
PHYSICAL REVIEW VOLUME 179, NUM HER 5 25 MA RC H 1969

Radiative Effects in Semiclassical Theory*
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Unquantized 6eld calculations are extended to include the e8ect of an atom's 6eld acting back upon
the atom. It is shown that, in the absence of an applied 6eld, semiclassical theory predicts that an atom
will decay spontaneously from an excited state with a characteristic time equal to the reciprocal of the
Einstein A coeKcient for the transition. The theory also predicts that the frequency of the light radiated
during a transition will have a small time dependence. The corresponding frequency shifts are compared
with the Lamb shift in hydrogen. The derived equations are used to study the response of a many-level
atom to an applied, monochromatic field. In the case of a three-level system, it is predicted that optical
nutations are not just limited to the resonant transition, but are also present in the fluorescence involving
the other level.

INTRODUCTION

CALCULATIONS with an unquantized electro-~ magnetic field have proved adequate to explain such
quantum-electronic phenomena as photon echoes, '
self-induced transparency, ' and optical nutation. ' It
is argued that a quantized field is not necessary for the
understanding of these eRects because strong fields
consisting of large numbers of quanta are involved. The
present paper investigates the consequences of retaining
a classical field in treating the problem of an atom inter-
acting with weak electromagnetic radiation. It is shown
that the phenomenon of the spontaneous decay of an
atom can be obtained semiclassically, provided one
includes the eRects upon the atom of fields created by
the atomic currents. These currents are assumed to be
equal to the probability current of the atomic electrons
multiplied by the electronic charge e. This assumption
couples the Maxwell and Schrodinger equations, and
this paper is devoted to the solution and interpretation
of this set of simultaneous, nonlinear diRerential
equations.

Even though it is generally believed that a full
quantum-electrodynamic treatment is necessary in
order to obtain all radiative effects correctly, many
calculations involving the interaction of radiation and
matter were first done without quantizing the elec-
tromagnetic field. Thus in the case of the photoelectric
eRect, ' the scattering of radiation from a free electron
(Klein-Nishina formula), ' stimulated emission and
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absorption of radiation by an atom, ' and vacuum
polarization, ' the correct predictions were first obtained
by semiclassical methods.

On the other hand, quantum electrodynamics has
been applied to a much wider range of phenomena with
great success, in the sense that there is as yet no clear-
cut evidence for any discrepancy between its predic-
tions and experiment. However, in spite of the labors
of two generations of theorists in improving the formu-
lation of the theory and developing more powerful
methods of calculation, present quantum electro-
dynamics contains many mathematical and logical
difficulties. In almost every calculation one encounters
divergent and/or ambiguous integrals, which must be
disposed of by various devices. Thus, the infinite zero-
point energy is simply subtracted arbitrarily, some
divergent expressions are set equal to zero on grounds
of relativistic invariance, others on grounds of gauge
invariance, and the order of some divergences is reduced
by the ud hoc device of regulators. The remaining diver-
gences are not really removed, but only concealed from
view, by the devices of mass and charge renormalization.

In some cases it is not yet clear whether the difhculty
is due to a defect in the formulation of the theory, or
whether it arises merely from inadequacies in our
methods of calculation (i.e., perturbation expansions in
powers of e' may not "exist" in the analytical sense).
However, in some particularly simple cases Lsuch as
the vacuum expectation value of the current operator,
(J„(x)), which is a violently divergent expression set
equal to zero on grounds of Lorentz invarianceJ, no
real "calculation" is involved. Another difficulty that
cannot be attributed to inadequate methods of calcula-
tion is the infinite vacuum fluctuations, and consequent
infinite zero-point energy, of the electromagnetic field.
Indeed, at first glance it seems remarkable that any
finite results or reproducible effects could emerge from
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a theory based on point interactions to a field with
infinite random fluctuations.

Therefore, even though we have now learned how
to manipulate the divergences of quantum electro-
dynamics with enough art to extract meaningful finite
results, it seems undeniable that there are fundamental
defects in the basic formulation of the present theory;
a correctly formulated theory should not require
additional ad hoc devices in order to obtain physical
predictions. Theorists are in quite general agreement
that some very deep modifications will be required in
quantum electrodynamics before we have the elusive
"future correct theory" of radiation phenomena. In
what specific way, then, should the present theory be
changed& To this question we have as yet no answers,
and few suggestions.

Now semiclasscial calculations are conspicuously free
from many of the divergence problems of quantum
electrodynamics; the classical electromagnetic field due
to a finite and continuous current distribution is every-
where finite and well behaved. As the list of successful
semiclassical calculations grows, the question arises
whether the necessary modification of quantum elec-
trodynamics may lie in the direction of the semi-
classical approach. Any such change would, of course,
impy a revision of the physical ideas underlying the
present theory and would probably be as radical as the
change which took place in the interpretation of the
Dirac equation in the transition from the original one-
electron Dirac theory to the hole theory.

For these reasons it is of interest to extend the list of
semiclassical calculations as far as possible. To date, it
is generally thought that the phenomena of blackbody
radiation, spontaneous emission, and the Lamb shift
actually require the quantizing of the electromagnetic
field. It is the purpose of this paper to examine the pos-
sibilities of a semiclassical theory of the last two,
closely related, eRects.

In a previous paper' it was shown that, in the dipole
approximation, the expectation of the dipole moment
(ls) and the expectation of the energy (BC) of a, two-level
atom evolve according to

d2 (2ls) 2—( )+II'( )= —
I

—
~

(5C)&(&),
dt

d(K)/dl =E(t)d(is)/dt,

where E(t) is the electric field in the vicinity of the atom.
If the expectation of the dipole moment is interpreted
as an actual dipole moment, its oscillation will create
electromagnetic fields and cause energy to be radiated
away from the atom.

In order to understand how the eRects of spontaneous
decay and frequency shifts come about in semiclassical
theory, consider the following intuitive argument. It is
shown in this paper that the radiation field which reacts

s E.T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

upon the atom consists of two components, one in
phase with the atomic currents and the other 90' out
of phase Lsee Eq. (9)$. For a two-level atom in the
dipole approximation, this corresponds to assuming an
electric field of the form

where the constant E depends upon the detailed struc-
ture of the atom and hence cannot be derived rigorously
in the dipole limit. The second term, (2/3c') (ds/dt') (Is),
is the classical radiation reaction field and is independ-
ent of the structural details of the atom.

The field L~(t) is weak compared with AQ/p, , so that

and the field acting back upon the atom may be approxi-
mated by

20' d
&(I)= "'&(ls)———(ls) .

3 c' dt

Substituting this into the equation of motion of the
dipole moment, one obtains

This equation resembles that of a damped harmonic
oscillator with a damping coefhcient (—g/3) (ls'0'/fisc' )
&& (3C) and a shifted frequency Qt I+ (4ls'/A')(BC)&$"'.
If the atom is excited, (3C) is greater than zero and the
dipole moment grows spontaneously until (R) becomes
negative, at which time the dipole moment begins its
decay to zero. In this way a dipole's field reacting upon
the dipole can give rise to spontaneous decay and fre-
quency shifts.

DERIVATION OF BASIC EQUATIONS

Consider a nonrelativistic, spinless atom which is
described by the Hamiltonian

where Ko is the Hamiltonian of the atomic system in
the absence of electromagnetic fields, and V is the
interaction term arising from the presence of fields. To
be specific, set

X.o——p'/2srs —e'/r,

V= (e/rrse) A(x, l) p. (2b)

The diamagnetic term (e'/2nsc')A'(x, t) in V has been

sL. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Co. , Inc , Reading, .Mass. ,
1962), 2nd ed. , Eq. (75.4).
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neglected because the Gelds treated in this paper are identities:
weak. LThe magnitude of the vector potential A(x, t)
will be of the order of en'(mc/5). j

Any state of the atomic system may be expressed as
dk dQ e'"'(*- (10a)

0'(x, t) =P jJ,(t)P;(x),

where f,(x) are eigenfunctions of Xp, i.e.,

(3)
J,(x', !))e

—*""d'x'=—
IkI

X X J(x', ])e '"'*'d'x', (10b)

The continuum states are not included in Eq. (3) be-
cause they are not significantly excited by radiation of
the optical frequencies treated here.

It is assumed that an atom in the state @(x,)!) con-
tains charge currents which are given by

J(x,t) = (e/m) ReI +*(x,t)ye(x, t)g. (4)

Again a higher-order term, (e'/mc)I A(x, &) I+(x,&) I'j,
has been neglected because of the smallness of A(x, t).
Substituting Eq. (3) in Eq. (4), one obtains

eA

J(x,~) = —Z E~,A.*Vp, ~.,p.Vy,*3,
2m' ~P

~j -(&)—=e(&)~-*(&),

and evolve according to

(6)

where the density matrix elements in the Schrodinger
picture, o j) (t), are de6ned. by

2
J,(x', t)d'x' =— J(x', t)d'x',

3
(10c)

where the integral J'dQ is over solid angle in k space.
One obtains

—i eA
A(x, ),) =P ~,„(&) dfl(n I

e '"'*v
I
P))e'"

~ P 2x'2 tM

2 Q„P~
+ vp)+ -A (xt) (11),

3 c

for the Geld which acts upon the atomic currents. The
deGnition

( I~ "*v~18).—= — x( x( (e-'"*v~~p))

P'@(rim =Z Exlj(rjm (rlj+j—mj' (7)
has been made.

The applied field will be assumed to be that of a
monochromatic plane wave of the form

The atomic currents create a transverse' vector
potential which may be written in the Coulomb gauge
as

C p

Ap(x, t) = — — cos((pt —k x), (12)

1 J,(x', t—I
x—x'I/c)

A(x, t) =— —d'x'+ Ap(x, t), (8)
X—X

1 J,(x', t)
A(x, )!)=-

c I
x—x'I

where Jl(x, t) is the transverse component of the current
density, and the vector potential Ap(x, t) represents an
externally applied Geld. In the calculations to follow,
both the source point x', and the observation point x
are contained within the atom so that the retardation
(Ix—x'I)/c is small compared. with the period of
oscillation of Jl(x, t), and Eq. (8) can be rewritten as

where ~ is an optical frequency. Since at optical fre-
quencies the phase of Ap(x, t) does not vary significantly
over the volume of the atom, the dipole approximation
is valid and the vector potential may be evaluated at
the center of the atom, i.e.,

C p

Ap(0, )!)= cos(pt (13)

may be used in Eq. (11).
Equations (11), (2b), and (1) may be used in Eq. (7)

and, if the nonresonant terms are neglected (the
details of this calculation appear in Appendix A), one
obtains

J (x', t)d x'+ Ao(x, t) (9)
' = —~L% —P(1' j—I'j ),j()')$

in the vicinity of the d,tom. The expression of Eq. (5)
may be used in Eq. (9) with the aid of the following

"It is assumed that the atomic electrons do not see their
longitudinal self-fields. .

—LZ p(~l+~-'. )~ (&)1~)"

Ap(0, t)
[flljplj&jm p ljojmpjm j ~
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LEVEL 2

LEVEL

FIG. 1. Energy-level diagram
for a two-level atom.

TABLE I. Comparison of the semiclassical frequency shifts
with the experimentally measured and the quantum-electro-
dynamically calculated Lamb shift. Both the semiclassical and the
quantum-electrodynamic calculations include the corrections for
vacuum polarization.

In Eq. (14), the definition

m$-mP

1$-2P
2$-2P
3$-3P

0278 cm '
657.20 MHz

0.0027 cm ~

Bauexpt

0.262 &0.038 cm ~ 0.2726 cm ~

1057.77 &0.10 MHz b 1057.19 MHz
0.0083 O. ooa+o«2 cm ~e 0.0105 cm ~

8 A

Ftg
2K 1S C

dk dQ(l
~

e'~'*V
~ j) G. Herzberg (Ref. 11).

b S. Triebwasser, E. S. Dayhoff, and W. E. Lamb, Phys. Rev. 89, 98
(195~).

e G. W. Series, Proc. Roy. Soc. (London) A208, 277 (1951).

has been made, and the Einstein A coeKcients A~,
are defined according to

A „=-,'(p(,' p, (/Ae') n„'= —A, , (16)

The electric dipole moment matrix element p~,- and the
transition frequencies 0&, are defined, respectively, as

p(;= )P,*(x)ex)P, (x)d'x, (17a)

AQg;—=E)—E;. (17b)

It is seen from Eq. (14) that the off-diagonal density
matrix elements oscillate at frequencies 0& +t)0) (t),
where the time-dependent frequency shifts tIQt (t) are
given by

sn, „(t)= —p(r„—r, )~,,(t).

(p)=— +*(x,t)ex@(x,t)d'x

and, using Eq. (3), one can write

Now the expectation of the dipole moment of the atom
is defined by SPONTANEOUS DECAY

Equation (14) predicts that, " in the absence of an
applied field, the diagonal matrix elements will decay
according to

0'n= p A[~0&&(Tg.
' (19)

pendix 8 to be 0.285 cm '. Herzberg" has determined
the 1s-2p Lamb shift in deuterium by measuring the
1s-2p absorption line. The reported value is 0.262&0.038
cm '. The comparison of other semiclassical frequency
shifts with the corresponding Lamb-shift values is
given in Table I.The values of F~ reported in the table
have been corrected for the e6ect of vacuum polariza-
tion. The vacuum-polarization calculation, as first done
by Uehling, 7 uses an unquantized electromagnetic field
and therefore can be fitted into the framework of this
paper.

The agreement between the 1s-2p quantum-electro-
dynamic Lamb shift and the corresponding semiclassical
frequency shift is surprisingly good when it is recalled
that the semiclassical calculation corresponds to a two-
level, spinless, nonrelativistic hydrogen atom. The other
semiclassical frequency shifts agree in sign and order
of magnitude with their quantum-electrodynamic
counterparts.

a,P

Thus the off-diagonal matrix elements are directly
related to the expectation of the dipole moment. Since
semiclassical theory assumes that the expectation of the
dipole moment is responsible for radiation by the atom,
Eq. (18) is a prediction of a frequency shift in the
radiation emitted or absorbed by an atom. Such a fre-
quency shift is a new phenomenon which has not
appeared in other semiclassical calculations.

If a hydrogen atom were prepared in its ground state,
0-1,1,, would be equal to unity and all other O.„would be
zero. The quantity Fl,l, is identically zero, so in this
case Eq. (18) predicts that the hydrogen atom would
respond resonantly to an applied field whose frequency
is given by

= ~2yl F1 2y

This 1s-2P frequency shift r&,2„ is calculated in Ap-

In the case of a two-level system (see Fig. 1), these
equations become

This constant of motion allows one to integrate the
equations and obtain

&2&
—1/(e&u(& —&o)+ 1)

e &z
—1/(e—&u (&—&0)+ 1)

(2Oa)

(2ob)

"G. Herzberg, Proc. Roy. Soc. (London} A234, 516 (1956}."In the following sections, the atomic eigenfunctions Pi(x)
will be chosen to be real. This step is not necessary, but it does
result in considerable simplification of the equations.

0 22 A 21&22&11 )

0 11 A 21&22&11~

Adding these equations, one sees that probability is
conserved, i.e.,

&11+0 22
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The constant of integration to is determined by the
initial state of the atom. From this solution it follows
that the expectation of the energy evolves in time
according to

(~0)= 2 IIQ21(IT22 O'll) =
2 AQ21 tanhp~A21(& —&o)j ~ (21)

FIG. 3. Energy-level diagram
for a three-level system. Transi-
tions are allowed between
adjacent levels.

LEVEL 3

LLVEl. 2

According to Eq. (14), when Ap(0, t) is zero, the
oA'-diagonal matrix element satisfies

IT2 I 2( Q21 712 tanh[2 A 21(t—30)j)0 21

(2A2I tanh(2A21(t tp)$)0'21.

Integrating this, it is seen that the expectation of the
dipole moment varies according to

LEVEL 1

mediately after the atom is excited. The semiclassical
decay does go asymptotically into an exponential
decay as t—to becomes large.

In the case of a three-level system with transitions
allowed between adjacent levels (see Fig. 3), Eq. (19)
becomes

(tI)=t212(012+021) t212 sech(-', A 21(f ~0)i

&&cosLQ21t+ 8(t)j, (22)
where 8(t) is defined by

8(t) —= eo—(21'12/A 21) in{cosht 2A»(& —
&0)J}

~320 33&22 )

0 22 ~ 320 33&22 ~210 22&11 )

0 11 ~210 220 11~

(24a)

(24b)

(24c)

and corresponds to a time-dependent frequency shift
given by

8Q21(&) =d 0/d&= —I'l2 tanh/2'A 21(t—tp) j. (23)

Graphs of the expectation of the energy and the
envelope of the dipole moment are shown in Pig. 2.

It should be noted that Eq. (20a) predicts a non-
exponential decay for an atom in its excited state.
This corresponds toa fundamental difference between
semiclassical theory and quan. turn electrodynamics. In
semiclassical theory it is assumed that the expectation
of the dipole moment of the atom is responsible for
radiation, and hence an excited atom radiates slowly
until its dipole moment grows to an appreciable magni-
tude (see Fig. 2). In quantum electrodynamics, the
probability that a given atom radiates is largest im-

Addition of these equations shows that they are con-
sistent with conservation of probability, i.e.,

0'll+0 22+&11=1 ~

Dividing Eq. (24a) by Eq. (24c), it follows that

IT28/A22&22 ITII/A21&ll

01

(25)

L~»(t) j"2«"»t ~»(t)) = np, (26)

where 0.0 is a constant of integration. The constant of
motion of Eq. (26) is of a new type, not found in con-
ventional theory. It has the effect of preventing the
system from completely decaying to its ground state.
Thus Eq. (26) predicts that the third level should be
"conditionally metastable"; i.e., in the absence of ex-
ternal perturbations it can retain a nonzero amplitude
indefinitely. In such a state, however, the slightest
perturbation will cause the decay to resume.

The constants of motion given in Eqs. (25) and (26)
are sufficient to allow integration of the equations, and
one obtains

- -1fQI

2 2t (al

~ ~ I
~ ~

6 7 A2it —= —A 22/+const, (27a)
020(1—II0&00 —IT02)

=A 21/+ COIlst )

0 11(1 120 &11 0 11)
(27b)

(27c)

l 2 3 4 5 6 '7
{bj

A2it

FIG. 2. (a) Decay of the expectation of the energy of the two-
level atom in absence of applied 6elds. Time is in units of A21
where A21 is the Einstein A coeKcient for the atom. (b} Evolution
of the envelope of the expectation of the dipole moment for the
two-level atom.

where the parameter r is defined according to

T =A21/A22. —

Equations (27a) and (27b) have been integrated for the
case r= 1, that is, when the two Einstein A coeKcients
are equal. It follows from this solution that the expecta-
tion of the energy of the atom, which is given by

(Kp) =Ela 11(/)+Z2P22(f)+83(TSS(t) )



1791258 NI. D. CRISP AND E. T. JAYNES

moment. Physically this "quenching" oj the 3-2 dipole
moment results in a broadening of the corresponding
spectral line which would be qualitatively similar to
the lifetime broadening which was 6rst predicted quan-
tum-electrodynamically by Weisskopf and Wigner. "

) 2 3 4 5 7 8 9 )0

t )

=At
INCLUSION OF AN APPLIED FIELD

Now consider the basic Eq. (14), including the

applied field given by Eq. (13).When the applied field

is tuned in frequency so that it is in near resonance with

a pair of levels a and b, i.e., co =0 b, Eq. (14), as shown

in Appendix A, becomes

tr& ———i(Q& —P(P„—I'; )o;;(t))o.&
AtI ~ I I

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
'0 I I ~ \ ~ ~ I ~ ~ ~

) 2 5 4 5 6 7 8 9 )0
s P(At j+A mj)oj'j&lm+ seba&a~e

b&b 8 Sl, &b &lb8

+ eb&t ~ ~—
, b (2~)

when only resonant terms are kept. The de6nition
"2) '

) Qt~) pt Ep
=At~ E

I 2 3 4 5. 6 7 8 9 IO

{cj has been made.
FIG. 4. {a) Decay of the expectation of the energy of a three-

level system. The Einstein A coefficients A2& and A» are chosen
to be equal. Time is in units of A ', where A =A q&

=A 32. (b) Com-
ponent of the envelope of the expectation of the dipole moment
which oscillates at 032. (c) Component of the envelope of the ex-
pectation of the dipole moment which oscillates at 021.

&~o»i

E3-

s

I

E-
I

evolves in time according to —A2)t
~ ~ ~ ~ I ~ I y ~

6 7 8

(Xp) = -', (Et+E,)—(-', —np) "'Pi(Qps tanhP(-', —np) '"
&& A (t—t,))+Qst tanh$(-', —rr,) 'I'A (t—4)$),

(a)

&&& 32jl

I'sz p
=A2)t~ ~ I ~ ~

) 2 3 4 5 6 7

(b)

(W) 2)]i

=A2)t
I 2 3 4 5' 6 7

{c)
FIG. 5. (a) Cascading of the expectation of the energy of a three-

level atom with A3~=4A21. Time is measured in. units of A21
(b) Envelope of the expectation of the component of the dipole
moment which oscillates at 03'. (c) Envelope of the expectation
of the component of the dipole moment that oscillates at 021."These computations were supported by the Washington

University computing facilities through National Science Founda-
tion Grant Xo. G-22296. '4 V. Weisskopf and E. Wigner, Z. Physik 63, 73 (1930}.

where A is the Einstein A coefficient for the system.
Further calculation reveals that the expectation of the
dipole moment consists of two components, one oscillat-
ing at the frequency 032 and the other at the frequency
0». Both components are modulated by hyperbolic
secant envelopes. Graphs of the energy and the two
components of the dipole moment are shown in Fig. 4.

The solutions of Eqs. (24) have been studied on an
analog computer" in the case where A2~/A32. Typical
solutions are illustrated in Figs. 5 and 6. Figure 5
shows the cascading of the atom's energy down to the
ground state, each transition of the atom being ac-
companied by the appearance of a dipole moment
which oscillates at the transition frequency. Figure 6
illustrates the case in which the second level is short
lived compared to the third (A&r&)Ass). It is seen that
the 3-2 dipole moment starts out looking somewhat like
a hyperbolic secant, but then the fast 2-1 transition
occurs and causes the truncation of the 3-2 dipole
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The following change of variables"

—',(x—iy)e
—'"'=—o..s,

~=&aa &bb )

can be used along with the definitions

(29a)

(29b)
0 I 2 5 4 5 6 7 8

(a)

= Ag2t

—P —',(A.,+A s,)o,,x, (30a)

y =(a—p(r.;—rb,),,)x—.,s

—Q -', (A„+As,)o,,y, (30b)

s = sty esx —p(A—.;o.. Aa, o—ss)o;;, (30c)

and when / is not equal to u or 0,

oil = —Q All'(rjj(ril . (30d)

The variables x, y, and s satisfy the relation

x'+y'+s'=(1 —2 ol (t))',
jQa, b

therefore a solution of Eqs. (30) is confined to the
surface of a sphere whose time-dependent radius is

R, s=—1—P (r,;(t) .
jQa, 5

The component of the dipole moment which oscillates
at the frequency ~=0 & is given by

p.s(o„s+o s.)=12.s(x cosolt —y sin(dt) .
Thus tr sx(t) should be interpreted as the component
of the dipole moment which oscillates in phase with the
applied vector potential Lsee Eq. (13)j, and —t( sy(t)
as the component which is 90' behind.

For the case of a two-level system, Eqs. (30) may be
written, respectively, as

x=.s—P+r»sjy+-', A»xs, (31a)

62M Z6y:—cg, y )

6=—Q, y
—co.

It follows from Eq. (28) that the variables x, y, and s
evolve according to

*=sss —(a—P(r.;—r„)~;,)y

~ ~ ~ ~

0 I 2 3 4 5 6 7 8
(bj

—AS2t

F(G. 6. is) Envelope of the 3-2 dipole moment is shown in order
to illustrate dipole moment quenching. Truncation of the 3-2
dipole moment is caused by the fast 2-1 transition. Time is in
units of A(2 ', where A 2(= 10A(2. (b) Envelope of the 2-1 dipole
moment.

resonance 6=0, there are two distinct types of solu-
tions of Eqs. (31), depending upon whether the applied
field strength Eo is greater or less than the critical field
E,. For applied field strengths less than that of the
critical field, the system point attains a stationary
point on the unit sphere. Physically this corresponds
to the atom's dipole moment maintaining a constant
phase relation with respect to the applied field and
scattering light coherently. For applied fields greater
than this critical field, the solutions are oscillatory; the
system point moves in an orbit on the sphere. Physically
this corresponds to the atom's absorbing and emitting
radiation with no constant phase relation maintained
between the applied field and the dipole moment. The
critical field strength is given by

&.=(&/t )L(2A2 )'+r ']"'.
It is seen from Table I that the frequency shifts

1 & decrease rapidly with increasing quantum number.
It is of interest, therefore, to seek solutions of Eqs. (30)
when the F~ 's are neglected. These solutions would be
expected to give a fair description of alkali atoms such
as sodium and potassium.

If one neglects the F~ 's and applies the field nearly
in resonance with the upper two levels, Eqs. (30)
become

y= P +r»s)x+-2, A»ys,

S= —eX—-', A21(1—S').

(31b)

(31c)
x= es Ay+ 2(A22s A21oll)x)l

y= &x+-2, (A22s —A21o11)y)l

(32a)

(32b)
As indicated above, the wave functions have been
chosen real so that ej is zero and e2 is written as e. A
detailed study of the solutions of these nonlinear dif-
ferential equations will be the subject of a future
publication. ' A salient feature of these equations is
the existence of the "critical field. " In the case of exact

'5 R. Feynman, F. Vernon, and R. Hellwarth, J. Appl. Phys. 28,
49 (1957).

s= —ex——;A»t.(1—o»)' —"g
+-', A „o11(1—o.„—s), (32c)

or 1= -'2 A 21~11(1—o11—s) . (32(i)

An analytic solution of these equations has been found
in the case of exact resonance 6=0, and when the

"C.Stroud (private communication).
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,An, ~~7 8 8 10 II 12 15 IO 15 A2It
28 cos(8t+Ho)

&LAot(t—to) y 1
(33a)

are slowly varying when compared with e'", and the
result of neglecting the rapidly oscillating terms is the
solution

Y(t) )( 2y(to)
y(t) =,

~-', Aot(t-to)+ 1
(33b)

z(t) il

I 2 3 4 5 6 7 8 9 I 0 I I I 2 I 3 I 4 I 5 A2It
28 sin—(ot+ eo)

e-*Aol (t—to)+ 1
(33c)

R32 ( t)
I"

I 2 3 4 5 6 7 8 9 IO II I 2 l3 l4 l5 A2lt

where 8, Op and tp are constants determined by the
initial conditions. Geometrically, this solution cor-
responds to a system point rotating at angular rate e

about the y axis, while the radius of the sphere decreases
slowly according to

i I

I 2 3 4 5 6 7 8 9 IO II l2 I3 l4 l5 A2lt

F1G. 7. Response of a three-level atom to a field applied at
frequency co=0»—A» and with a strength of &=A». Time is
in units of A21 '.

applied held is very strong so that e))A» and A». The
derivation of Eq. (28) outlined in Appendix A tacitly
contains the assumption that Q))e, where Q represents
the smallest optical frequency of the atom. Therefore,
the solution given below will be valid within the range

A 21)A 32((&((Q32)Q21 ~

In this range the variables y, o-», and

X—= (S+ZS)8"t

x(t) )i

n
A32t

Y(t) tl

2(t) —(8kA 21 (I—to)+ 1)
—)

Further calculation shows that Eqs. (33a) and (33b)
are components of a dipole moment given by

(to):2too2/[8 2A21(t to) +1]
)([8 c os(Et+08) co'sQoot —y(to) sinD8;t]

+'p2$ SeCh[-,'A 2)(t—to)][CI COS(2 5t+ 8y) COSQ2)t

—Co cos(—', 8t+0,) sin02(t],

where C1, C2, 01, and 02 are constants. It can be seen
that the component dipole moment oscillating at fre-
quency Q» is amplitude modulated at frequency e,
while the component oscillating at Q21 is amplitude
modulated at frequency -', e. A comparison of the 2-1

component of the dipole moment with Eq. (22) shows
that the application of the saturating held to the 3-2
transition causes a narrowing of the 2-1 Ruorescence by
a factor of 2.

More complete solutions of Eqs. (32) have been com-
puted on an analog computer. Figure 7 shows the re-
sponse of a three-level system in the case where a=Q»,
and Fig. 8 shows the response of the same system to a
held with M=Q».

0 ~ ~

2 3 4 5 6 7 8 9 I 0 I I I 2 I 3 I 4 A32t

z(t) ri

APPENDIX A

The density matrix elements in the interaction picture
are defined according to

p,„(t)=—,(t)e~Q™ (A1)

0
I 2 3 4 A32t

and will be used to identify the rapidly oscillating
terms. Substituting Eq. (11) into Eq. (7), one obtains

R„(t)"
I

I 2 3 4 5 6 7 8 9 IO I I 12 I3 l4 A32t

g [(&g jjt 2p, tt ), &'(Qtt'+Q tt)t

a, P j
AII(O, t)

p p ( P tta &P, tta)t t(Q)m+Q at)) t]
Ac

k'xG. 8. Response of a three-level atom to a field applied with
or=0» —A» and of strength e=2A». Time is in units of A» '.

[Dljtotjpjm& plj jmtojm ] & ( )
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where the definitions would be

4 @exp'Plj
A)jj' =—— 0 p20)j

3 Ac'

1 8 h
dk dn(2po I

e'~ *v
I
1s),(A3) |2'02„,1,———

27' m c p

1 e'A
.Prx-

27l 5S c~
du dn( le-"*vip),

Using

(1
I

"*vl2Po)' (»)

(l I

e'"'*v
I g) (A4)

ht-h d id of E . (A2) ll bThe terms on the rig t- an si e o q.
unless the argument o erapidly oscillating un

der for the term

ted b repeated use of this argu-
it is necessary t at n= j and = . e sum

tt and P can be eliminate y repe
ment and with the observation that)

p&jpjm= plmpj j ~

17q( ) o q(
The applied field term in Eq. A2 may e

t'ai, (X)= 1/(tra')'"e "',
&2po(X) = 1/(322ru')'i'(S/a)e "t',

it follows that

— k
2 0 e'"'*v

I
1s)t2 )e"*VI1s),=—— -X X Po

e' '

v2 (k/I &I)XI (k/li I) Xe3)

a' P'+(3/2a)')'
and

(»le "*vl2Po) = —(2PoIe'" *vl»). ,

and Eq. (81) becomes
ei Q ti t 1 (ei (a t+ e i (o t)—'Z LflttPttI22'~e

eiQt~t1 (ekat+e —ia)t))pl j jmp jm
1 e'A 2(A') Sn

2' 1S c a p L&'-+ (3/2~)')'
13 is used for Ao(0, t) . Under the assumption

i Q, ~
—co~t I in Eq.

E (A5) will beneg ecte . e

2) d itt i thwhen substituted in o q. &
w

'

Schrodinger picture, is given by Eq. (28 .

-k (k
X -X~ Xt,) dtt, t82)

vector along the k3 axis.where the vector e3 is a unit vec o
Integrating Eq. (82) gives

APPENDIX 8
E . (18) and definition (15), the fre-

l fhdquency s i t in eh'f '
the 1s-2p absorption ine o

rcised in the case where there are more' Caution must be exercise in
~ ~ ~" ~ -, P ~ ~ ~ Pt- (i,, 2P~1, 2P.)'-hb t
quency degelleracy

, A &I nd I'&.&~ are zero un ess n= j anever, Ai; an i; n= an
system is also described by q.

5X2' e'b 1 160 (@ac'

2 6ttt i t )3' mc a

noted that for fields stronger than the
cm in hydrogen, q. ( )

li dfi ld h.0 i, should vary with the app ie e s
b pThe fields involved in erz erg s

much less than this.


