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As=0,

B„A„=0.

Equation (30) becomes the familiar result

(70)

(71)

A„(x) is the electromagnetic vector potential, then
Eqs. (68) and (69) are Maxwell's equations for particles
described by point singularities

P (lii~ P o)i+g Ai

Thus, Eq. (66) becomes

(75)

then it is easily shown by virtue of Eq. (63) that our
field equation (73) remains invariant under this gauge
transformation for an arbitrary scalar triplet A'(x).
Upon contracting (74), we get

8„'U„'=—ee;3I,A„'U„~, (72)
il) r~ (2/P) g g

(1)i+ g Ar (76)

based on the principle of minimal electromagnetic
interactions.

The equations for I'„&'&' were obtained in the Lorentz
gauge equation (69).Let us consider the question of the
gauge invariance of our first-order equations. In first
order, our field equations are

)(&) &—0 (73)

where E~„„~i»' is given by Eq. (63) for i=1,2,3. If we
consider the gauge transformation

and Eq. (68) is only valid in the Lorentz gauge corre-

sponding to the choice A'=0. The identification
Xr„("'=eb,sA„ then corresponds to the familiar gauge
transformation

A„-+A„+(X/e) B„h.'. (77)

In principle, we now have a theory to calculate the
symmetry violations to all orders in X, and in this way
we can determine the amount of breaking occurring in

the hadron symmetries to any order. The solutions of
the divergence equations in higher orders will be
discussed elsewhere.
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The analytical technique developed earlier for the scattering of electromagnetic wave fields by perfect
conductors is generalized to the case where the scattering obstacle is not only of arbitrary geometrical shape,
but where both the scattering obstacle and the exterior environment have arbitrary, though homogeneous,

electromagnetic properties. As before, the solution obtained is analytically exact and thus equally valid in

the near and far zones, as well as over the entire frequency range. The special cases of the 6rst-order solution

and of an incident plane wave are considered in detail. The form of the solution is particularly well suited

for methodical numerical evaluation.

I. INTRODUCTION
" N two previous papers, ' ' hereinafter referred to as I
. . and II, respectively, we obtained exact analytical
series solutions for the problem of the scattering of
electromagnetic waves by conductors of irregular
geometrical shape. The solution presented in I was re-
stricted to the case of complete cylindrical symmetry
with the incident wave field corresponding to that of a
plane wave. This solution was generalized in II for the
case of scatterers of completely arbitrary shape, as well

as an arbitrary incident radiation field. Although a
*Work supported by the Ofhce of Naval Research, Code 418,

under Contract No. Nonr 4291(00).
' V. A. Erma, Phys. Rev. 173, 1243 (1968l.
' V. A. Erma, Phys. Rev. 176, 1544 (1968).

perturbation technique was employed in obtaining these
solutions, the final analytic series solutions were valid
to all orders in the perturbation, and thus represented
the exact solution to the scattering problem within the
range of convergence of the series.

However, the solutions presented in both I and II
were restricted to the case where the scattering obstacles
were perfect conductors in an environment possessing
the electromagnetic properties of the vacuum. The aim
of the present paper is to generalize our method to the
case where the scatterer is not only of arbitrary shape,
but where both the scattering obstacle as well as its
exterior environment have arbitrary, though homogen-
eous, electromagnetic structure, as characterized by
specified values of the electric permittivity e, the
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magnetic permeability p, and the conductivity cr. This
case differs physically fron~ those considered earlier in
that the boundary. conditions to be satis6ed at the sur-
face of the scatterer are more complex. Thus, for the
present case both the magnetic and electric fields must
be considered everywhere, including the region inside
the scattering obstacle. As in II, the solution will be
developed for the case of an arbitrary incident radiation
field, of which a plane wave represents but a special
case.

The scattering problem is formulated in Sec. II, and
the general solution is developed in Sec. III. For pur-
poses of illustration and comparison with earlier results,
the first-order solution and the general solution for the
case of an incident radiation field corresponding to a
plane wave are developed explicitly in Sec. IV. I'inally,
Sec. V is devoted to a few concluding remarks.

Inasmuch, as the general method of our approach
closely parallels that followed in I and II, we shall not
dwell on explanations of analytical detail, for which the
reader is referred to I and II.4

II. FORMULATION OF THE PROBLEM

The problem under consideration concerns the scat-
tering of a given electromagnetic wave field by an
obstacle of arbitrary geometrical shape and electro-
magnetic structure. Both the scattering obstacle and its
exterior environment are taken to be homogeneous,
isotropic, and linear in their electromagnetic properties,
which are represented by specified values of & p2 Og,

and 6i p]. tT] for the permittivities, permeabilities, and
conductivities of the scatterer and its environment, re-
spectively. The known incident electric and magnetic
fields will be denoted by E' and H'. In addition, we shall
assume that the time dependence of these fields (and
hence also that of the scattered and transmitted fields)
is of the form e '"', which factor will hereafter be sup-
pressed. ' In this case, the propagation properties of the
two media can be conveniently described in terms of
the propagation number, given by

k1,2 =td E1,2 p1, 2 +M 01,2@1, 2q

where the subscripts 1 and 2 refer to the exterior en-
vironment and the scatterer, respectively.

The geometrical shape of the scattering obstacle is
represented by the equation of its surface, which in
spherical coordinates takes the general form

r = r, =aD+.f(8, q)7, (2)

where e is a suitably chosen "smallness parameter, "
f(8,q) is an arbitrary function, subject only to the condi-

3 Also sometimes known in the literature as "soft" scatterers.
Similarly, a discussion of the background of this problem,

together with relevant references to earlier work, is presented in I
and will not be reiterated here.

'The situation where the given time dependence has a more
complicated form can be reduced to the present case by means of
well-known techniques of I'ourier decomposition.

Mgmn = sn(p)mgmm,

where

222 sin)
P„"(x) ~222q2 ee

sin8 cos)
m+m~= +

dP„"(2t;) (cos)
~222q e„, (6)

d8 &sin)

dP cos) 222 (sin)
. ~~q ee~. P-"(*)I ~~q e. (7)

d8 sin J sin8 icos)

icos
p~„„=l(22+1)P„(x)~ 222q2 e„.

&sin

Here x= cos8; p=kr t where the value of k appropriate
to each medium is given by Kq. (1)7; e„ee, and e„are
unit vectors along the directions of increasing r, 8, and

q, respectively; I' is an associated Legendre function;
and s„(p) represents an appropriate spherical Bessel
function. Thus, the scattered electric 6eld in medium 1
may be written

(iigmnMgmm'+ &pmmN~ms') &

m 2%

where the superscript s denotes the choice

6 The optimal choices for a and the location of the origin of the
unperturbed sphere, as well as the class of shapes which are de-
scribable by an equation of the form (2), were discussed in detail
in Appendix A of I. The generalization of the remarks made there
to the present case is obvious. In brief, the only obstacles excluded
from the present formalism are those whose surface cannot be
described in terms of a single-valued function of the angular co-
ordinates 8 and q. In particular, all convex bodies may be de-
scribed by means of Eqs. (2) and (3), with a suitable choice of
a and e.

See, for example, J. A. Strat ton, 8/ectromogrletic Theory
(McGraw-Hill Book Co., Inc., New York, 1941).

tions of single-valuedness and the requirement
iaaf(8)q2)

i(1, 0&8(2r, 0&q &22r, (3)

and a represents the radius of the "unperturbed
sphere. '"

The complete electromagnetic field in the exterior
consists of the sum of the given incident fields (E',H')
and the fields scattered by the obstacle (E',H'),
whereas the total 6elds generated within the obstacle
are given by the transmitted 6elds which will be
denoted by (E',H'). Both the scattered and trans-
mitted fields must obey the vector Helmholtz equation,
as well as Maxwell's equations. As is well known, ~ the
general solution of the vector Helmholtz equation in

spherical coordinates can be written as a linear combina-
tion of the two so-called "unit 6elds"
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py=k~r, for the spherical Bessel function, and where
+p~n and bg represent the undetermined "scattering
coefficients. "

By making use of the Maxwell equation

NXHi= NXHs r=r,
where N is any vector normal to the surface at each
point. Such a vector is provided by

VX E= ti(8—H/8t),
N= (r,/a) v(r r,) ~

„—„„ (16)

keeping in mind the e '"' time dependence of all fields,
and taking note of the easily verified relations V'X M~ „
=kN~ and V'X N+ „=kM+ „, the scattered mag-
netic field is found to be

Kl —Ei+ Es H'= H'+H'.

Similarly, the transmitted electric field may in
general be written

Fi = P (&gmnMgmn +dgmnN+mn ) y

m, n
(12)

where the superscript 2 denotes the choice of s„(p)
= j„(ps), ps ——ksr, for the spherical Bessel function, and
c~ „and d~ represent undetermined coeKcients. The
corresponding transmitted magnetic field is easily
found to be

x2(~+mnN+mn +if+mnM+mn ) y

Xs =ks/metis. (13)

In each of Eqs. (9), (10), (12), and (13), the summa-
tion extends over all non-negative integral values of n,
and m&n, as well as over both the even (+) and odd

(—) components.
The problem now consists of obtaining the coef-

ficients a~ „and b+ „, in terms of which all scattering
quantities of interest, such as various cross sections,
can easily be calculated. These are determined by
applying the boundary conditions which must be
satisfied at each point of the surface of the scatterer.
For our case, the boundary conditions take the form

NXE'=NXE' r=r (14)

H = g 1(itymnNymn +b+mnM+mn ) q

myths

xi ——ki/ioitii. (10)

The total electromagnetic fields in the region outside
the scatterer (medium 1) are then given by

which upon expansion of the gradient in spherical co-
ordinates can be written in the explicit form

where

N= (1+sf)e, efse—s e(si—n8) 'f„e„,

8f
fr=

Bp

(17)

~hen this expression for N is used in the boundary
condition (14), its three components become explicitly

where the subscript t denotes the total tangentia/ field'
and the vector function 0. is given by

e= fges+(sin8) 'f„e,. (23)

In an exactly analogous manner the boundary condi-
tion (15) can be rewritten

(1+sf)H iyerrII i= (1+sf)H s+ sir~ s (24)

If we now make use of Eq. (11) and substitute for the
scattered and transmitted fields from Eqs. (9), (10),
(12), and (13), together with Eqs. (4)—(8), the two
boundary conditions (22) and (24) take the explicit
form

(sin8) 'f Es' fsE '=—(sin8) 'f Es' fsE„' —(19)

(1+sf)E„'+e(sin8) 'f„E„'
=(1+sf)E s+e(sjn8) if E s (20)

(1+sf)Es'+efsE '=(1+sf)Es'+efsE ' (21)

where it is understood that all field components are to
be evaluated at the surface r=r, . It is easily verified
that of these three equations only two are independent.
In our formulation we shall use Eqs. (20) and (21). If
we multiply Eq. (20) by e„, Eq. (21) by e&, and add the
two resulting equations, the two boundary conditions
(20) and (21) may be written as a single vector equation

(1+sf) Kg+ eriE, ' = (1+ef)EP+ enE„', (22)

/1 d
(1+sf) E,'(pi, )+P a~ „k„'"(pi,)m~„„+b~

~

——Lpk„"'(p)]
~

n~ „

&-"'(pi')
-~p+mn~ (1+sf)P ~~mnj n(p~s)mpmn+«E.*'( i.)+ E b+-

pls

j-(ps.)
+damn Lpjn(p)] n+enn + e& P damn

~ pgmn
~ ~ (2 )

pdp p 2
m p2.

' "Tangential" is used here in the sense of tangential to the original unperturbed sphere (or normal to e,), not to the surface
of the actual scatterer.
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(1 d
(1+0f) 8,'(pls)+ g Xl Gym„l —[pll~' '(p) j I

n+m„+5+m„h„' (pls)m+m„.
&p dp

Il &"( ) — — (1 d
+ 011 +r (pla)+ p +1++mra I 11+mrs I (1+&f) p X2 C+mral [Pjra(P)3 I n+mra

maS Ply )Epdp

+d+mra /ra(P2s)m+mra +0K P X2Cymra
i (P0.)

(26)
P2.

where p~, =k~r, and p2, =k2r„ the bars represent absolute magnitude, and the incident fields are now considered
as functions of p~=k~r, 8, and y. The problem now consists of determining the unknown coefIicients g+ „,b+ „,
&ymnp and damn

III. GENERAL SOLUTION

The unknown

coefficients

a „,b~ „,c~, and d~ „will now be determined from Eqs. (25) and (26) by applying
the special boundary perturbation technique used in I and II. Accordingly, each coefficient is written in the form
of a power series in e, as follows: .

m 0&(a,b,c,d)~ „~
(a,b,c,d)~ „=P (2&)

where the coeflicients (a,b,c,d)+ ' represent the zero-order coeflicients for the unperturbed sphere, ' while

(a,b,c,d)~ ~ represent the Pth-order contributions of the boundary perturbation parameter &.

Before proceeding with the analysis, it turns out to be convenient to multiply Eqs. (25) and (26) through by
plo —=flu. Noting that p10(1+0f)=pls=KP0s, where we have defined K—=kl/k0, Eqs. (25) and (26) may thenbe
written"

Pls

(d J-( 0.)
C+mrap2s /ra(p2a)m+mra+d+mraI [p/ra(p)] I

n+mn +&llp10 p damn I pymra I r (28)
m, n

rkdp
fS s S P2.

(d
PlsHa (pls)+ Z Xl ~+marl [Phrs (P)g I

ngmsa
kdp )„,

&-"'(Pl )
+b+ ~plJs~'"(pls)m+m~ +~np10 &r'(pls)+ Z Xl&+m~ lp+m~l

Ple

J-(P2.)
l~.-t (»)

d
=K Q X2 Cymar

—[para(p)g nymas+dgmrap2s Jar(P2s)mgmra +&ap10 p X2Cgmra
m)R dp P28 m f rl P28

(d /g„l )(pl )
Pl.«'(Pl.)+2 ~+.-Pl.&.'"(Pl )m~-+ +-I —[p&»"'(P)3

I
ng-. +«P10 &,'(pl.)+ p b, .—

I y,.„l
kdp m s 7L

Ke now expand each term of the above equations explicitly as a power series in e, which is involved in the
coefficients (a,b,c,d)~ as well as in the arguments p» and p&s. This is accomplished by expanding all functions of
p~, and p2, in the form of Taylor series about r =a. The required expansion coefficients are defined by the relations

Pl.&-"'(Pl.) = Z
p=p

p10"f',
t

dp
[P&-"'(P)3

/pe p =plo
(30)

Pl.i-(pl. )= E P00"f",
y=P

-[Pi.(P)3
p =p20

(31)

9These are known inasmuch as the analytical solution of the scattering problem for the case of a sphere is well known. see for
example, Ref. 7.

1 This corresponds to the "alternative formulation" of II. The development analogous to the first formulation of II may also be
carried out in the present case, but will be omitted for reasons of space. The comments made in II concerning the relative merits of
the two possible formulations apply equally well here.
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(1)(p1 )
p10n fn

P1. n=o P!

dn /g (1)(p)
nn"=

dP P p =pIO

(32)

gn(P2, )
pgo"f",

P!

d" J-(p)

dP P p=p20

(33)

on(PE &) (n)

p).E1'(P1.)= Z
f

ap
p1o"f", (p«') (")= LpE '(p, e ~)3

~P
(34)

on(P ()(n)
I'-'.'(P1.) = Z—

I

p)onfn
au

(&.') '"'= &.'(P, ~, v )
~P" p =pie

(35)

oy(PH () (n)

P1.H1'(P1.) = Z
au

P1o "f', (PH(') '"= — H1'(p, e, O )
~P" p =pro

(36)

on(Q &) (n)

&.'(P1.)= Z P10 fnn

ay
(&.')'"'= &.'(p () 0)

~P" p =pro
(37)

In addition, whenever we encounter a product of two in6nite series, such as in the expanded version of the term
z+ „p„h„(')(p1,), the result is recast as a single power series in 0 by making use of the easily verified theorem

( Z 0"a~)( Z 0"b")= Z "Z ~,b. (38)

ff we now substitute the Taylor expansions (30)—(37) and make use of the theorem (38) wherever appropriate, the
result of expanding Eqs. (28) and (29) as power series in 0 becomes

on(PE, ~) (n) 00 ((Jymnqpn" ' bymnqPn '+'
P»"fn+ Z 0" Z Z I P1o" 'f 'my + p1o 'f,=o m. n q=o E (P q)! — (p —q)! r

((g ()(n) u

+«»0 Z 0"I p»"f"+Z Z b+-' p)0" 'f 'I&+-I I

p! m, n g=O (p —q)!

Q u—e+&

= (( Q og' Q Q I Cymn p20 f mymn+d+mn p20 f n+mn
n=O m, n q=o (( (p —q)! (P—q)! )

+«p1o p 0" p Z d~mng pgo" f~gIP~qI,mn(39),=o mng=o , (P—q)!

on(PH, g) (n) p„n—q+1 p„n g-
p»nf&+ Q 0" p p X1I a+ „' p10" 'f" gn+ „+b~ „' p»~qf" qm+

n=o m, n q=o (( (P—q)! (P—q)! J

((jj &) (n) q

+«p» & 0"I »o"f"+& 2 X1(1+-2 p10" 'f" 'lp+mnI I

p! m, n q=O (P—q))

(2 P g+1

= I( g o p p X2I C~mn p20 f n+mn+ damn P20 fmpmn.
n=o m, n q=o 4 (P—q)! (P—q)!

+o(gp)0 2 0" 2 2 & c+-' P o" 'f 'le+-I (4o)
n=O m, n g=o (p —

q) (
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We now require that the boundary conditions (39) and (40) be satisfied term by term, i.e., that the coefFicient of any
given power of e vanish identically. ' Applying this requirement to the coeScient of 0 l arbitrary

( F i)(l) l P P 1 q P 1 0+1

Plo'f'+ Z P l
iigmn Plo f rngmn+&gmn Plo' of'

mno=, o (/ —q) ! (/ —q)

)(g i)(l—1l l 1 l—q—1

+~l Plo'f' '+ 2 ~ 4-' p»' 'f' ' 'll+-I
l

(/ —1)! m, n 0=0 (/ —q
—1) t

f .

12
l 0 ~ l 0+1—

0+mn p20 f™+mn+djmn p20 f n+mn
mnq=, O (/ —q) ! (/ —q)

l—q—10'n

+12 P P d 0 — . 1—0—if 1 0 1l
l (41)

m, n 0=0 (/ —q
—1) t

(PH ')'" P 1—2+1

plo f +p p Xi ilgmn plo f n+mn+/limn pio f mymn
/! m, n 2=0 (/ q)!— (/ —q)

((II i) (1—1) l—q—I

+~l P»'f' '+2 & xi~~..' p»'- f'- 'lf,.„l l

(/ —1)! mno=0 , (/ —q
—1)!

l ( ~ l—0+1

&ymn p2O f n~mn+ damn p2O f lngmn
m, n 2=0 ( (/ —q) t (/ —q)!

n. '—q

l—q—I&n
+&P» Z Z x2&~ ' poo' ' 'f' ' 'lyg .l. (42)

m, n q=o (/ —q
—1).

We next explicitly isolate the highest-order perturbation coefFicients (corresponding to q=/ in the summation
over q) occurring in each of Eqs. (41) and (42). After some rearrangements, this yields

where

[(iigmn Pn K&gmn &n )mgmn+ (/~mn Pn Kdgmn &n )npmn] = Sl )
mon

[(Xllpmn Pn, KX2&n damn )m+mn+ (Xlil+mn Pn KX2&+mn i2n )Ilymn]= Tl ~

min

(43)

(44)

l—1 l—q

S1= P P (KCymn i2n p20 ii+mn Pn p10 )mgmn+ (Ki/~mn Hn p20 6y P p 0)n
0=0m n (/ —q)~

l—g
+12Plo l P+mnl (damn &n P20 /+mn gn Plo )

(PE,i) (il (g i) (1—1)

plol fl 12 P
lfl 1(4g)—

(/ 1)!—
(KX20+mn &n P20 Xlii+mn Bn +

P1O )ngmn
0=0 mn(/ —q)!,

1—g
+(KX2d+mn &n p20 Xl/1+mn Pn Plo )rn+mn+irplo l ll+mnl (X2~+mn on p20

—Xlilgmn'gn' ' 'P1O' ' ')—(PH ')'" (jjl' i) (1—il
pio'f' oi plo'f' '—. (46)

(/ —1)!

It is important to note that the expressions for Sl and
Tl involve only known coeflicients and perturbation
coeKcients of order lower than /.

~' For the mathematical justification of this procedure, see the
comments made in I.

The highest-order perturbation coeffjcients

(a,b,c,i/) ~„„'

may now be obtained by making use of the known
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B. Scattering of a Plane Wave

The development above was carried out for the
general case of an arbitrary specified incident radiation
field. The case of most frequent practical interest is
that where the incident radiation field corresponds to
that of a plane-polarized plane wave. Accordingly, we
shall here give the explicit reduction of the general
solution for this case.

Kithout loss of generality, we assume that the
incident plane wave is traveling in the positive z direc-
tion with its electric field polarized along the x axis. In
addition, we shall assume a field of unit magnitude. As
is well known, ~ the incident electric and magnetic fields

may then be written

E'= e'»~e, = P v„(M,.'—iN+i. '),
n j.

(61)

where

H'=i xe"~'e ——
v p x,vn(N „,' iM+i—„*))

n=l
(62)

v = i"(2++1)/n(n+1) (63)

and the superscript i denotes the choice sn(p) = jn(pl)
for the spherical Bessel functions in Eqs. (4)-(8). The
coeKcients corresponding to the incident fields which
enter into the general expressions (45) and (46) for S&

and Ti may then be exphcitly written

(PL t*) 2 vn(~n™in &~n n+in) q (64)

(&.')" "=—i Z v-~. ' 'l1&+i. l,
n=l

(65)

(pH, ')~') = P xiv„(n„'+'n i —in„'m+i. ), (66)
n=l

(&.')" "=Z x»-~-' 'll-i-l,
n=l

(67)

"C.Yeh, Phys. Rev. 135, A1193 (1964). Our expressions for
S1 and T1 are related to Yeh's vector functions u and v by means
of S1——p10u and T1——p10v, once the errors in Yeh's functions are
corrected (for details, see Ref. 7 of II).

T =,'jL —'H, "'(,)—H,"( )—H, '( )j'„.
+~pioP~, oo(p2) —» "(pi)—Il '(pi))'=- (59)

Here the superscript 0 on the fields represents the zero-
order fields for the case of a sphere, the prime represents
differentiation with respect to the appropriate argu-
ment (pi or po) of the various functions, and use ha, s
been made of the boundary conditions known to be
satisfied by the zero-order fields, to wit,

E oo E o. E,'l 0 H oo Hio. H;l 0 (60)

The first-order expressions (58) and (59), together with

Eqs. (50)—(53), agree in their essentials with the results
given by Yeh."

where we have defined

d~
p—i-(p)

dpi' P =Plo

«"i.(p) .
(68)

dP P P—P1P

(E ')&' ')=(i cose)&' ')e'vio-' sing cosy, (70)

(pH i) (l) ixi(i cost&) (& i)eiplo coso

X(cose sing co+cosy ev), (71)

(H ') ~' '& =AX&(i cosg)' 'e"""'o sing sing. (72)

V. CONCLUSION

The present paper represents the final paper in a
three-part series devoted to the problem of the scatter-
ing of electromagnetic radiation by obstacles of ir-
regular geometric shape. In I, we obtained an analytical
solution to this problem for the case of cylindrical sym-
metry with the incident radiation field corresponding
to that of a plane wave. This solution was generalized
in II to apply to the case of an obstacle of a general
arbitrary shape as well as an arbitrary incident radia-
tion field. However, the results of both I and II were
restricted to perfectly conducting scatterers. This re-
striction is removed in the present paper, which pre-
sents the solution for the case where both the scattering
obstacle of arbitrary shape and its environment may
have arbitrary, though homogeneous, electromagnetic
properties as represented by specified values of the
permittivity, permeability, and conductivity of the
two media.

In each case, the solution was obtained by means of a
special boundary perturbation technique, in which the
scatterer of irregular shape is viewed as a perturbation
of a fictitious "unperturbed sphere" whose radius and
origin may be chosen such as to optimize the rapidity
of convergence of the series solution. The cornerstone
of this perturbation technique consists of replacing the
boundary condition to be satisfied at the surface of the
irregular obstacle by an infinite set of boundary condi-
tions at the surface of the unperturbed sphere in a con-
sistent manner. It should be emphasized that the per-
turbation technique was used only as a tool in obtaining
the final solutions, which are exact inasmuch as no
mathematical or physical approximations were in-
troduced. Accordingly, they are equally valid in the
near and far zones, as well as for all values of the
incident radiation frequency. Moreover, unlil-e solu-
tions obtained by other methods, such as variational

Although the above modal expansions for these
coefficients may sometimes be convenient, because of
the analytical simplicity of the incident fields for the
case of a plane wave, these coefficients m.ay also be
written in the closed form

(pE, ') "'= (i cosg)' 'e'v" ""(l+ipm coso)

&& (cose cosov eo —sing e„), (69)
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techniques, the solutions developed here are complete
in &hat they provide, exact analytical expressions not
only for the various scattering cross sections but also
for the fields themselves at all points of space. Such
analytically complete solutions in three dimensions
have heretofore been available only for the cases of a
sphere and an infinite circular cylinder.

The nature of the final solutions is similar to that of
the well-known Mie series for the case of the sphere,
although it is, of course, more complicated in that each
individual scattering coefficient is itself expressed in
terms of a perturbation series. However, unlike in most
perturbation techniques, we were able to obtain an ex-
act analytical expression for the contribution of e~ery

order in the perturbation. This makes it possible to
program the analytical results for purposes of numerical
evaluation in a straightforward way such that numerical
results can be obtained to any desired degree of ac-
curacy in a completely routine and systematic manner.
Although the final analytical expressions may at first
sight appear forbiddingly complex, it should be kept in
mind that for most "reasonably shaped" scatterers of
practical interest, the infinite series will terminate
after a finite number of terms by virtue of the intrinsic
orthogonality properties of the circular and associated
Legendre functions.

The general method presented in this series of papers
for treating the problem of scattering by obstacles of
arbitrary shape dealt with the scattering of electro-
magnetic wave fields, i.e., solutions of the vector
Helmholtz equation, in the framework of a spherical co-
ordinate system for which the sphere represents the

natural choice for the "unperturbed shape. "Evidently
this method can readily be adapted to other coordinate
systems in which the vector Helmholtz equation is
separable. Thus, for example, a similar analytic treat-
rnent can be developed for the scattering of electro-
magnetic waves from infinite dielectric cylinders of
arbitrary cross section, for which the choices of a
cylindrical coordinate system and the infinite circular
cylinder as the unperturbed shape are appropriate. "
Moreover, it shouM also be possible to apply similar
methods to the case of inhomogeneous scatterers, al-
though in that case the radial solutions would no longer
be represented by spherical Bessel functions. "Finally,
the analytical techniques presented here may be modi-
fied for boundary value problems in the presence of
arbitrarily shaped boundaries which are governed by
partial differential equations other than the vector
Helrnholtz equation, e.g. , the scattering of various types
of scalar waves. It is thus to be expected that such
techniques, appropriately generalized, may be found to
be useful not only in the field of electromagnetic scat-
tering, but also in areas of physics such as acoustics,
astrophysics, nuclear scattering, and biophysics. The
adaptation of the present boundary perturbation
method to other problems, as well as the numerical
evaluation of the analytical expressions for particular
geometrical shapes, will be presented elsewhere.

"Results for this case limited to the erst order in the perturba-
tion have been presented by C. %eh, J. Math. Phys. 6, 2008
(1965).

"P.J. Wyatt, Phys. Rev. 127, 1837 (1962); C. Yeh, ibid. 131,
2350 (1963).


