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In the original article the formal solution to the integral equation for the reactance operator E was
found and shown to di6er from the generally accepted form. The incorrect expression for E has been used
in projection-operator formalisms for nuclear reactions by Bloch and Gillet (BG) and by MacDonald
and Mekjian (MM). We applied these scattering formalisms to a simple soluble model. The discrepancy
arising from the use of the incorrect IC was found to have no observable consequences for the MM treat-
ment. %e did not succeed in 6nding an explicit expression for the discrepancy between the BG prediction
and the exact result for the simple scattering model. In this addendum the discrepancy of the BG formalism
for the simple scattering model is found. This discrepancy is found to be nonzero at all energies. In the
neighborhood of certain energies for zero-range potential scattering, the BG discrepancy can become very
large, In addition, by examining the exp) icit expressions for the E matrix for zero-range potential scattering,
we are able to provide a simple interpretation of the diGerence between the correct form of the reactance
operator and the generally accepted incorrect form.

" N the paper for which this addendum is written, '
„.the formal solution to the integral equation for the
reactance operator E was found and shown to diGer
from the generally accepted form. The incorrect
expression for E had been used in projection-operator
formalisms for nuclear reactions by Bloch and Gillet
(BG) and by MacDonald and Mekjian (MM). In our
paper we applied these formalisms to a simple soluble
scattering model and sought to determine what dis-
crepancy with the correct result was caused by the use of
the incorrect expression for E. The discrepancy that
occurred in the MM treatment was identified and
found to have no observable eEect. However, we did
not succeed in 6nding an explicit expression for the BG
discrepancy.

In this addendum we derive the explicit expression
for the SG discrepancy. It is found to be nonzero at all
energies, and under certain circumstances the dis-
crepancy can become very large. In addition, by
examining the explicit expressions for the E matrix for
zero-range potential scattering, we are able to provide a
simple interpretation of the difference between the
correct form of the reactance operator and the generally
accepted incorrect form.

The material presented below constitutes an addition
to Sec. IV of the original paper, in which the discussion
of the HG and MM discrepancies for seperable s-wave
potential scattering is carried to completion. This is
followed by Sec. V, in which the case of zero-range
potential scattering is used to provide an explicit
realization of some of our formal results.
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If we make use of Eq. (19), the relationships among
r", ~, rp, and Lp can be expressed by

I'= I a+ryZI —w avQZ~, (70a)

3=hs+ I'sQlt 3+hsQXI'. (70b)

Substitution of these expressions into Eqs. (61) and
use of Eqs. (54) and (56) leads to the following results:

y= x+ (xy—vs) (1—w)-' (71a)

s=v+(xy —vy) (1—w) ' (71b)
where

v=v(&) = (v I
& (&)QI~)

Equations (71) maybe solved for y and z, with the result

z= v(1—w)'/[v'+ (1—w —x)'j, (72a)

y= (1—w) [x(1—w —x) —vs]/[v'+ (1—w —x) 'g. (72b)

The results of Eqs. (72) can then be substituted into
Eq. (62) to give

kt ——(1—w) (1—w —*)/[(1—w —*)'+v'], (73a)

ks ——v'(1 —w)/I (1—w —x) [(1—w —x)s+tP)I. (73b)

One can readily verify that kt+ks= k.
Thus, we can corroborate the existence of the dis-

crepancy k2 without making use of explicit expressions
for the projection operators I' and Q.

In the MM treatment, the quantity e is given by

»I = (o I
I's

I 0)/[(~—II'e)'+"j (74a)

whereas in the BG treatment it is given by

vgG=q dg 5' Vp W E—W ' e'
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B(r) = lim iI(r—y) .

Let the unperturbed Hamiltonian be

Hp= —(d'/dr') —[(1/r) +bp]b(r),

so that the perturbation is

V= H Hp (bp —b)—b(r)——
=

I b(r) (bo —b)'"&(b(r) (bp —b)'"
I

=I&&h I

(76)

(77)

(78)

The wave function for the unperturbed state is

+„(r)= sin(«r+iip), (79a)

bp = —tan-'(K/bp), (79b)

H@„(r)= KP%„(r). (79c)

The scattering function (collision matrix) is then

9,= exp(i28) = (b i«)/(b+i«) — (80a)
=exp (i28p) (1—2') (80b)
= exp(i28p) (1—iX)/(1+iX), (80c)

where the transition amplitude (T matrix) is

3=K-'(e.
~

T ~e.& (81a)

and the reaction amplitude (Z matrix) is

X=K-'(@„~E
~
@„). (81b)

For our simple model these quantities can be evaluated.
explicitly to reveal their relationships.

Since the perturbation is separable, the amplitudes
defined above can be calculated from Eqs. (9) and (10)
in the following manner:

3=K-'(%.
i V+VGV i%„&

= K '(bp —b) sinpi)p (1+(y ~
G

~ y)), (82a)

X=K-'(@„(V+VI'V ~%'.
&

= «-'(bp —b) sin'bp (1+(y ~

I'
~ y&). (82b)

In the limit &~0 it is seen that eMM vanishes except
when E=S'0. Thus, the discrepancy k2 vanishes for all
energies except E= Wo. On the other hand, epG does not
vanish. Hence the discrepancy k2 does not vanish for the
BG treatment. In Sec. V we will apply the formalism to
the zero-range potential model and determine the
importance of k2 for that model.

V. APPLICATION TO ZERO-RANGE POTENTIAL
SCATTERING

To illustrate in more detail the results presented
above, we will consider a particular case of scattering
by a separable potential, namely, scattering by a zero-
range potential. Let the Hamiltonian of the system be

H= d'/—dr' [(—1/r) +b]b(r)s (75a)

0&r( m, (75b)

where it is understood that

The scattering Green's function 6 for this system has a
simple form which we can use to evaluate

(V I
G

I
y)= (y I

—K 'sin(«&+b) expi(«r&+b)
I &&

= (b—bp) K ' sinb expii). (83)

Substituting this back into Eq. (82a) and using the
fact that

(bp K) K = (cotb —cotbp)

we find

= sin(bp —b)/sinh sinbp,

3= —exp[—i(8—bp) ]sin(8 —bp)

=K(bp —b) (bp —i«) '(b+i«) '

(84)

(85)

To evaluate the expression for the reaction amplitude
shown in Eq. (82b), one is tempted to use for I' the
principal-part Green's function F, where

I'0'(r)= —f dr's 'sin(sr&+i) cos(or&+II) on(r').

(86)

I' = I'p+ I'p Vl', (87a)

I'o%'(r) = —
J dr' 'sin(or&+do) cos(or&+do)P(r').

0

(87b)

Both I' and I' are inverses of ~'—H; but I' is seen to be
that inverse of a' —B which has the same asymptotic
behavior as I'0. This information permits us to see that

rP(r) = —f dr'[& cos[d—tlo) j 'sin(sr&+ii)
0

&(cos(«r&+i)p) 4(r') . (88)

The factor [cos(b bp) ]—' is required for normalization.
Proceeding now with the evaluation of the reaction

amplitude, we note that

(p [
I'

( p)= (b—bp) [K cos(B—Bp)] ' sinb cosi)p. (89)

When this is substituted into Eq. (82b) and use is
made of Eq. (84), we find

X=—tan(b —b,)

= K(bp —b) (K +bpb)

Next we will apply the BG projection-operator
formalism to our zero-range potential scattering model.
The irst step is to identify the wave functions used in

This would be the conventional, incorrect choice. By
the definition given in Eq. (12), I' is a solution of the
integral equation
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p = —«(bo—b) /(«'+ boo) ~

The reaction amplitude is

X=X,+X,=.—(+. I
X

~
e.)(k,+k,)

=L(%',
i

V i%„)/«(1—w) 1(kg+kp)

(92c)

(bp —b) «(kg+kp)/(bp'+«') (1—u) (93)

the deinitions of the projection operators displayed in
Eq. (68)

(r
~
0)= (r

~

—bp')= (2bo)'P exP( —bpr), (91a)

(r
~

W)= (r
~
«)=(s«) 'I'sin(«r+bp). (91b)

Using these expressions in Eqs. (61) and (68), we hand

w= 2bo(bo —b) /(«'+ho') (92a)

x= —bo(bo —b)/(«+ho') (92b)

Combining Eqs. (73), (92), and (93) gives

Xg= AB/(A'+B'),

Xp =A'/B(A'+B'),

A=«(bp —b) =«(cotl coQp)~

B=«+bob=«'(1+cotta cotbp).

(94a)

(94b)

(94c)

(94d)

We know that X= X&+X&= tan (bp —b) .The question
is horn great an error results from neglecting X2. It is
clear that

Xp/X = A'/(A'+ B') (95)

@rill be small when bo—b«~ or vrhen ~ &&bob. On the
other hand, mhen b is chosen to have the opposite sign
to bo, then 8 mill vanish at the energy x = —blab.

Clearly, in the neighborhood of this energy X2 mill be
large and X~ rvi11 be small, and the neglect of X2 mill

jead to poor results.

.Krratuai

Fission Energetics and Neutron Emission in 13-MeV Proton-Induced Fission of "'Ra, E. KoNzcxv AND H.
W. ScHMrTT LPhys. Rev. 172, 1213 (1968)j. In Table I, line 6, the entry under "Experimental" should read
Br/8m*=0. 077 I/amu rather than 0.77 pp/amu.


