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A multichannel dynamical calculation of pseudoscalar and axial-vector meson parameters is performed
using the relativistic Lippmann-Schwinger equation. The channel considered is PV — PV. The potential
is computed using the usual Feynman rules and the resulting equations are solved on a computer. The
cutoff is fixed by adjusting the output mass of one resonance or bound state or the output width to the
experimental value. For J?=0" we fix mx =496 MeV and obtain as output m,=135 MeV, m,=587 MeV.
For JP=1%, we fix Tp=114 MeV and obtain as output mz=1060 MeV, mg = 1310 MeV, T'x =87 MeV,
mp=975 MeV, T'y=50 MeV, my =1400 MeV, I'y'=43 MeV. Furthermore, if we fix m4,=1080 MeV,
we obtain T'4, =110 MeV, mp=1370 MeV as a bound state.

I. INTRODUCTION

REVIOUSLY! we have reported a calculation for
the parameters of the vector mesons using the
relativistic Lippmann-Schwinger equation. The most
satisfying result of that calculation was that it was
possible to produce whole octets with one adjustable
parameter (the cutoff for the integral equations) and an
assumption about the behavior of the off-shell potential.
With this and with input broken SU (3) symmetry the
octet emerges as a necessary consequence of the equa-
tions with reasonable values for the masses and widths.
The problem involving the pseudoscalar-vector meson
channels has received some attention in the past.2 We
have looked at this problem again from the point of
view of the multichannel Lippmann-Schwinger equa-
tion. The potentialis computed using theusual Feynman
rules and the resulting coupled integral equations are
solved numerically on a computer. In cases where S and
D waves contribute to the scattering, we keep both
parts and thus double the dimensionality of the channel
space.

We have sought toanswer two questions which appear
to be relevant to a practical realization of the bootstrap
philosophy. First, for a given spin and parity state, is
it possible to produce whole octets with at most one
adjustable parameter? We have previously found that
this is indeed the case for vector mesons (1~ state).! We
find that this is also the case for the pseudoscalars (0~
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v P Frc. 1. The Feynman diagrams

giving rise to the potentials.
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state) and axial vectors (1* state). This would imply
that within the context of the present model, no member
of an octet is more fundamental than another. It also
indicates that broken SU (3) reproducesitself. The other
question is whether it is possible to climb up the
bootstrap ladder gradually. There exists a large number
of known mesons and a true bootstrapper should write
down a horrendous number of integral equations of still
unknown properties and upon solving them would ex-
plain all mesons in one grand fashion. But for those
interested in a more modest proposal, it is interesting to
see whether within the context of a simple and manage-
able model one can ascend in successive steps. For
example, it is reasonable to start with PP — PP and
try to produce the vector mesons as resonances or bound
states. Now assuming some success here, the next step
would be to put these vector mesons back as input and
consider PV — PV and see whether it is possible to
produce the pseudoscalars, the axial vectors, and others,
if possible. This is the program that we follow here.

II. CALCULATIONS

The potential is computed from the graphs in Fig. 1.
At the PPV vertex the SU (3) invariant interaction is

i [ 0P P
ngp"rﬂr—vﬂjz[Pk] ™ —P* ™ :l, 1
and at the VVP vertex the interaction is
—if_eaﬁw[aV,.k’ AV ,* } AV ,i* aV,k':lPij 2
2V2 dxy Oxg 0%y Oxg
From the width of the p meson one obtains
g&/4r=2.5, 3)

and from the width of w using the Gell-Mann, Sharp,
and Wagner model one obtains?
m2f?/4r=13.0. 4)

3 M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).
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These values depend on the choice of masses and widths
for the appropriate mesons. We take the most recent
data, though there still exists some ambiguity.* The
SU (3) symmetry is broken in the sense that we use the
physical masses of the external particles. The masses of
the exchanged particles will be taken to be equal, since
symmetry breaking for the exchanged particles will
produce only very small effects in the final answer.

The potential is a product of two factors, the SU(3)
crossing coefficients which are matrices and the mo-
mentum dependence. The latter will also assume a
matrix form for the JP=1+ states since we have two
possible orbital angular momentum states. Thus, each
member of the momentum matrix must be multiplied
by the corresponding matrix for the SU(3) crossing
coefficients. We use the helicity representation of Jacob
and Wick® and the partial-wave projection defined by

1
V“w:E / 9 SinfV ndor_,” 6) (5)

where d,»7 () is the usual d function. For J =1 states the
potential matrix has the form

X W) Y

Via®= {W(q’,q) Z wW(q'q)
Y W(g,q") X

. (6)

We carry out a unitary transformation to parity eigen-
states with the aid of the matrix

V2 0 iv2
0 1 0 } @)
W2 0 —1v2
to obtain
X+Y  V2W(q,q") 0 }1+ state
V2 (¢',9) Z 0 } . (®)
0 0 X—Y) 1 state
Thus, we use
( X+Y \/ZW(q,q’)) )
V2 (¢',9) Z

and X —Y as the 1+ and 1~ potentials, respectively. The
quantities X, ¥, W, and Z will receive contributions
from both pseudoscalar and vector exchanges. These
and other relevant calculations are given in the
appendices.

4 A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri, M.
Ross, W. J. Willis, L. R. Price, P. Séding, and C. G. Wohl, Rev.
Mod. Phys. 40, 77 (1968).

(159?94). Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404
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The SU (3) crossing coefficients are as follows:

For V exchange,

I=1 state:

2 0 3 —1 0 0 |mw

0 0 0 —V2 0 0 |=7e

W50 2 B8 0 0l

-1 V233 1 0 0 |(KK*+KK*)N2 (10)
0O 0 0 0 —2V2|wp

0 0 0 0 V2 —1)((KRK*—KER*N2.

The w and ¢ are physical particles determined in terms
of singlet and octet states by the usual simplified mixing

formulas 2 1
w=3 e+ V5 es,
¢=(\/%)¢1-(\/%)¢’8-
I=0 state:
2 —2 —V3 0 0 Y
-2 3 - 0 0 jme i
-8 -0 3 —1v6 0 |(RK*—KKYN2
0 0 —3/6 83 0 |n¢
0 0 0 0 —3J(RK*+KEK*) /N2
(11)
I=} state: |
—1 1 —3 3 0 3=K*
=1 =3 33 1 36 |Kp
31 BB} —3/6|nK*
0 3v6 2 —3v6 1 JKe.
For P exchange,
I=1 state:
0 0 0 —1 0 0)m
0 0 0 V2 0 0w
0 0 0 —V3 0 O |m . (13)
—1v2 -3 1 0 0 |(RK*+KR*NZ
00 0 0 —2+Zm e
L0 0 0 0 V2 —1)(RK*~KR%)/N2
I=0 state:
(4 .0 =3 0  0]m
0 0 V3 0 0|7 ~
V3 V3 3 —+6 0 |[(KRK*~KK*/VZ (14)
0 0 —v/6 0 0 |n¢
0 0 0 0 —3) (RK*+KEK*)N2
I=1 state
¥} -2 0 % 0 )rK*
-2 1 -3 0 1iv6|Kp
0 -3 —1 0 WI|Ke (15
§ 00 0 =3 0 |nK* .
0 36 2 0 —1JKe.¥§ %

There is one more point to be considered. The p-meson
decay into two pions reflects itself in the fact that the
propagator for the diagram in Fig. 1(b) can have a pole
for physical values of the external momentum. This in
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Fic. 2. Eigenphase for JPG=1%+ state with I=1, g*/4r=2.5,
m2f2/4r=13, and A=2.1 BeV, A=2.2 BeV.

turn appears as a logarithmic singularity in the partial-
wave projection. Though this is an integrable singu-
larity, the usual matrix inversion method with Gaussian
quadrature mesh points fails to solve the integral equa-
tions. Either one has to use logarithmic Gaussian
quadratures or be careful in the choice of mesh points
about the singularities.® We have done neither. Funda-
mentally, PV scattering is a three-body problem beyond
the scope of the present investigation. Thus, we resort to
the following device: The mass of the exchanged
pseudoscalar meson is increased to a value such that no
singularities occur. In short, we take the mass of the
exchanged pseudoscalar octet tobe 775 MeV. This value
is chosen for convenience and the answers do not depend
on it very much once we are above the critical value to
prevent the singularity from occurring.

III. RESULTS OF CALCULATION
A. JP=1% States

Study of the SU(3) crossing coefficients reveals that
there are two distinct combinations for different values
of G parity. The I=4% state of course is an exception.
Thus, we present the results for the JP=1% states in
two distinct subsections. This is because we obtain two
JP=1+ results which are produced with different cut-
offs. The first set of particles will be denoted by B. This
is the one into which the B(1208) is assigned. The other
set will be designated by A. This is the one to which the
A1(1080) is assigned.

Set B

I=1,Y=0,G=+1. Experimentally it is known that
there exists an I=1 state at about 1208 MeV. Its spin
and parity are not well known, but 1* is favored, 2+ is
not yet ruled out, while 2~ is not favored.” Theoretical

6 C. E. Jones and G. Tiktopoulos, J. Math. Phys. 7, 311 (1966).
7 G. Ascoli, H. B. Crawley, D. W. Mortara, and A. Shapiro,
Phys. Rev. Letters 20, 1411 (1968).
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calculations of this state have yielded conflicting results.
Some have favored a 1% state, while others favor a 2~
state.? These investigations are based upon inspection of
the Born term or an approximate N/D calculation. We
have performed a dynamical calculation based on the
relativistic Schrodinger equation.

We consider the following coupled channels: 7w, 7o,
np, (KK*+4+KK*)/V2. There are two orbital angular
momentum values .S and D, which can combine with the
spin to yield a JP=11 state. Likewise, there are two
orbital angular momentum values P and F that can
combine with the spin to produce a J¥ =2 state. In the
present calculation we keep both angular momentum
values, which makes the momentum part of the po-
tential a 2X2 matrix.

It proved impossible to produce a resonance in the
JP=2-, I=1, G=+1 state. The phase shifts are com-
pletely insensitive to cutoff and only slightly sensitive to
the coupling constants. The independence from the
cutoff can be easily understood by noting that for higher
partial waves the kernel converges rapidly and the
cutoff is superfluous. On the other hand, a JP=1*state
is extremely easy to produce.

The results are shown in Fig. 2. We see that the
numerical results are sensitive to the cutoff. We adjust
the cutoff so that the width of the B meson is 114 MeV.
This corresponds to A=2.2 BeV. Then the mass of the
B meson is 1060 MeV. If the mass is adjusted to the
experimental value of 1208 MeV, then the width in-
creases to about 200 MeV and the cutoff becomes 2.1
BeV. We shall work with 2.2 BeV, though 2.1 BeV is
just as acceptable. The resonance positions are just
shifted by about 150 MeV in this case, and about 70
MeV in other cases.

Of course, if the mass of the B meson is chosen to be
1060 MeV, then the only decay mode available is mw.
But even if we adjust the mass to be 1208 BeV, thus
opening the new decay channel w¢, the B still prefers to
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decay into 7w. The branching ratio is

B> 7o
—| =7.7X10.

B— W 1208

The smallness of this result can be understood from the
crossing coefficients. Equations (10) and (13) reveal that
the direct coupling does not occur and thus the decay of
this mode should be small. This is consistent with the
experimental result that 7w is the predominant mode in
decay for the B meson.

The B meson is produced mainly by vector exchange.
If we look at the SU (3) crossing coefficients for pseudo-
scalar exchange, Eq. (13), we see that the low-mass
channels do not interact. This is explicitly confirmed by
actual calculation.

I=1%, Y=1 stale. The experimental situation for the
I=3% states is not clear at the present. There exists
evidence for a number of bumps in the energy range
1300-1450 MeV.? In our model, there appear to be two
JP=1% octets. If this is indeed the case, the I=1%
members could be badly mixed. We consider the five
coupled channels 7K* Kp, Kw, nK*, and K ¢. There is
one resonance at 1310 MeV with a width of 87 MeV.
The other eigenphase just misses 90°. Our results are
shown in Fig. 3. It usually turns out that if one includes
more higher-mass channels, the lower-mass eigenphases
rise more steeply. Thus it is hoped that the addition of
more channels would produce another /=% resonance.

I=0, Y=0, G=—1. Keeping the parameters fixed
we look at the 7=0 state. Here we couple mp, nw,
(RK*—KEK*)/V2, and 5¢. The results are shown in
Fig. 4. There are two resonances: one at about 975
MeV, which we identify with the H(990), and the other
one at 1400 MeV which has not been observed. We call
it H'. The widths of the two mesons are 50 and 43 MeV,
respectively. The decay mode of H is pure mp, while the
predominant decay modes of H’ is nw with the predicted
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Letters 19, 972 (1967).
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Set A

I=1,G=—1 state. In cases when the momentum part
of the potential is just a pure number, the reversal of the
signs of the SU(3) crossing coefficients usually means
that the force has been changed from attraction to
repulsion, or vice versa. And if one obtains a resonance
in the first case, a resonance is not expected in the latter
case.

For the JP=1+ G=—1 state the potential is a 2X2
matrix and this opens the possibility that even if we
reverse the signs of all the SU(3) crossing coefficients,
the phase shifts still can resonate. And this indeed does
happen. If we look at the crossing coefficients for /=1,
G=—1, we see that the diagonal elements are negative.
But if one increases the cutoff to A=4.6 BeV then we
obtain another resonance.

We consider the following coupled channel: pr,
(KK*—KK*)/V2. The result is illustrated in Fig. 5.
There exists experimental uncertainties about the state
A 1. Some do not favor an 4; at 1080 MeV and take it
to be just the Deck effect? and there appears to be evi-
dence for an object called 4.5.2° Since the separation in
energy between 4, and 41,5 is small, we fix the cutoff so
that there be a resonance at 1080 MeV and investigate
the consequences. The output width is 110 MeV.

I=0,Y=0,G=+1 state. With the cutoff A=4.6BeV,
we look at the /=0, G= 1 state. Here we have a single
channel (KK*+KK*)/V2. The result is that there is a
bound state at a mass of 1370 MeV. This can be
identified with the (1285). In Fig. 6, we plot the

9 R. T. Deck, Phys. Rev. Letters 13, 169 (1964); U. Maor and
T. A. O’Halloran, Jr., Phys. Letters 15, 281 (1965); M. Ross and
Y. Y. Yam, Phys. Rev. Letters 19, 546 (1967).

0 G. Ascoli, H. B. Crawley, U. Kruse, D. W. Mortara, E.

Schafer, A. Shapiro, and B. Terreault, Phys. Rev. Letters 21, 113

(1968).
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determinant of the homogeneous integral equation. The
bound-state problem is an eigenvalue problem, and the
energy is determined by requiring the determinant to
vanish. The output mass of the D meson can be reduced
if we reduce the mass of the 4.

B. JP=0" States

The pseudoscalar mesons are well-established par-
ticles. Thus, it is interesting to see whether their octet
can be reproduced by our model. If so, this would com-
plete a bootstrap cycle. We start with PP — PP and
produce the vector mesons. Then we put back the
vector mesons and consider PV — PV and reproduce
the pseudoscalars themselves.

I=%, V=1 state. We consider the five channels
represented by states 7K*, Kp, Ko, nK*, and K. We
solve the eigenvalue problem, varying the cutoff so that
the determinant vanishes at 496 MeV. This corresponds
to the cutoff A=3.33 BeV. The determinant is plotted
in Fig. 7.

I=0,Y=0,G=+1 state. With the cutoff determined
by the K meson, we look at the 7=0, G=-1 state.
Here we have a single channel (KK*++EKK*)/v2. With
the cutoff A=3.33 BeV, we produce a bound state at
587 MeV.

We plot the determinant in Fig. 8. The model predicts
only one state. The good agreement with experiment
here (and for the 7) should not be taken too seriously
because of the crude treatment of the pseudoscalar
exchange as discussed in the Introduction. But, never-
theless, there are several interesting points. First, the
mass of the K comes out to be smaller than that of the 7.
This is a general result. For if we decrease the mass of
n by increasing the cutoff, the mass of K will be corre-
spondingly decreased. Furthermore, if we truncate the
K meson problem to two or three channels, then the
mass of the K turns out to be larger than that of the ».
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So it appears that broken SU (3) symmetry gets propa-
gated in a nontrivial way, in which the number of
coupled channels considered is important.

I=1, Y=0, G=—1 state. The two coupled channels
are mp and (KK*—KK*)/v2. With the cutoff fixed at
A=3.33 BeV, the bound-state energy of this state turns
out to be 135 MeV, which is close to the experimental
value for the =. We plot the determinant in Fig. 9. This
is a satisfying result for the following reasons. The
smallness of the 7-meson mass in relation to the other
members of the pseudoscalar octet raises the question
whether it is not somehow more fundamental.!* If this
were so, nuclear democracy would develop regal trim-
mings. Of course, our calculation is not a true bootstrap,
and in no sense is the mass of the = determined in a
fundamental way. But within the context of the model,
the 7 does not seem to have any special status and the
smallness of the mass is just a consequence of the
dynamical equations plus the input.

Some remarks about the above results are in order.
Since the pseudoscalar contribution to the potential was
not handled in a completely satisfactory way, the
question is how important are these exchanges. The only
state which is almost independent of the pseudoscalar
exchange is the B meson, since the SU(3) coupling
coefficients are zero for the low-mass channels. A direct

.20 T T T T T T T T T T

A =3.33Bev

DETERMINANT
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ENERGY(MeV)

F1c. 7. Determinant for JP=0" state with =%, g?/4r=2.5,
. f2/4w=13, and A=3.33 BeV.

calculation also reveals that the =%, JP=1% state is
also almost independent of the pseudoscalar exchange,
while the H meson becomes a bound state without the
pseudoscalar exchange. The 4, and the D meson will
not appear if we leave off the pseudoscalar contribution.
For the J?=0" projections, the vector exchange yields
attractive forces, but one needs very large cutoffs to
produce the bound states. The addition of the pseudo-
scalar exchange, with the artificially large mass, reduces
the cutoff to a more reasonable value.

The other question is, how important a role would one
expect the exchanged mass to play? If one deals with a

11 G, F. Chew, Comments Nucl. Particle Phys. 6, 187 (1967).
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pure Yukawa potential then it is clear that the ex-
changed mass plays an important role, since it de-
termines the range of the potential. Our potentials are
only roughly of the Yukawa type, and the most im-
portant contributions to the scattering come from the
very singular pieces which are determined by the
parameters of the external legs, rather than the ex-
changed mass.

C. Other States

The exchange of a pseudoscalar or vector meson octet
in the ¢ channel will give rise to forces in the singlet,

LI N R B A B

PO BN SO BN S BT

DETERMINANT

-.06

P Y S

| L L LR

-.08

| | | | | 1 1 |
250 300 350 400 450 500 550 600 650 700 750
ENERGY (MeV.)

Fi6. 8. Determinant for JP¢=0"* state with I=0, g2/4xr=2.5,
m2f*/4w=13, and A=3.33 BeV.

symmetric and antisymmetric octets and the 27 repre-
sentation in the s channel. There is no contribution to
the decimet or antidecimet representation. The crossing
coefficients for the 27 representation are

Vector exchange

I=1,V=2:
(2)KK*, (16)
1=2, V=0
(2)1rp, (17)
1=3 V=1
1 1\zK*
oy "
1 1/Kp

For pseudoscalar exchange, the sign of all coefficients
should be reversed.

Our approach has been to fix the cutoff so that the
mass of one known member of the representation is the
experimental value and then see whether the other
members are produced. Thus far there has been no clear
cut experimental evidence for existence of the 27
representation of the mesons and hence we cannot make
any definite predictions, but there are some considera-
tions which seem worthy of discussion.

We have considered the JP=0~ and 1% projections.
For the JP=0"state in the 27 representation the vector
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exchange contributes a repulsive potential and the
pseudoscalar yields attractive potential. If the cutoff is
chosen to be A=3.33 BeV, the same value as used for
the pseudoscalar octet, then there are no extra bound
states or resonances. Resonances or bound states can be
produced if the cutoff is increased to 5 or 6 BeV.

If we consider the JP=1* state and take the cutoff to
be the same as for set B(A=2.2 BeV) then we produce
an I=2, ¥=0 resonance at about 1200 MeV with a
width of approximately 350 MeV. The output width can
be reduced considerably if the position of the resonance
is reduced slightly. For the other states of the 27
representation, the phase shifts rise rapidly, but then
flatten off. The I=% eigenphase goes through 90° very
slowly at about 1.4 BeV. The I =1, ¥'=2 state does not
reach 90° at all. One can make all states of the 27
representation resonate by increasing the cutoff. These
resonances would then lie between 1 and 1.3 BeV, with
the I=2 member being lowest in mass. Since there is
only slight evidence for an /=2, ¥=0 resonance at
about 1325 MeV and no evidence for lower-mass reso-
nances one must conclude that the cutoff cannot be
greater than 2.2 BeV. Thus there are two possibilities
which are consistent with our model. Either no member
of the JP=1+, 27 representation resonates or only the
I=2, V=0member resonates. Whatever the case might
be, the model at hand cannot produce resonances of the
JP=1+ 27 representation which have masses greater
than about 1.5 BeV.

APPENDIX A

We solve the following Lippmann-Schwinger equa-
tion:

1
KD (p,g) =V P (p9)—— 2 P

T «
AVid D (p,k)K oz’ (kyg)d «
X/ 1P (P, ) K o’ (kyq)d (w3t ws) A
Aa W— (wstws)a
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Here the subscripts label channels, W is the total
energy, and

(wsFwa) o= (B24ma2) 2+ (k2-+m2)\2 (A2)
is the energy in the intermediate state. The quantity
Aa= (m3+m4)a (A3)

is the threshold for the a channel and A is the cutoff.
The integral equation is solved in the following way :
We introduce a quantity

Url” (p,9) =22 K17 (p,9)
8

X[l P /I{’(k,g)d(w3+w4)a:|_1 A1)

wW— (w3+w4)a
and we find that U satisfies the FFredholm equation

U (p,9)

T BL

Ve D (p,k)— V' (p,9)
W— (wstws)a
XU ar,(lyg)d (@3 04)q.

Equation (AS) is solved numerically on a computer by
matrix inversion using Gaussian quadrature mesh
points. Then K’ is obtained from the inverse of Eq.
(A4), where we again perform a subtraction in order to
evaluate the principal-value integral.

For the bound-state problem we solve the usual
eigenvalue problem. The equation is

1
=V (p,9)— 2
T o«

(AS)

—1
K/ (pg)=—2 P
™ a

A V1D () K ar/ D (k,g)d (05F000)
X/ I (o) K o (Ryq)d (w3 w4). A6)

A W— (wstws)a

The integral equations are reduced to a system of
homogeneous linear algebraic equations by use of
Gaussian quadratures. These equations will have a
solution when the determinant vanishes, and this fixes
the value of W, which is the bound-state energy.

APPENDIX B

The potential is computed from the diagrams of
Figs. 1(a) and 1(b) using the interactions given in Egs.
(1) and (2). The quantity V' is defined by

—2W YV

M= :
(EElwwl)lﬂ qll2ql 1/2

W=[(E+w)(E+o)]",

where M is the Born term computed from the diagrams
using the standard Feynman rules. The normalization is

(B1)

(B2)
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determined by the relation between M and the S
matrix

Define the following quantities:

x+1
Ii=In|—, (B4)

x—1
Io=2—ul, (B5)
13= - xlz, (B6)
I4=%—x13, (B7)
Is=2x+ (1— a4, (B8)
To=4%—ul3, (B9)

where
¢+ =1 (E—o+E — o)+ M oxen®

x= . (B10)

29¢’

Here E is the c.m. energy of the incident vector meson
and w is the energy of the pseudoscalar meson ; whereas,
I’ and ' are the final c.m. energies of the vector and -
pseudoscalar meson, respectively. M exen is the mass of
the exchanged particle.

1. JP=0 State

The vector-meson exchange contributes the following
potential:

— f2 q1/2q11/2 mml
—Is,

167 [(E+o)(E+o) 2 4

where the masses are those of the external vector
mesons. The pseudoscalar exchange contributes

Voo’ @ (V) =

(B11)

12 1 1
Voo (P)=—=——
2 4 mm’ 2L g’ (B o) (B/+o') 2
X {gq EE' T+ (@E'w'+¢2Eo) o+ qqow' Ty} . (B12)
2. JP=1" State
Define
—f 1
&= . (B13)
167 4 qq' (E4w) (E'+w’) ]2
Then the vector-exchange contribution is
(X+Y)y=¢—3EE'q¢'I:+{¢*"*+FEE wo’
— 3@ ) (g B s
—q¢' (0o’ +3EE)[:43{ EE ww’
—(¢*+EW) ¢+ Ew)} 1], (B14)
Zy=Etmm'qq'Is, (B15)
Wv(g,g") = e amE'qq' L
—3{mE w’ —mw(¢?+Ew)}]. (B16)
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W (q’,q) is obtained from W(g,q") by interchange of the
initial vector meson with the final one.
Now define

1 g2

2 dx [(E+4w) (B4 2

gl2g 12

(B17)

The pseudoscalar-meson contribution is
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(X+Y)P=—%Tls, (B18)
Zp=[1/(2mm’qq') I qg'we' I

+ (¢’ E'+q"?wE)I3+q¢' EE'T(], (B19)

W (g,q')p=(—1/44'm)[q'Is+q'EI5]. (B20)

All these elements of the potential must be multiplied by
the SU(3) crossing coefficients tabulated in the main
part of the paper.
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Hadronic Corrections to the Goldberger-Treiman Relation*
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Using unsubtracted dispersion relations in momentum transfer for the matrix element of the divergence
of the axial-vector current between nucleon states, we have examined the hadronic continuum corrections
to the Goldberger-Treiman relation for =+ decay. These are observed to be about +10%,. From a rigorous
unitarity bound and the assumption that the pion propagator A,(0) is dominated by the pion pole we show
that the continuum states of energy greater than two nucleon masses contribute less than 19,. The mp and
wo states contributed negligibly. Using Weinberg’s extrapolation for the = scattering amplitude and chiral
dynamics, we find that the presumably dominant 3= state contributes with opposite sign and is more than
an order of magnitude too small. In the absence of any simple explanation for the 109, correction, we
conjecture that what is required is a 3 threshold enhancement or possible resonance, the tripion, with the
quantum numbers of the pion and mass near threshold at 4.2 BeV/¢? or a possible subtraction in the dis-

persion relation.

I. INTRODUCTION

S a consequence of the precision measurements of

the 7t lifetime, the rate of Gamow-Teller tran-
sitions in neutron 3 decay, and the =+ nucleon coupling
constant, one may establish in both magnitude and
sign the correction to the Goldberger-Treiman relation

(GTR)! )
Moty
A= 1~£—”—-—g'1—= +0.105-4-0.026.
V2g fx

This number represents the small 109, continuum
correction to the single-pion-pole term, and it is this
number we will endeavor to understand. We will
approach this problem in the conventional way by
assuming an unsubtracted dispersion relation in the
momentum transfer for the matrix elements of the
divergence of the axial-vector current taken between
nucleon states. Then A is simply related to the con-
tinuum integral over the timelike region with the
threshold at three pion masses.

As we discover by proceeding in this way, the
problem is not to understand why the correction A

* Research sponsored in part by: the Air Force Office of
Scientific Research, Office of Aerospace Research, U. S. Air Force,
under AFOSR Grant No. 69-1629.

T A. P. Sloan Foundation Fellow 1968-1969.

1 M. Goldberger and S. B. Treiman, Phys. Rev. 111, 354 (1958).

is so small but rather why it is so large. Everything
one can estimate from the known low-lying meson
spectrum gives a value for A more than an order of
magnitude too small. The 3w state contribution we
estimate gives a number with the wrong sign and an
order of magnitude too small. This is primarily because
of the very small three-body phase space. Electro-
magnetic corrections (with a uv cutoff at 1-2 BeV)
give at most 19.

The mp and mo continuum states are negligible also.
Using a rigorous unitarity bound and the assumption
the pion propagator at ¢?=0 is dominated by the pion
pole, we can argue that high-energy contributions from
the region of energy greater than two nucleon masses
are less than 19,

Confronted with the absence of any evident ex-
planation for the observed 109, correction in terms of
the known meson spectrum, we conjecture the existence
of large forces in the three-body pion system giving
rise to an enhancement with the quantum numbers of
the pion near the 3 threshold. The tripion, if a genuine
resonant state near ., =~ 3m.,, should be seen in rtata—
invariant mass distributions near threshold at 4.2
BeV/c? in 3- and 4-prong = collisions. No peak is in
evidence from the available data but the statistics is
poor in the threshold region and a small amplitude
peak might not have shown up. Should no tripionic



