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A, (x) is the electromagnetic vector potential, then
Eqgs. (68) and (69) are Maxwell’s equations for particles
described by point singularities

[M,=o0, (70)
9,4,=0. (71)

Equation (30) becomes the familiar result
9,0, '= —eei34,0,%, (72)

based on the principle of minimal electromagnetic
interactions.

The equations for I',‘V? were obtained in the Lorentz
gauge equation (69). Let us consider the question of the
gauge invariance of our first-order equations. In first
order, our field equations are

Rym =0, (73)

where Ry, V¢ is given by Eq. (63) for 1=1,2,3. If we
consider the gauge transformation

[ ®i— T, M i—5(5,%9,A'—§,%9,A7) , (74)
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then it is easily shown by virtue of Eq. (63) that our
field equation (73) remains invariant under this gauge
transformation for an arbitrary scalar triplet A¥(x).
Upon contracting (74), we get

T, Mi T, Mid-g,Af, (75)
Thus, Eq. (66) becomes
T, Wi (2/8)8ygrun V4 9,A° (76)

and Eq. (68) is only valid in the Lorentz gauge corre-
sponding to the choice [[JA*=0. The identification
A, Mi=e§;34, then corresponds to the familiar gauge
transformation

Ay— A+ (Ne)9,A% an

In principle, we now have a theory to calculate the
symmetry violations to all orders in X, and in this way
we can determine the amount of breaking occurring in
the hadron symmetries to any order. The solutions of
the divergence equations in higher orders will be
discussed elsewhere.
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The analytical technique developed earlier for the scattering of electromagnetic wave fields by perfect
conductors is generalized to the case where the scattering obstacle is not only of arbitrary geometrical shape,
but where both the scattering obstacle and the exterior environment have arbitrary, though homogeneous,
electromagnetic properties. As before, the solution obtained is analytically exact and thus equally valid in
the near and far zones, as well as over the entire frequency range. The special cases of the first-order solution
and of an incident plane wave are considered in detail. The form of the solution is particularly well suited

for methodical numerical evaluation.

I. INTRODUCTION

N two previous papers,’? hereinafter referred to as I
and II, respectively, we obtained exact analytical
series solutions for the problem of the scattering of
electromagnetic waves by conductors of irregular
geometrical shape. The solution presented in I was re-
stricted to the case of complete cylindrical symmetry
with the incident wave field corresponding to that of a
plane wave. This solution was generalized in II for the
case of scatterers of completely arbitrary shape, as well
as an arbitrary incident radiation field. Although a
* Work supported by the Office of Naval Research, Code 418,
under Contract No. Nonr 4291(00).

1V, A. Erma, Phys. Rev. 173, 1243 (1968).
2V, A. Erma, Phys. Rev. 176, 1544 (1968).

perturbation technique was employed in obtaining these
solutions, the final analytic series solutions were valid
to all orders in the perturbation, and thus represented
the exact solution to the scattering problem within the
range of convergence of the series.

However, the solutions presented in both I and II
were restricted to the case where the scattering obstacles
were perfect conductors in an environment possessing
the electromagnetic properties of the vacuum. The aim
of the present paper is to generalize our method to the
case where the scatterer is not only of arbitrary shape,
but where both the scattering obstacle as well as its
exterior environment have arbitrary, though homogen-
eous, electromagnetic structure, as characterized by
specified values of the electric permittivity e, the
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magnetic permeability u, and the conductivity ¢.® This
case differs physically from those considered earlier in
that the boundary conditions to be satisfied at the sur-
face of the scatterer are more complex. Thus, for the
present case both the magnetic and electric fields must
be considered everywhere, including the region inside
the scattering obstacle. As in II, the solution will be
developed for the case of an arbitrary incident radiation
field, of which a plane wave represents but a special
case.

The scattering problem is formulated in Sec. II, and
the general solution is developed in Sec. III. For pur-
poses of illustration and comparison with earlier results,
the first-order solution and the general solution for the
case of an incident radiation field corresponding to a
plane wave are developed explicitly in Sec. IV. Finally,
Sec. V is devoted to a few concluding remarks.

Inasmuch .as the general method of our approach
closely parallels that followed in I and II, we shall not
dwell on explanations of analytical detail, for which the
reader is referred to I and II.%

II. FORMULATION OF THE PROBLEM

The problem under consideration concerns the scat-
tering of a given electromagnetic wave field by an
obstacle of arbitrary geometrical shape and electro-
magnetic structure. Both the scattering obstacle and its
exterior environment are taken to be homogeneous,
isotropic, and linear in their electromagnetic properties,
which are represented by specified values of e, us, o2,
and e, p1, o1 for the permittivities, permeabilities, and
conductivities of the scatterer and its environment, re-
spectively. The known incident electric and magnetic
fields will be denoted by E¢and H* In addition, we shall
assume that the time dependence of these fields (and
hence also that of the scattered and transmitted fields)
is of the form e~ which factor will hereafter be sup-
pressed.® In this case, the propagation properties of the
two media can be conveniently described in terms of
the propagation number, given by

k1,2t =we1,0p1,0wo1,001,2, 1

where the subscripts 1 and 2 refer to the exterior en-
vironment and the scatterer, respectively.

The geometrical shape of the scattering obstacle is
represented by the equation of its surface, which in
spherical coordinates takes the general form

r=ri=a[1+€f(0,0)], )

where € is a suitably chosen “smallness parameter,”
f(6,¢) is an arbitrary function, subject only to the condi-

3 Also sometimes known in the literature as ‘“soft” scatterers.

4 Similarly, a discussion of the background of this problem,
together with relevant references to earlier work, is presented in I
and will not be reiterated here.

5 The situation where the given time dependence has a more
complicated form can be reduced to the present case by means of
well-known techniques of Fourier decomposition.
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tions of single-valuedness and the requirement
lef(6,0)| <1, 0<6<mw, O0<e<2m, 3)

and @ represents the radius of the ‘“unperturbed
sphere.”$

The complete electromagnetic field in the exterior
consists of the sum of the given incident fields (E?,H?)
and the fields scattered by the obstacle (EsHs),
whereas the total fields generated within the obstacle
are given by the transmitted fields which will be
denoted by (E2,H?). Both the scattered and trans-
mitted fields must obey the vector Helmholtz equation,
as well as Maxwell’s equations. As is well known,” the
general solution of the vector Helmholtz equation in
spherical coordinates can be written as a linear combina-
tion of the two so-called “unit fields”

M;{:mn = Zn(P)mimn ’ (4)

d
Nimn= P_lzn(P) pﬂ:mn—}_P_ll_i—[Pzn (P)]n:!:mn ’ (5)
o
where

m sin
My = TF— P,,'"(x)( )m¢ €

sinf cos
dP,m™(x) /cos
- —< )mﬂa €y, (6)

do sin
dP,™(cos m sin’
Nppn= ( >m<p ea:F—an(x)( >m<p e,, (1)
df \sin sinf cos
cos
Dimn=n(n—i—1)Pn’"(x)< . >m<p €. (8)
sin

Here x=cosf; p=kr [where the value of & appropriate
to each medium is given by Eq. (1)]; e, es, and e, are
unit vectors along the directions of increasing 7, 6, and
@, respectively; P,™ is an associated Legendre function;
and z.(p) represents an appropriate spherical Bessel
function. Thus, the scattered electric field in medium 1
may be written

E'=% (@smMimn*+bimnNimn®) , )

m,n
where the superscript s denotes the choice

Zn(P) =h,® (Pl) ’

6 The optimal choices for ¢ and the location of the origin of the
unperturbed sphere, as well as the class of shapes which are de-
scribable by an equation of the form (2), were discussed in detail
in Appendix A of I. The generalization of the remarks made there
to the present case is obvious. In brief, the only obstacles excluded
from the present formalism are those whose surface cannot be
described in terms of a single-valued function of the angular co-
ordinates 6 and ¢. In particular, all convex bodies may be de-
scribed by means of Eqs. (2) and (3), with a suitable choice of
a and e.

7See, for example, J. A. Stratton, Eleciromagnetic Theory
(McGraw-Hill Book Co., Inc., New York, 1941).
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p1=kyr, for the spherical Bessel function, and where

@imn and dinn represent the undetermined “‘scattering
coefficients.”

By making use of the Maxwell equation
VXE=—u(0H/0t),

keeping in mind the e¢~** time dependence of all fields,
and taking note of the easily verified relations VXM .,
=kNimn and VXNimrn=~kM_,n,, the scattered mag-
netic field is found to be

H3= Z Xl(aj;mnN;tmns'l_bimnMimns) )
(10)

The total electromagnetic fields in the region outside
the scatterer (medium 1) are then given by

E'=E+Es, H!'=H4H-.

X1=ky/iwu; .

(11

Similarly, the transmitted electric field may in -

general be written

E:= Z (C:EmnMj:mn2+dj:mn Nj:mn?‘) y

m,n

(12)

where the superscript 2 denotes the choice of 2.(p)
= ja(p2), p2=Fkor, for the spherical Bessel function, and
Ctmn and din, represent undetermined coefficients. The
corresponding transmitted magnetic field is easily
found to be

H2= Z X2(C;{:man:mn2+dimnMimn2) y
(13)

In each of Egs. (9), (10), (12), and (13), the summa-
tion extends over all non-negative integral values of #,
and m<mn, as well as over both the even (+4) and odd
(—) components.

The problem now consists of obtaining the coef-
ficients @ymn and bimn, in terms of which all scattering
quantities of interest, such as various cross sections,
can easily be calculated. These are determined by
applying the boundary conditions which must be
satisfied at each point of the surface of the scatterer.
For our case, the boundary conditions take the form

NXE!'=NXE?, (14)

Xo=rhs/iwus.

r=r,
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NxH'=NxH?, (15)

where N is any vector normal to the surface at each
point. Such a vector is provided by

N=(rs/aQ)V(r—7s)| rmry, (16)

which upon expansion of the gradient in spherical co-
ordinates can be written in the explicit form

r=r;

N=(1+e¢f)e.—efoes—e(sinf) ' fe,, (17)
where
9 d
fﬂzly flPEl' (18)
a0 de

When this expression for N is used in the boundary
condition (14), its three components become explicitly

(sin)~1f Eo'— foE 1= (sind)~1f ,Ee®— foE,2, (19)

(14 /) E 1+ e(sind)=" .,
= (14-¢f)E2+ e(sind) 1 f E,2, (20)
(1+ef)Ed+efoE = (1+€f ) EP+efoE2,  (21)

where it is understood that all field components are to
be evaluated at the surface r=r,. It is easily verified
that of these three equations only two are independent.
In our formulation we shall use Egs. (20) and (21). If
we multiply Eq. (20) by e,, Eq. (21) by €4, and add the
two resulting equations, the two boundary conditions
(20) and (21) may be written as a single vector equation

(14+¢f)ElteeE, = (14 ¢f)E2+ a2,  (22)

where the subscript ¢ denotes the total tangential field®
and the vector function e is given by

a= freo+ (sind)~f,e,.

In an exactly analogous manner the boundary condi-
tion (15) can be rewritten

(+ef)H +eell,'=(1+e)H+ el 2. (24)

If we now make use of Eq. (11) and substitute for the
scattered and transmitted fields from Egs. (9), (10),
(12), and (13), together with Eqs. (4)-(8), the two
boundary conditions (22) and (24) take the explicit
form

(23)

1d
(1+ Gf) { Eti(pls) + Z l:a’:tm’ﬂhn W (Pls)m;tmn_i— b;{:mn<— d—[Phn @® (P)]) nimn:l }

p ap
hn(D(Pls)

+50’-[Eri(ms)+ Z b:};mn
m,n Pis

+dj;mn<

1

”I Pimn [ :|= (1+ ef) Z [C:{:mnjn(p'ls)mimn

jn(PZs)

d
[pjn<p>3> nim]+ea 5 o gl (25)

p dp p2s ' P2s

8 “Tangential” is used here in the sense of tangential to the original unperturbed sphere (or normal to e:), not to the surface

of the actual scatterer.
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1d
(1+ ef) {Hti(l)ls)'!‘ Z Xl[a;lcmn(_ '_‘[:Phn(l) (P)]) nj;mn+bj:mnhn(l) (p13)mi,,m:”

p dp

. 1 (p15) ' 1d_

ﬂ{mwa+zn%w—~—wm{}uﬁﬂ2&ﬁﬂ&gﬂhwbnﬂn
m,n m,n p p

Pis P2s

. jn(sz)
+QMMMMMJ+WZXMM [Damal, (26)
m,n P2s

where p1s=Fk17s and pss= ko5, the bars represent absolute magnitude, and the incident fields are now considered
as functions of py=4%i7, 0, and ¢. The problem now consists of determining the unknown coefficients @.ymn, bmn,
Cimny and d;{;mm

III. GENERAL SOLUTION

The unknown coefficients @ mn, &1mn, €Lmn, ad d g mn Will now be determined from Eqgs. (25) and (26) by applying
the special boundary perturbation technique used in I and II. Accordingly, each coefficient is written in the form
of a power series in ¢, as follows:

had e”(a,b,c,d)imnp :
(@,0,6,8) 2mn= 3. —————, (27)
=0 p!

where the coefficients (a,b,¢,d)1mn® represent the zero-order coefficients for the unperturbed sphere,® while
(@,0,¢,d) 1mn® represent the pth-order contributions of the boundary perturbation parameter e.

Before proceeding with the analysis, it turns out to be convenient to multiply Egs. (25) and (26) through by
pro=kia. Noting that pio(1+€f)=p1,=kp2,, where we have defined k=ki/ks, Eqs. (25) and (26) may then be
written!?

) ‘ d . hn(1)<pls)
PlsEtl(Pls)‘l' 2 [Gimnplshn(l)(PIS)md:mn‘f"bd:mn(:i_[l’hn(l)(P):D n:&:mn;l'l' EOIPIO[Eri(Pls)'*' Z b:l:mn‘—_! pimn[]
m,n L P pls m,n

P1s
‘- d . ]"n(P2s)
=k 2 | Crmnprsin(p2a)Mimntdymn| —Lp7n(p)]) Nimn [+eapro 3o - lpim"| , (28)
m.n dp p2s mn P2s
. d
plsHtl(Pls)—l' Z Xl[a:!:mn(—l:l’hn(l)(P):]> Nipmn
m.n dp Pls
, hn ™ (p15)
+b:};mnplshn(l) (Pls)mimn]'l- €(¥p10[H11(p13)+ Z Xla:};mn "'[ p;[:mnl ]
m,n P1s
d . . jn(PZs)
=K Z Xo| Cimn ‘d—[p]n(P)] nimn"l’d:ﬁmnPZs]n(p%)m;{:mn +€aP10 Z X2c:]:m’ﬂ Ipimn] . (29)
mn P p2s ™ P2s

We now expand each term of the above equations explicitly as a power series in ¢, which is involved in the
coefficients (a,0,¢,d)1mn as well as in the arguments p;; and pss. This is accomplished by expanding all functions of
p1s and ps, in the form of Taylor series about 7= a. The required expansion coefficients are defined by the relations

© €B,P dar
plshn(l)(pls) = Z Plopfp ) Bnpz—tph"(l) (p):l (30)
p=0 p! dp? p=p10
© €Pa,P ar
pZaj‘n(sz): Z P20pfp y anpz———-[pj,n(p)] (31)
=0 p! dp® p=p20

® These are known, inasmuch as the analytical solution of the scattering problem for the case of a sphere is well known; see, for
example, Ref. 7.

10 This corresponds to the “alternative formulation” of II. The development analogous to the first formulation of II may also be
carried out in the present case, but will be omitted for reasons of space. The comments made in II concerning the relative merits of
the two possible formulations apply equally well here.
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hn(l)(Pls) ©  €Pn,P

P1s »=0 P!
j n(P28) »  €PopP
= Z onpfp )
P2s »=0 Pl

w e?(pE;’ )(p)

p1:E(p1s) = Z Tplopf 7,

© Ep(F 1)(17)
Ei(p)= 2 P ——p1"f?,

p=0

» ep(thi) ()

p1:H: (p1s)= 2 "—‘Pl——pmpf",

=0

w (H,5)®
H,(p1s)= 35 ——p12f?,

»=0 p

dr hn®(p)
PpP=— .

dp? P P=p10

a? jn(p)
G-"IJ:——

dpp P lp=p20

ar
(pE;) @ = ;[pEz’(P:o, ¢)]
I3

L4

(B ®=

dp?
or
(pH,) ®) = ;;Ht"(p,ﬁ, o)
I

P

(H,) ™ =—H,(p,0,0)
dpP

p=p10

P=p10

P=p10

P=p10
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(32)

(33)

(34)

(35)

(36)

(37)

In addition, whenever we encounter a product of two infinite series, such as in the expanded version of the term

@ymnp1sha®(p1s), the result is recast as a single power series in e by making use of the easily verified theorem

( Z €2a,)( Z €rhP) = Z €’ Z @obpyq.

=0

p=0 g=0

(38)

If we now substitute the Taylor expansions (30)-(37) and make use of the theorem (38) wherever appropriate, the
result of expanding Eqs. (28) and (29) as power series in ¢ becomes

© e”(pE 1’)(1’) il ? mniBn?e
> : —p10?fP 20 €? 3 2 (i

=0 P p=0 m,n q=0

(p—q!

. (E ?) (p) n
+eapio O e”( P 0107 fP+ > Z by mn® (

p=0

J!
Ms
M=

=
1

o
3

S

w e?(pH )@
2

p=0 P =0 m,n g=0

—q)!

- (H,)®
+eapro O e”( " p10” [P+ > Z X101 mn?

=0

M=

€P

?Il
Ms

(p—!

0

=
1

m,n q

R »
-I-eapm Z €? Z Z XQC:i:mnq

Plop—qu_qmj:mn—l"

aP—atl

a1
(C;};mnq PZOp—qu—qmj:mn+dj;mnq
0 (r—9! (r—9!

Bnr—atl ‘
PlOpfp+ Z €? Z Z Xl(a:lzmn p_qu—qnimn"l"bimnq

a,Patl
X2(C;{:mnq 0207 2P Myt mn?

bimnqﬁp~q+l

(p—9!

m,n ¢g=0

) P20p—qu_qnimn)

0 v
+eapio 20 € 3 3 dimn®

=0 m,n g=0

R

(p—9!

m,n ¢g=0

anp-'l

» )‘on”' qu—qmj:mn)
p—19)!

»=0 m,n g=0

(p—9!

pmrqu—qnimn>

p—q

o-np“q

)Yplop—qu_.qm;];mn)

—4q

TP e

(r—9!

1072 f?~9| Pia
p—9!

20”27~ Pmn]

(p—9!

plop—qu—q] DPimn ' )

020"~ f7 Pyma]

(39)

(40)
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We now require that the boundary conditions (39) and (40) be satisfied term by term, i.e., that the coefficient of any
given power of e vanish identically.!' Applying this requirement to the coefficient of ¢, / arbitrary yields

(oEH)® Bal—4 et
-pro' i 22 Z (aimnq P10 MM Lynnt by pml“qfl‘qnimn>
! m,n ¢=0 (l—q)l (l— q)!

(E,) D ) - .
i 4 l—q fl—q—1
+ < 11 p1o*f +3:" Eo +mn (l—q—l)!pm f [p:i:mn[)

1 anl—q l—q+1

=K Z (Cimnq P20l‘qfl_qmimn+ d:i:mnq PQOl_qfl_‘qnj:mn)
m,n g=0 (l—— g)! (l—q)l

-1 g1

+(I Z Z d mnq—n—‘—"— l—g—1fl—g—1 n 41
om0 (l—g—l)i'020 S ], (41)

(oH, )(” B8, -t 8,1
Ty L Z 1<aimnq 210" M pmntbpmn® pro'2f z~qmimn>
m,n g=0 (l—q)‘ (l_Q)[
(H l)(l_l) nnl~q—1
+ ( Plolfl"‘l"l'z Z p O T Sn—— S T
o PR e Gy e
l anl~q+1 e
=K Z Z X2<c:i:m”q pZOl—qfl_qnj:mn_i‘dimnq p201ﬁqflvqmimn>
m,n ¢=0 (l—q)l (l—q)l
-1 o»nl—q—l
+ap10 X X XaCama'————paot L0 p | L (42)
w1

We next explicitly isolate the highest-order perturbation coefficients (corresponding to g=1 in the summation
over ¢) occurring in each of Eqs. (41) and (42). After some rearrangements, this yields

Z [(aimnlﬁno_KCimnlano)m;{:mn"}“ (b;{;mnlﬂnl_Kd:i:mnlanl)nimn] = Sl N (43)
m,n
Z [(leimnlﬂno_szanod;{:mnl)mj:mn—,_ (Xla:j:mnlﬁnl—"Kx2cj:mnlan1)nj:mn]: Tl > (44)
where
-1 —q
= 2 [(’“imqanl_"pml“‘— @i mn Bt %10 DMLyt (K ymn %n ™™ T 020" 9= by n BT 1p10 )Ny
o o (1= )
I—q I—g—1, 1—g—1 I—g—1, l—g—1 (PEH® (9
+(¥P10—_I p;{:mnl (dimnqo'n ™ p2o — —b;{:mnq"]n ~94 p10 —a ) - plolfl_ (14 plolfl_l y (45)
f Al (-
I—q
T.= Z 2 [(Kxﬂc-_tmn"an’_ﬁlpzol‘“—deimn‘%Bn’_q“Plo"q)nimn
q=0 m,n (l——
—q v
“+ (Kdeimanlnl_quol_q_ leimnqﬁnl—qplol—q)mimn_l’ O«’PIO_"I p;{-_mn[ (X2cimnqo'nl—q—1p201—q_‘1
I—g—1p, t-a—1) (oHH® (H,5 D
— X180 Lmn "I pr0 T - lefl_ (17 p]()lfl—I . 46
Al (-1 (46)
It is important to note that the expressions for S; and The highest-order perturbation coefficients
T, involve only known coefficients and perturbation
coefficients of order lower than /. (@,0,6,8) 1-mn’

11 For the mathematical justification of this procedure, see the . X
comments made in I. may now be obtained by making use of the known
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orthogonality properties’

2w ™
/ / Mymp Nymn’ Sln0d0d<p =0 ,
0 0
all m, n, m’, n’,
27 T
f / My My SINOAOd
0 0

2T T
= / / Nyn N s SNOAOA Q= ErpnBpmsBnnr ,  (48)
0 0

(47)

where

3 2n(n—+1)(n+m)!
fn= n+1)(—m)!

and where it is understood that the right-hand side of
Eq. (48) should be replaced by zero for every integral
of a product of an even (+) function with an odd (—)
function, as well as for the product of m_g, -m_g,, which
corresponds to m=m’=0. Thus, if in the usual manner
we successively dot Egs. (43) and (44) into my,, and
Ny, and integrate over solid angle, we obtain

(49)

Sm0) T,

Isnoa':}:mnl_ Kanﬂcimnl
2T T
= (Smn)“/ / S; M, sinddbde, (50)
0 0
Bnlbj;mnl— Kanld:{:mnl
= (Em11)~1/ f Sl ‘Nimn Sin0d9d<p , (51)
0 0
X13,,Obimnl—l<x?an”dimnl
27 T
= (‘Emn)m‘l/ / Tl-mimn Sin0d6d<p, (52)
0 0
Xl.Bnlaﬂ:mnl—szanICimnl

27 ki
= (Emn)? / / Ty Ny sinfdbde. (53)
0 0
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Equations (50)-(53) represent a set of four simultaneous
linear algebraic equations for the /th-order perturbation
coefficients (a,b,¢,d)1ms!, which is trivially solved. In
particular, the scattering coefficients are given explicitly

by

a:};mnlz [Emn(xlanolgnl— x2anlﬁno) ]—1

27 ™
X/ / (anOTl'nimn_‘XﬂxnlSl 'mimn)
0 0

Xsinddfde, (54)
b;{:'mnlz [Emn(xlanlﬂnn— xzanoﬂnl)j—l
X/ / (aanl 'mj:mn_"XZOZnOSl 'nj:mn)
0 0
Xsinfdfde. (55)

Equations (54) and (55) represent explicit analytical ex-
pressions for the scattering coefficients (@,5) 1m»" in terms

‘of coefficients of lower order, and may thus be used to

calculate successively the scattering coefficients up to
any desired order. As is well known, all scattering quan-
tities of interest can be readily calculated in terms of
these coefficients. Thus, Eqs. (54) and (55), together
with the easily obtained corresponding expressions for
the coefficients (c,d)ims!, and in conjunction with
Eqgs. (45), (46), and (27), represent the complete
analytical solution for the general scattering problem
under consideration.

IV. REDUCTION OF THE GENERAL SOLUTION
FOR SPECIAL CASES

A. First-Order Solution

For purposes of comparison with earlier results we
consider the special case of the first-order solution ex-
plicitly. This may readily be obtained by substituting
/=1 into the general solution obtained above. Making
this substitution in Eqs. (45) and (46) for S; and T,
reduces all sums over the index ¢ to the single term g=0
and we accordingly obtain

Sl= Z f[(KCimnﬂanlpw"‘ aimnoﬁnlplo)mimn"l“ (de:mnoan2,020— bimn°6n2plo)nimn

m,n

+ Olf—lpml P+mn [ (dimnoano—bimnonno)]_ (pEti> (l)plﬂf— aEri(PIO)PIO )

(56)

Ti= > fL(kXoCemn@n®p20— X1 £ mn"Bn2010)Npmn—t (KXol ymn0tn tp20— X101 mn"811010)Mpmn

m,n

Fap10f | Pamn| KaCimn®0n®—X18£mn"nn®) J— (0H,%) P p1of— ap1oH (p10)

where the zero-order coefficients (a,b,¢,d)1mn® cor-
respond to the known solutions for the sphere.® These
expressions for S; and T; may be conveniently re-
formulated in terms of the zero-order fields themselves

(57)

by referring to Egs. (9), (10), (12), and (13). We may
thus write

S:= plozf[K_lEzoz(m) —E%(o1)— Eli(Pl)]’rﬂz

+ aPlOEEr02 (PZ) - ETOS(PI) - Eri(Pl)]r=a ) (58)
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T1=p1o? f[xH%2(ps) —H,**(p1) —H./(p) ] 1 =a
+ap1[ H,%(p2) —H ,**(p1) — H,(p1) Jr=a.  (59)

Here the superscript 0 on the fields represents the zero-
order fields for the case of a sphere, the prime represents
differentiation with respect to the appropriate argu-
ment (p; or p;) of the various functions, and use has
been made of the boundary conditions known to be
satisfied by the zero-order fields, to wit,

E2—E%—E|,_e=0, H2—H»—H;|,_,=0. (60)

The first-order expressions (58) and (59), together with
Egs. (50)-(53), agree in their essentials with the results
given by Yeh.?2

B. Scattering of a Plane Wave

The development above was carried out for the
general case of an arbitrary specified incident radiation
field. The case of most frequent practical interest is
that where the incident radiation field corresponds to
that of a plane-polarized plane wave. Accordingly, we
shall here give the explicit reduction of the general
solution for this case.

Without loss of generality, we assume that the
incident plane wave is traveling in the positive z direc-
tion with its electric field polarized along the x axis. In
addition, we shall assume a field of unit magnitude. As
is well known,” the incident electric and magnetic fields
may then be written

©
Ei: eikIZex_—_— Z l/r,,,(M—-lni_ iN+1ni) )

n=1

(61)

Hi= iXieth1ee, = Z Xan(Nwlni_ iM+lni) s (62)
n=1

where

rn=1"2n+1)/n(n+1) (63)

and the superscript ¢ denotes the choice 2.(p)= 7a(p1)
for the spherical Bessel functions in Egs. (4)—=(8). The
coefficients corresponding to the incident fields which
enter into the general expressions (45) and (46) for S;
and T; may then be explicitly written

0

(pEti)(l)= 2 Vn(o_lnlm~1n-‘i&nl+ln+ln) ’ (64)
n=1
(EAND=—i 3 va6ut™ [ Ps1n] , (65)

n=1

(PHH) V=3 Xwn@ ' n_n—id'm1n), (66)

n=1

(H,%) D= i X126 a 1 potnl (67)
n=1

12 C, Yeh, Phys. Rev. 135, A1193 (1964). Our expressions for
S: and T, are related to Yeh’s vector functions u and v by means
of Si=piou and Ti=p1ov, once the errors in Yeh’s functions are
corrected (for details, see Ref. 7 of II).
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where we have defined
o N
ar=—pjule)| , TP (68)
dp? p=p10 dp? p lpepio

Although the above modal expansions for these
coefficients may sometimes be convenient, because of
the analytical simplicity of the incident fields for the
case of a plane wave, these coefficients may also be
written in the closed form

(oE/)® = (¢ cosh)i—1eir10 c0sb(]4-4p,, cosh)

X (cosf cosp eg—sing e,), (69)

(E,1) =D = (i cosf) ¢Deir1o «030 ginf cosep, (70)
(oH,1) D =X, (i cosf) t—Deiero cost

X (cosl sing e;F-cosp e,), (71)

(H,5) @D =14X4(i cosf) g0 030 ginf sing. (72)

V. CONCLUSION

The present paper represents the final paper in a
three-part series devoted to the problem of the scatter-
ing of electromagnetic radiation by obstacles of ir-
regular geometric shape. In I, we obtained an analytical
solution to this problem for the case of cylindrical sym-
metry with the incident radiation field corresponding
to that of a plane wave. This solution was generalized
in IT to apply to the case of an obstacle of a general
arbitrary shape as well as an arbitrary incident radia-
tion field. However, the results of both I and II were
restricted to perfectly conducting scatterers. This re-
striction is removed in the present paper, which pre-
sents the solution for the case where both the scattering
obstacle of arbitrary shape and its environment may
have arbitrary, though homogeneous, electromagnetic
properties as represented by specified values of the
permittivity, permeability, and conductivity of the
two media.

In each case, the solution was obtained by means of a
special boundary perturbation technique, in which the
scatterer of irregular shape is viewed as a perturbation
of a fictitious “unperturbed sphere’” whose radius and
origin may be chosen such as to optimize the rapidity
of convergence of the series solution. The cornerstone
of this perturbation technique consists of replacing the
boundary condition to be satisfied at the surface of the
irregular obstacle by an infinite set of boundary condi-
tions at the surface of the unperturbed sphere in a con-
sistent manner. It should be emphasized that the per-
turbation technique was used only as a tool in obtaining
the final solutions, which are exact inasmuch as no
mathematical or physical approximations were in-
troduced. Accordingly, they are equally valid in the
near and far zones, as well as for all values of the
incident radiation frequency. Moreover, unlike solu-
tions obtained by other methods, such as variational
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techniques, the solutions developed here are complete
in that they provide exact analytical expressions not
only for the various scattering cross sections but also
for the fields themselves at all points of space. Such
analytically complete solutions in three dimensions
have heretofore been available only for the cases of a
sphere and an infinite circular cylinder.

The nature of the final solutions is similar to that of
the well-known Mie series for the case of the sphere,
although it is, of course, more complicated in that each
individual scattering coefficient is itself expressed in
terms of a perturbation series. However, unlike in most
perturbation techniques, we were able to obtain an ex-
act analytical expression for the contribution of every
order in the perturbation. This makes it possible to
program the analytical results for purposes of numerical
evaluation in a straightforward way such that numerical
results can be obtained to any desired degree of ac-
curacy in a completely routine and systematic manner.
Although the final analytical expressions may at first
sight appear forbiddingly complex, it should be kept in
mind that for most “reasonably shaped” scatterers of
practical interest, the infinite series will terminate
after a finite number of terms by virtue of the intrinsic
orthogonality properties of the circular and associated
Legendre functions.

The general method presented in this series of papers
for treating the problem of scattering by obstacles of
arbitrary shape dealt with the scattering of electro-
magnetic wave fields, i.e., solutions of the vector
Helmholtz equation, in the framework of a spherical co-
ordinate system for which the sphere represents the
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natural choice for the “unperturbed shape.” Evidently
this method can readily be adapted to other coordinate
systems in which the vector Helmholtz equation is
separable. Thus, for example, a similar analytic treat-
ment can be developed for the scattering of electro-
magnetic waves from infinite dielectric cylinders of
arbitrary cross section, for which the choices of a
cylindrical coordinate system and the infinite circular
cylinder as the unperturbed shape are appropriate.!
Moreover, it should also be possible to apply similar
methods to the case of inhomogeneous scatterers, al-
though in that case the radial solutions would no longer
be represented by spherical Bessel functions.’* Finally,
the analytical techniques presented here may be modi-
fied for boundary value problems in the presence of
arbitrarily shaped boundaries which are governed by
partial differential equations other than the vector
Helmbholtz equation, e.g., the scattering of various types
of scalar waves. It is thus to be expected that such
techniques, appropriately generalized, may be found to
be useful not only in the field of electromagnetic scat-
tering, but also in areas of physics such as acoustics,
astrophysics, nuclear scattering, and biophysics. The
adaptation of the present boundary perturbation
method to other problems, as well as the numerical
evaluation of the analytical expressions for particular
geometrical shapes, will be presented elsewhere.

13 Results for this case limited to the first order in the perturba-
tion sl)lave been presented by C. Yeh, J. Math. Phys. 6, 2008
(1965).

14 P, J. Wyatt, Phys. Rev. 127, 1837 (1962); C. Yeh, ibid. 131,
2350 (1963).



