rise to an enhancement with the quantum numbers of
the pion near the 3m threshold. The tripion, if a genuine
resonant state near ns =3m, should be seen in ~+m+~
invariant mass distributions near threshold at 4.2
BeV/c' in 3- and 4-prong w p collisions. No peak is in
evidence from the available data but the statistics is
poor in the threshold region and a small amplitude
peak might not have shown up. Should no tripionic
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enhancement be evident in this region, we are left
with an uncomfortably inadequate understanding of
the 10% correction on the basis of unsubtracted dis-

persion relations.

II. ESTIMATION OF DISCREPANCY

A. Dispersion Relation

First we will derive the GTR taking into account
the precise values of the coupling constants. The matrix
elements of the charged axial-vector current A„&+&(g)

between neutron and proton states is specified by

m2
q

1/2

P (P')
I
A. '"'(o)

I &(P))= I

—
I

(P')
EP, P,&

)&'I ~.z»Fi(q')+q. zv~F (q') jl(P), (2.1)

q.= (P' P). —

where the axial-vector form factors are presumed free
of kinematic singularities. The matrix elements of the
divergence of the axial-vector current i&)„A—„&+~(x)

(which has the quantum numbers of the s.+, G= —1,
I= 1, Jv=0 ) is specified by the combination

D(q') = (m„+m„)F,(q')+q'F&(q'). (2.2)

The major assumption in the derivation of the GTR
is that D(q') is an analytic function of q' with a pole
at q2=@2, p, =mass of the x+, and a cut beginning at

q =(3p) and satisfies D(qr) ~0, qs~co. Then we

can write the unsubtracted dispersion relation in q'

1 " ImD(q')dq'
(m„+m„)g, =v2gf.+

(3u)' g'

Were we to neglect the continuum integral we would
have the GTR

(m„+m„)g~ =v2gf, (2.5)

which, assuming the signs of the couplings are correct,
is satisfied to about 10%%uo. Evidently the continuum
states with q'& (3p)' comprise only i'o of the single-
pion-pole term. To study the origin of this correction,
we introduce the discrepancy 6 defined by

(m,+m„)gg
d, =1-

~~gf- V2gf~rr &s &I

ImD (q') dq'
. (2 6)

If 5=0 the GTR is exact. From the measured values
of the couplings we obtain

hex"=+0.105+0.026,

which is the number we want to understand.

(2.'I)

From the observed rate of Gamow-Teller transitions
in nucleon P decay,

g~ ——1.198~0.022.

It is a consequence of tao precision experimental deter-
minations of weak decay amplitudes and the s+Piz
coupling constant that we are given the opportunity of
discussing the correction to the GTR.

Evaluating the dispersion relation Eq (.2.3) at
q'=0, we have a sum rule,

1 " ImD(q")dq"
D(q') =— +

q 7t (3e) ' q q

Only states with the quantum numbers of the ~+ can
contribute to the absorptive part, ImD(q ).

The residue of the s+ pole, C=V2gf Iz', is specified

by the s+-+ l+v decay amplitude f and the s'+Pe

coup] ing constant &2g. From the precision measure-

ment of the m+ lifetime one obtains

~ f ~

= (0.9320&0.0005)ii.

Flectromagnetic corrections are at most 1% Ex«ap-
olation of the s P scattering data to the neutron pole

yields fr= 0.0822~0.0018 with f'= (gs/4r) (Iz/2m)s or

~ g )
= 13.66~0.15.

This then fixes the s.+ pole residue C to about 1%%uo

accuracy.
From Eq. (2.2), one has

D(0) = (m„+m„)Fi(0)= (mv+m )g~.

2There is a cut beginning at q'=p, ' corresponding to the yw+

threshold. We will not be considering electromagnetic contri-
butions in detail since they can be shown to contribute less than

ig(). The pm+ state as calculated in cutoG perturbation theory is
found to be small, o/2v relative to 4~+0.1.

B. Partially Conserved Axial-Vector Current (PCAC)

It is worthwhile to make contact with another
approach in which the charged pion field s+(x) is
de/red through the weak interactions according to
PCAC' 4

p,'f.~ +&&(*)= za„A„&+&(&). (2.8)

The proportionality constant Ii'f has been chosen so
the definition agrees with the x+ lifetime. The pion-
nucleon form factor E(q') is then defined from the
weak interactions by

P'(P')
I
J-'+'(0)

I &(P))
m2

y
112

I N(P')~zvs&(q')l(P), (2.9)
Ep, 'p, )

where j + (&)= (Cl+p )s+(x) and we have normalized
I~(p,')=g. The connection between I&. (qs) and D(qs)
directly follows:

v2p'f EC(q')
D(q') =

p g'

(2.10)

' M. Gell-Mann and M. Levy, Nuovo Cimento 1{&, yps (1960)' Chou Kuang-Chao, Zh. Eirsperim. i Teor. Piz. 39, /03 (199))
(English transL: Soviet Phys. —JETP 12, 492 (196])g.
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From this equation and the assumption that D(q')
satisfies an unsubtracted dispersion relation, it follows
that E(q') will satisfy a once subtracted dispersion of
the form

Fic. 1. Propagator corrections.

g2 p2

E(q') =g+-
ImE (q'2) dq"

(2.11)
i»I (q'2 —p') (q'2 —q') function p, (q') defined in the propagator 5 (q')

where we have performed the subtraction at q =p.
The correction 6 is then simply related to the con-
tinuum contribution to E(q'). From Eqs. (2.6), (2.10),
and (2.11),

p' " ImE(q')dq'
gh=—

(~.) (q' —p')q'
(2.12)

These dispersion relations suggest that the correction
6 be looked upon as a mean square radius (r') ))( of the
xS interaction defined by the weak interaction

dE (q')
g~=) ', =6p'(r') ~

dg g~—p

(2.13)

C. Bound on High-Energy Contribution

From the 3x state we have a long-range force so
(r') ~~1/(3p) and should be the most important.
The mp state is characterized by (r'), 1/(m, +p)'.
We now turn to making these statements more precise.

~-(q') =- +
g2—p2

dq"p. (q")
) (2.16)

where we assume the integral over p (q') &&0 exists. '
Here oP(q) for q=g(q') &~ 2m is the total nucleon-

antinucleon annihilation cross section in the 'Sp state
of the EX system, with barycentric energy q. For
q~&2m it is bounded by unitarity:

dg
I g~~ I

&4p', L&p-(q') Tq'(q' 4~')7"—
(2m) ~

or by an application of the Schwarz integral inequality

(re (q) &~167r/q' —4m' q'& (2m)' (2 17)

For q&2m the unitarity condition can be analytically
continued to the unphysical region to yield bounds but
these restrictions are not too useful.

Combining Eqs. (2.14), (2.15), and (2.17), we have

2p4 dg2
(g~~)'~& p. (q').

(2m) g

(2.18)

This rigorous bound on dII is useless unless we can
estimate the integral over the spectral function.

To establish an estimate we turn to the connection
between the dispersion relation vertex E(q') containing
all the self-mass insertions and the irreducible vertex
k(q'),with

(2m) 2 IlllE (q2) dq2

(3»' (q Ii )q

E(q') =&(q') ~-(q') (q' —p')

(2 14) or from Eq. (2.16)
Im.E(q') dq'

(2 )' (q' —&')q
dq"p-(q")

3~)'
(2.19)E(q') = k (q') 1+(q' —i(')

Our program is now to estimate the contribution to
6 from the dispersion integral (2.12). In searching for
the major contribution to the integral we will consider
separately the contribution from continuum states of
invariant mass squared q'& (2m)' and q'& (2m)', where
m is the nucleon mass,

The point in doing this is that for the high-energy
piece A~ we may establish a bound which we now
derive.

Using the unitarity condition to calculate ImE(q')
and application of the Schwarz inequality to the sum
on states implies' '

There is thus a well-dined set of contributions to
ImE(q') arising from modification of the pion propa-
gator through p (q'). Were we to set p(q')=p()i') =g
corresponding to-the diagram of Fig. 1 we see from
Eq. (2.19) this class of diagrams contributes to IrnE(q')
a term —

gm (q' —p') p (q'). Let us then write
(q2 4~2) 1/2

I ImE(q') I'~& ~(q' —p')'I
I

~r'(q) p-(q') ('»)
q'

ImE'(q') = —
gm (q' —p') p.(q')+ 1m' (q'),

~ S. D. Drell and F. Zachariasen, Phys. Rev. 119, 463 (1960). 'This is consistent with, but by no means implied by, the
6 S. D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 136, assumption that D(g') satis6es an unsubtracted dispersion

B1439 (1964). relation.

where In)E(q') represents the contribution of all
In this expression there appears the pion spectral intermediate states not represented by Fig. 1. From
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7I

gpN
(a)

9aN 9
(b)

if we assumed the spectral integral Eq. (2.21) were
~& 1.0 so the GTR would be an accident, then
~AJI~ ~&0.012 or 1.2%. Hence we assert with some
confidence that the high-energy contribution to
from states with q2&(22/2)2 is completely negligible
and we need consider only the contribution from states
with (3/2)2 &~ q'& (2222)2

p2 ~2""ImE(q2) dq'

(21)' (q /2 )q
(2.23)

FH".. 2. p~ and 0~ contributions.

the dispersion integral Eq. (2.12), 6 may be expressed
as

dq' p,
' " IrnK'(q') dq'

, p-(q')+ — —, , (2 2o)
2,) q' &2.) (q' —p')q'

We note from this expression that )as a consequence
of the positivity condition p, (q)~&0) the first term
necessarily contributes a negative amount to 6 and
hence in the opposi fe direction to the observed 6 +0.1.
We conclude that any modification of the pion propa-
gator, if considered alone, necessarily leads to the
wrong sign for 6.8

We separate the propagator term in Eq. (2.20) into
a high- and low-energy piece according to

This restricts our search for the origin of the correction
to the relatively low-energy meson spectrum.

D. y~ and e~ Contributions

Besides the nonresonant 3x state there are possible
states for which a 2x system resonates in the P or 5
wave as a p or a-. If these states are reasonably narrow
we may approximate the three-body state as two
bodies. This is the basis for the present estimate.

The px contribution in the Born approximation
indicated in Fig. 2(a) is directly calculated to be

g
2 (q2 2/2 2)3 —1

ImK (q') = —g-
4x 2q'm ' q'

(2m) 2
dq2p (q2) —gp,

dq'p-(q')
(f2 Q(q2) (42/22 q2)l/2—ln—

(42/22 q2) (q2 2/2 2) Q(q2)+ (42/22 q2)1/2

2m)

p,
' " ImX (q') dq'

(2.) (q' —p')q'

each term of which represents a definite set of con-

tributions from continuum states. If we now assume

that the numerical success of the GTR based on single-

pion-pole dominance is not the result of accidental
cancellations between large terms in the continuum
integral (each of the magnitude of the pion-pole term),
then each of the terms in the above expression should

not be inuch larger than gh-g(0. 1). In particular this

assumption implies for the second term

dg
/22 p. (q') & 0.1.

(2m) g

(2.21)

' Ke expect such propagator contributions to be very small.

This assumption is equivalent to assuming the pion
propagator 6 (0), Eq. (2.16), is dominated by the pole,
consistent with the PCAC philosophy.

From the very conservative bound represented by
Eq. (2.12), Eq. (2.18) implies

iz i&0004 (2.22)

or maximum of 0.4% out of an observed 10%. Even

g t/(q' —222„2) . (2.24)

We have neglected terms of order /22/222, 2, assumed

g p gp+ in accord with universality of p couplings,
and dropped a possible magnetic coupling of the p to
the nucleon. As is necessary in all estimates of the
present type, we assumed that the coupling of the
external pion of mass )3p to the mp system has not
changed much from its physical value gp at g p'.
The PCAC assumption is that pion amplitudes vary
little in the range 0~& q'~& p', but here we are assuming
this variation is small out to q'=9y'. Later we will

critize this assumption but for our present purposes
even a change of the amplitude by a factor of 5 from
q'=p' to q'=9p, ' does not inhuence our conclusion.
With g„2/42r=1. 8 one obtains from the dispersion
integral Eq. (2.23)

6 p=0.004,

which is completely negligible. This smallness is easily
understood from Eq. (2.23) since 6, is proportional
to )t12/m, 2=0.04, and also because the E-wave coupling
of the p to 2x introduces an additional factor of the
momentum beyond the two-body phase space which

is small in the region of integration.
The 0- contribution is also estimated from the Born

approximation and the unitarity condition (Fig. 2(b)].
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2g(q 2/ba ) ga/rgaa gaa
ImK.,(q') =-

q' — 4am 4~ q'

&& 0 (q' —2/2. 2) (2.25)

again neglecting terms of 0(/&2/222, 2). The combination
of coupling constants g ~g that appears in this
expression can be bounded by the observed threshold
behavior of xS scattering. Assuming that all the I=0
t-channel EE~ 2x transition comes from o. exchange,
one finds for the scattering lengths

I I I

(b) (c)

g~cVg~~

4~m, '

This is just the combination the Adler consistency
condition, ' which assumes the absence of 0. terms in the
current commutators, implies should vanish. From the
observed scattering lengths we have

g,~g, /42r2/2, 2= 0.014//1 .

Assuming 2/2, =5/1 and I', =2/1, one has g. 2/4)r=/p2
and from the dispersion integral one finds

=—0.025

which is too small and has the wrong sign because it,
comes mostly from the propagator term.

One may question the validity of the narrow-
resonance approximation for the 0. which, if it exists,
probably a broad resonance or S-wave enhancement.
To answer this question we have retained the full
EX—+ 22r, I=O, J=O amplitude fo+(E) analyzed by
Hamilton et al.' and parametrized the mx ~ mm I=O, .

J=O amplitude in terms of the phase shift boo(E),
where E is barycentric energy of the 2x system. This
is indicated in Fig. 2(c). For a range of 5-wave en-
hancements corresponding to 3p~&m &~no, 2@&I' &~8@,

we find Ih, I
&~0.01, completely negligible. We con-

clude that the xp and xa- states cannot account for the
observed discrepancy.

E. Nonresonant 3~ Continuum

Next we consider the 3x contribution as represented
in Fig. 3(a). What is required to establish an estimate
is the x —& 3m transition amplitude for a virtual pion
with q'~& 9p,' in conjunction with the EX—+ 3~ annihi-
lation amplitude continued deep into the unphysical
region 9p'~& q'~& 4m'. Besides information on these
unphysical processes, a further complication is intro-
duced by the necessity of considering full three-body
kinematics in the angular integration of the three-pion
system. These features inhibit the possibility of a
highly reliable quantitative calculation; however, they

Fr@. 3. 3m contribution.

should not dissuade us from examining the qualitative
aspects of the 3x contribution.

If we evaluate the transition matrix elements at the
threshold q'=9p, ' at which the three pions have zero
momentum and an isotropic distribution in the bary-
centric system and assume they remain approximately
constant away from threshold (as would be expected
if there are no resonances near threshold), then the
troublesome angular integrals are trivial and reduce
to three-body phase space. Hence in this threshold
approximation ImEO (q') will be proportional to
three-body phase space. The proportionality constant
is to be abstracted from the dynamics. In this way
we incorporate the correct threshold behavior into the
calculation and this should be the most important
region for the calculation of the xX interaction radius.

The x ~ 3m transition amplitude is speci6ed by

, (q ), ,(q ), „(q ) I J '(0)
I 0)

) 1/2

y &&a&y &bc&&y aa)~
8q Oq Oq 0)

where q~, 2, 3 are the momenta of the three x's of isospin
o~, ~, 3. The matrix element has the general form

g (4~2 4~2 4~2 /&2 ~2 p2 9~2)

g (4/12 4/12 4/ 2 ~2 ~2 ~2 9~2)
—C(4/12 4/12 4~2 ~2 P2 p2 9 2)

so
Mb. d, =X(6b,kd, +Bbd8„+8b,B,d) . (2.26)

~bc;da= f&bcf)da~ (&&t)N&ql &q2 &q3 &q )
+t)bdbca&(~&t&N)q1)q2 &qb'&q')

+/)ba//cdC($&3&Q&q1 &q2 &qb )q ) )

With S= (ql+q2) &
t= (q1+qb) &

Q= (q1—q) q12= q
2

=qb'=/1' and &+~+&=3/tc2+q2. At the threshold for
3', p =9p, s= f=s=4p, , and crossing symmetry

and Bose statistics informs us that here

' S. L. Adler, Phys. Rev. 137, 31022 (1965).
io I Hamilton, P. Menotti, G. C. Oades, and I.. L. J. Vick. The number X which measures the strength of the

phys Rev 128, 1gg1 (1962)
' ' '

~ ~ 3~ transition at threshold we will leave unspeci6ed



HEI NZ PAGELS

M (b&
= g'/6&(42. (2.28)

The all important factor of the pion mass appearing in

the denominator of this amplitude emerges as a conse-

quence of the virtual nucleons in Fig. 2(b) approaching
their mass shell at the threshold developing singularities
like 1/)4. Two such nucleons contribute the factor 1/&4'

which is just what is required to eliminate the multi-

plicative factor p' in the dispersion relation for the
discrepancy 6, Eq. (2.23).

The amplitude for Fig. 2(c) with the pion-pair
contact interaction is essentially the p and cr contri-
butions considered before. Here we see the pion pair
with I= 1 will not contribute at all since the amplitude
is antisymmetric in the isospin of the pair and vanishes

when contracted into the m. ~ 3m transition amplitude,
and if I=O the 0. term is very small relative to 3f(b~.
The amplitude for Fig. 3(d) occurs with the ratio

for the moment; later we appeal to Weinberg's" and
Khuri's' analysis of xm scattering and smoothness
assumptions to establish an estimate for X.

Similarly we may treat the Ml —& 3x amplitude at
the unphysical threshold. Crossing symmetry informs
us that at this threshold

(E(p+)iv(p ) ~
r

~

~- (q, ),~- (q'),~- (q.))
= (~'/8 p+'p 'q&'qm-'q4')"'iN(p )-

&& [Miy4(q/2m) (('&4.rz+b&QT +f'&g T4)j
&&~(p+8»"e: ~." (2.27)

There are also possible additional terms antisymmetric
in the isospin indices b, c, and d; however in our calcu-
lation we will not include them since they vanish when
contracted with the purely symmetric m —+ 3x ampli-
tude Eq. (2.26). The constant amplitude M appearing
in Eq. (2.27) must be computed from dynamics. In
particular we will consider the contribution from Figs.
3(b)-3 (f) .

Since the three external pions appearing in these
diagrams are all soft in the threshold limit, we can
appeal to the technology of low-energy theorems for
pion processes either as implemented by current
algebra" or phenomenological Lagrangians exhibiting
chiral symmetry. "We will use pseudovector coupling
of single pions to the nucleons as required by PCAC
and the chiral symmetric Lagrangian of Ref. (14) to

compute the tree graphs 3(c) and 3(d).
The threshold amplitude M(b) corresponding to Fig.

3(b) is calculated as

interaction strength 'A, the relative contribution of
transitions 3(d) to 3(b) to the discrepancy is very
small, 1/50. We ignore them.

We also consider the contribution of a parity doublet
of the nucleon with Jp=-', as illustrated in Fig. 3(f).
Such contributions might be important for, as empha-
sized by Fubini and Furlan, " they become singular if
the masses are degenerate, m —+ m*. We consider the
observed state with J"=-,', m*=1550 MeV as a
candidate. Using vector coupling of the pion for the
E*E~ vertex characterized by the constant g* and
letting p,'«m', m*', we have

M ((& Sg ( m &t' &(4

M(b& g' (4&4*+m km* 4&4—j (2.30)

and from the observed full width I =130 MeV and
30%%u~ branching ratio into cV&r we calculate g*'/4&r

=0.021, a very small number. We obtain from Eq.
(2.30)

M((&/M(b& =0.0014,

a negligible relative contribution.
Finally, we examine the m. propagator term indicated

in Fig. 3(e), which is of the class shown in Fig. 1. On
general grounds this must contribute with the wrong
sign to D. Using Eq. (2.26) for the 3x.—& n. amplitude,
we have

M (.&
= —gX/Sp'. (2.31)

Here the factor 1/Sp, ' arises from the pion propagator
(q' —p') ' as q'~ 9&4'. In summary, only the graphs
3 (b) and 3 (e) can be expected to contribute
significantly.

For the absorptive part in the threshold approxi-
rnation we have, using Eqs. (2.28), (2.31), and (2.26),

3X' /g2q Sq C, (q')
ImK, .(q'& = g(X—

4g2 (4&r/ 12/442(2&(. )4

Xe(q' —9~2) (2.32)

Here the three-body phase space is

which indeed exhibits the singularity as m~ —& m. The
coupling g* is related to the partial width of the A*:

~3~ /g*'
y

(4&4*+4&4)'(m*'—eP)

4i &4~1 m*4

d gyd g2d g3
~'(qi+q2+q4 —q)

2gy 2(2 2/3
M(g& 3gp~ ( p )

i
=0.018.

M(b& g E tap)
(2.29)

'"'=
43m' [(q—p)' —4y'$'

(2.33)Quite independent of what we chose for the &r
—& 3&r

» S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
'~ N. N. Khuri, Phys. Rev. 153, 1477 (1967).
"Lay-Nam Chang, Phys. Rev. 162, 1497 (1967).
~4 J. Wess and Bruno Zumino, Phys. Rev. 163, 1727 (1967).

32

where the approximation introduces only small errors

"S. Fubini and G. Furlan, Ann. Phys. (N. Y.) 48, 322 (1968).
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or, using Eq. (2.32),

~. =+0.004t~—(»'/4g')7L»((&)-' —:)
+-,' ((c12)

—' —-') —7 In-', 4+8 ln(-', (A —1))7
=+0.001E(~—(»'/4g'))7 ~=7 (2.34)

The primary reason for the smallness of the integral
is the fact that the three-body phase space acts as a
very strong suppression. Variations of the cutoG
A&~14 will not alter the conclusions we will make
regarding the 3x state.

To estimate A, we examine the analysis of Weinberg, "
who has pointed out that if the ~x amplitude does not
vary much from the region 0&~s,t,N, &~ p', 0&~ q&', q2', g&',

q'~&@2 where it can be calculated to the physical
threshold s=4p', e=t=0, gl'=q2'=q~'=q'=p', then
we can calculate the scattering lengths. The primary
assumption is the smoothness of the amplitude in the
variables. Assuming that Wein

berg�'s

crossing-sym-
metric expansion of the amplitude retaining just linear
terms in s, t, and I (there is no dependence on the
external masses to this order) is approximately valid
out to the unphysical threshold for m- —& 3z at s=t=l
=4@', then we can determine X by extrapolation with
the result

6I"(gv/f-)—'= 7o—(2.35)

This is, of course, a large extrapolation to an unphysical
point. If we examine the analysis of Khuri" who also
assumes that a self-consistent perturbative approach
to xm- scattering is valid and retains quadratic terms in
the expansion of the amplitude so the mass variables
q&', q&', q&', q' explicitly enter, we find the extrapolation
to the point s=t=e=4', q~'=q2'=q~'= —,'q'=p' yields
X= —6p'(gi/f )'—18h&ii'. The correction factor —18''

for all q'. The two terms in the factor (X—3'/4g')
appearing in Eq. (2.32) come from the Figs. 3(b) and
(e), respectively. We expect that the dominant con-
tribution to ImE(q') in the relatively low-energy
region 3p~&q~&7@ is approximately specihed by Eq.
(2.32). For large q2 the approximation represented by
Eq. (2.32) must fail since the three-body phase space
C»(q') grows linearly with q' as q'-+~ and ImE(q') ~
(constant)Xq', violating the behavior required for a
once-subtracted dispersion relation for K(q'). Evi-
dently the approximation of the matrix elements as
constants fails for large q' and the required convergence
factor must be supplied by a more precise treatment of
the dynamics. However, only the low-g' region can be
important as we have argued, so we may introduce a
low cutoff.

To consider the contribution to 6 from the 3+ states
of energy g with 3p~&q~&Ay, we have the dispersion
integral

p,
' '~»' ImKig &(q')dq'

gh~ =—
(q' —~') q'

which is of the wrong sign and more than one order of
magnitude smaller than the observed 6=+0.1. Now
we discuss the consequences of the complete failure of
our assumptions to provide the observed value.

III. 3m THRESHOLD ENHANCEMENT
OR TRIPION

We have argued that the high-energy contributions
for q')(2m)' and the np and ma states contribute
negligibly to the discrepancy h. If the 10% correction
to the GTR is to be understood it must be in terms of
the dynamics of the 3~ J =0 state. Assuming con-
stant matrix elements (or at least that they do not
increase by an order of magnitude) for the m

—+3m
and EX~ 37r transitions, we estimated

Dg 0.001(X—3X'/4g') . (3.1)

Smoothness assumptions on the mx amplitude implied
a value X~—7.0 which from Eq. (3.1) yields a cor-
rection of the wrong sign and is an order of magnitude
too small.

We now remark that independent of this estimate
of X from the irir amplitude, Eq. (3.1) possesses a
unique positive maximum for h~ (X) at X = 2g'/3= 117,

mgx~p P6

or 6%. This is the largest positive value for 6 we can
obtain in the framework of threshold dominance. But
the huge value for X this requires, suggests that there
are strong forces in the 3m. 0 state. This leads us to
question not only the assumption of constant behavior
of the matrix elements near the 3x threshold but also
any smooth extrapolation procedure in the xw ampli-
tude. We will not comment on the latter question but
will examine the consequences of 3m- 0- attractive
forces which we urge are required to understand the
correction 6 on the basis of unsubtracted dispersion
relations.

To do so we consider a simple model of the m. —+ 3w
amplitude revelant for our calculation, in which we
ignore momentum transfers between the anal three

is estimated to be small, —18hy4=6uo'y'=0. 24, and
does not significantly change the estimate Eq. (2.35).
If the extrapolation required to calculate the scattering
lengths is all right and that required to estimate P is
wrong (by an order of magnitude), then the dependence
of the amplitude on cubic and higher-order terms in
the expansion would have to be very strong in just
such a way to inhuence one extrapolation and not the
other. This seems to us unlikely although probably not
impossible.

Using the value of X, Eq. (2.35), obtained in this way,
we find from Eq. (2.34) for the 37r contribution to the
discrepancy

hg =—0.007,
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(b)

FrG. 4. Unitarity condition.

N
( )

N

Here T33(q') is the 3vr —+ 3vr J~=O amplitude. We
ignore fly-by diagrams of the t&.pe in Fig. 4(b) which
also contribute but are small below q'= (m„+p)' 36''.
The unitarity condition on E(q') in the 3~ approxi-
ma, tion is

In~E(q ) =e, (q )X*(q')T»(q')S(q' —9&'), (3.4)

where T»(q') is the NN —+ 3vr 'So amplitude continued
to the unphysical region. It satisfies a unita, rity con-
dition

1m 2'32(q2) = @&(q ) 2'3&+(q )T&2(q )8 (q —9+2) . (3.5)

Now if we assume there is a strong attractive en-
hancement in the 3~~ 3~ amplitude T»(q'), we may
simply solve the integral equations with the absorptive
parts specified by Eqs. (3.3)—(3.5). The solution is
known to imply this enhancement will be ma, nifest in

X(q') and E(q'). Very crudely we characterize the

pions. Then the amplitude depends only on the virtual
pion mass q'=3(s —p'), s=t=N so X=X(q'). Here X(p')
is the value of the mx scattering amplitude at the
symmetry point s= t =I= 4p'/3 which we assume
given. The dispersion relation for X(q') then reads

Imk(q )dq
(3.2)

') - (q"—~') (q"—q')

where we calculate the absorptive part from unitarity
in the 3' approximation as illustrated in Fig. 4(a).

Imp (q2) @ (q2) g8 (q2) T~ (q2) 0 (q2 9p2) (3 3)

enhancement by a pole so

(yP —n.") p' —~'~)
X(q') = X(p')i i, E(q') =E(p') — —

~, (3.6)
kq' —~"i q' —~")

where x' is the mass of the enhancement in the 3~ 0
system. We see that X(q') cannot be smoothly extrap-
olated from q'=p, ' to q' near m", in fact it becomes
quite large there. From the very approximate expression
for E(q'), we have for the discrepancy 6=p'/~". From
6=+0.1 we obtain vr'=3. 1p, so the enhancement must
be near the 3m. threshold. "

The purpose of this illustration is only to indicate
that attractive 3z forces near threshold provide an
alternative to the negligible result for 6 obtained
without enhancement. If such a 3' state existed as a
resonance, the tripion, it should show up in the inva, ri-
ant mass plots of vr+7t-+x in 3- and 4-prong production
experiments on hydrogen, like ~+p~ p~+vr+x. . No
peak is evident from the data' between threshold a,t
4.2 and 5.5 BeV/c' where we would expect it; on the
other hand, sta, tistics is poor in this threshold region
and a small enhancement might be missed. Should
evidence accumulate against the tripion either as a,

resonance or threshold enhancement, we are lef t
without an adequa, te picture of the origin of the cor-
rection to the GTR on the basis of unsubtracted
dispersion rela, tions. Only a,s a final resort would one
appeal to the possibility of a subtraction in the dis-
persion relation for D(q'). If this is indeed the case
then one loses the GTR unless additional, ad hoc,
assumptions are made.
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