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In the original article the formal solution to the integral equation for the reactance operator K was
found and shown to differ from the generally accepted form. The incorrect expression for K has been used
in projection-operator formalisms for nuclear reactions by Bloch and Gillet (BG) and by MacDonald
and Mekjian (MM). We applied these scattering formalisms to a simple soluble model. The discrepancy
arising from the use of the incorrect K was found to have no observable consequences for the MM treat-
ment. We did not succeed in finding an explicit expression for the discrepancy between the BG prediction
and the exact result for the simple scattering model. In this addendum the discrepancy of the BG formalism
for the simple scattering model is found. This discrepancy is found to be nonzero at all energies. In the
neighborhood of certain energies for zero-range potential scattering, the BG discrepancy can become very
large. In addition, by examining the explicit expressions for the K matrix for zero-range potential scattering,
we are able to provide a simple interpretation of the difference between the correct form of the reactance

operator and the generally accepted incorrect form.

N the paper for which this addendum is written,!
the formal solution to the integral equation for the
reactance operator K was found and shown to differ
from the generally accepted form. The incorrect
expression for K had been used in projection-operator
formalisms for nuclear reactions by Bloch and Gillet
(BG) and by MacDonald and Mekjian (MM). In our
paper we applied these formalisms to a simple soluble
scattering model and sought to determine what dis-
crepancy with the correct result was caused by the use of
the incorrect expression for K. The discrepancy that
occurred in the MM treatment was identified and
found to have no observable effect. However, we did
not succeed in finding an explicit expression for the BG
discrepancy.

In this addendum we derive the explicit expression
for the BG discrepancy. It is found to be nonzero at all
energies, and under certain circumstances the dis-
crepancy can become very large. In addition, by
examining the explicit expressions for the K matrix for
zero-range potential scattering, we are able to provide a
simple interpretation of the difference between the
correct form of the reactance operator and the generally
accepted incorrect form.

The material presented below constitutes an addition
to Sec. IV of the original paper, in which the discussion
of the BG and MM discrepancies for seperable s-wave
potential scattering is carried to completion. This is
followed by Sec. V, in which the case of zero-range
potential scattering is used to provide an explicit
realization of some of our formal results.

* Supported by the U.S. Atomic Energy Commission.
(19675 Tobocman and M. A. Nagarjan, Phys. Rev. 163, 1011

179

If we make use of Eq. (19), the relationships among
P A, Ty, and A, can be expressed by

=r+ QKT —mA0KA, (70a)
A=Ap+TQKA+AQKT. (70b)

Substitution of these expressions into Egs. (61) and
use of Egs. (54) and (56) leads to the following results:

y=x+ (xy—12z) (1—w)7, (71a)
z=v+(xy—vy) (1—w)7, (71b)

where
v=v(E)=n{y | A&(E)Q| 7). (61e)

Equations (71) maybe solved for y and z, with the result
z=0(1—w)*/[v*+ (1—w—x)?], (72a)
y=(1—w)[x(1—w—2) =)/ [»*+ (1—w—=)*]. (72b)

The results of Egs. (72) can then be substituted into
Eq. (62) to give

b= (1—w) 1—w—=x) /[(1—w—x)241*],

kh=(1—w)/{(1—w—x)[(1—w—2x)2+*]}.
One can readily verify that ky+k.=k.

Thus, we can corroborate the existence of the dis-
crepancy k; without making use of explicit expressions

for the projection operators P and Q.
In the MM treatment, the quantity v is given by

(73a)
(73b)

ouu=e{0 | Vo|0)/[(E-Wo)*+€],  (74a)
whereas in the BG treatment it is given by
vBG=e/dW W | Vo | WY/L(E—W)i+e]
(74b)

—x{E|Vs| E).
0
1230
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In the limit e—0 it is seen that vmm vanishes except
when E=W,. Thus, the discrepancy %, vanishes for all
energies except E=W,. On the other hand, vgg does not
vanish. Hence the discrepancy k. does not vanish for the
BG treatment. In Sec. V we will apply the formalism to
the zero-range potential model and determine the
importance of &, for that model.

V. APPLICATION TO ZERO-RANGE POTENTIAL
SCATTERING

To illustrate in more detail the results presented
above, we will consider a particular case of scattering
by a separable potential, namely, scattering by a zero-
range potential. Let the Hamiltonian of the system be

H=—a¥drr—[(1/r)+b]8(r), (75a)
0<7< =, (75b)
where it is understood that
8(r) = lim 6(r—9). (76)
7-0
Let the unperturbed Hamiltonian be
Ho=—(a2/dr*) —[(1/r)+bo]8(r), (77)
so that the perturbation is
V=H—Hy= (by—b)d(r)
=] 8() (bo—0)*2){3(r) (bo—5)** |
=|y)r | (78)

The wave function for the unperturbed state is

¥, (r) =sin(kr+8), (79a)
do=—tan™(/bo), (79b)
HY,(r) =2, (r). (79¢c)

The scattering function (collision matrix) is then

U=-exp(:28) = (b—1ik) /(b+ix) (80a)
=exp(12dy) (1—243) (80b)
=exp(128) (1—iX)/(14+i%), (80c)

where the transition amplitude (7 matrix) is

J=x 10T | T | T) (81a)
and the reaction amplitude (K matrix) is

K=x1(T| K | Ls). (81b)

For our simple model these quantities can be evaluated
explicitly to reveal their relationships.

Since the perturbation is separable, the amplitudes
defined above can be calculated from Egs. (9) and (10)
in the following manner:

5=x1(T, | V+VGV | ¥,)

=x"1(bo—Db) sin? (1+(v|G|v)), (82a)
K=k, | V+VIV|¥,)
=k"1(bp—b) sin?6 (1+ (v | I'|v)). (82Db)
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The scattering Green’s function G for this system has a
simple form which we can use to evaluate

|G lv)=({v| —«*sin(kr<+8) expi(kr>—+38) | v)

= (—bo) k1 sind expid. (83)
Substituting this back into Eq. (82a) and using the
fact that

(Bp— k) k1= (cotd— cotdp)

=sin(8o—5) /sind sindy, (84)
we find
3= —exp[—i(8—&) ] sin(6—do)
= k(bo—b) (bp— k)1 (b+1k) "L (85)

To evaluate the expression for the reaction amplitude
shown in Eq. (82b), one is tempted to use for T the
principal-part Green’s function T', where

I'V(r)=— [w dr' k1 sin(kr<+8) cos(kr>—+8) ¥ (7).
0

(86)

This would be the conventional, incorrect choice. By
the definition given in Eq. (12), T is a solution of the
integral equation

P= Po+ F()VT, (873,)

Tl (r)=— /m dr’ k1 sin(kr<+8) cos(krs—+do) ¥(7').
0

(87b)

Both T and T' are inverses of k2—H; but T' is seen to be
that inverse of ¥2—H which has the same asymptotic
behavior as Ty, This information permits us to see that

T (r)=— f “ ' [k cos(6—80) T sin (kr<+8)
0

Xcos(krs—+8) ¥(r').

The factor [cos(8— o) ]! is required for normalization.
Proceeding now with the evaluation of the reaction
amplitude, we note that

(v | T'|v)= (b—bo) [« cos(8— &) I * sind cosdo.

When this is substituted into Eq. (82b) and use is
made of Eq. (84), we find

(88)

(89)

= —tan(&——éo)
= k(bo—b) (k2-+bob) L.

Next we will apply the BG projection-operator
formalism to our zero-range potential scattering model.
The first step is to identify the wave functions used in

(90)
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the definitions of the projection operators displayed in Combining Eqgs. (73), (92), and (93) gives
Eq. (68) Sei= AB/(A+BY), (94a)
- — P2 = 1/2 —
(r|0)=(r| —be*)=(2bo) 2 exp(—ber), (91a) Ko= A3/B(A*+B?), (94b)
= 2y —1/2 o}
{r | W)= ({r| )= (w«)~12 sin (xr+do). (91b) A= x(be—b) = 2(cotd—cotdy), (94c)
Using these expressions in Egs. (61) and (68), we find B= xi--bob = x2(1+cotd cotdy). (94d)
- - 2.1 72
w=2bo(be—0)/ (*+bs), (922) We know that 3= 3;+ 3= tan(8—5). The question
x=—bo(bg—0) / (1+be?), (92b) is how great an error results from neglecting X,. It is
clear that
v=—k(bo—0)/(2+0¢%). (92¢) %o/ %= A2/ ( A2+ B?) (95)
The reaction amplitude is will be small when §,—b<<x or when x?*<<b. On the
_ o 5 other hand, when & is chosen to have the opposite sign
K= 3t Ka= " (W | K | W) (Rat-ka) to by, then B will vanish at the energy «2= —bgb.
=[ @, | V| ¥ )/k(1—w) J(krtke Clearly, in the neighborhood of this energy X will be
Lev VIl ) Jertke) large and X, will be small, and the neglect of %, will
= (bo—b) k(k1tks) /[ (b2+2) (1—w). (93) lead to poor results.
Erratum

Fission Energetics and Neutron Emission in 13-MeV Proton-Induced Fission of *Ra, E. KoNecNY AND H.
W. Scemrrr [Phys. Rev. 172, 1213 (1968)]. In Table I, line 6, the entry under “Experimental” should read

dv/0m*=0,077 n/amu rather than 0.77 n/amu.



