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This last factor can be shown to be less than 1 from
the equations in Ref. 4.
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An asymptotic form of the total wave function for electron-impact excitation of hydrogen

atoms is obtained by the use of the Coulomb Green function.
corresponding usual form, obtained through the free-particle Green function.

The result is compared with the
The validity of

the Coulomb wave formulation is upheld in view of the physical quantities being finite definite.

I. INTRODUCTION

In describing inelastic electron-atom collisions,
the outgoing boundary conditions on the total wave
function of a system of an electron and an atom
are important. From the boundary conditions, one
finds the scattering amplitudes for the processes;
and from the amplitudes one can predict various
physical properties, such as the probability of
having a specific process, or specific energy and
angular dependences. This asymptotic form of the
wave function can be, in principle, derived from
the Schrdinger equation with the use of either a
plane wave or a Coulomb wave to represent a
positive energy electron. These correspond to
employing either a free-particle Green function
or a Coulomb Green function.

In the literature, the former method of a free-
particle Green function has been carried out!; 2
while the latter has not. However, when the meth-
od of a free-particle Green function is applied to
the Coulomb potential scattering of a charged par-

ticle, the apparent asymptotic form of the wave
function differs from that of the known exact Cou-
lomb wave function by an indefinite phase factor
whose argument diverges. Thus one is left with
an inconsistency.

In this paper, the asymptotic form of the total
wave function for the electron-atom inelastic colli-
sion process is obtained via the Coulomb Green
function and compared with that of a free-particle
Green function method. It is pointed out that the
two forms of the same total wave functions are the
same and unique, though they appear differently.
It is also found that the scattering amplitudes for
both electron-atom collisions and the Coulomb
potential scattering in the plane wave formulation
contain the undesirable indefinite phase factor,
while those in the Coulomb wave formulation are
finite and definite. Thus some doubts which were
raised by some authors® % about the validity of the
Coulomb wave formulation by Kang and Foland®
for the electron-atom collision process, are dis-
pelled.
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II. THE DERIVATION OF THE ASYMPTOTIC
FORM

In the scattering of an electron by a hydrogen
atom, the proton is assumed to be infinitely mas-
sive. The total wave function ¥(F,, T,) of the sys-
tem of two electrons at positions T, and T, satisfies
the Schrédinger equation,

HY(F,T,)=E¥(F, T, . (1)

In the above, H and E denote the total Hamiltonian
and its eigenvalue. The total Hamiltonian of the
system of an electron and a hydrogen atom con-
sists of the sum of the two hydrogenic Hamiltonians,

HF )==3V.24V,
i i i

(in the atomic units), and the electronic mutual
interaction V,,. Thus

H=HF)+HE,)+V,, . (2)

The bound-state wave function of a hydrogenic
atom with a set of quantum numbers » is denoted
by ¢(#1T), and the continuum-state wave function
of the atom with a wave vector kK by p(k I¥). The
eigenvalue equations satisfied by them are as
follows:

H(F)w(yi'f)=E_y¢()’lf),
with y=n or K. 3)

The E,, in Eq. (3) refers to the energy of the hydro-
genic electron.

For the purpose of describing excitation pro-
cesses, the wave function ¥(F,, T,) is expanded in
terms of the complete set of the hydrogenic wave
functions as

¥(F, T,) :EY Yy IT,)Flyl )
=2, gAY IEN(BITE)
=20 ,G(BITW(BIT) . (4)

According to the Pauli principle, the ¥(¥, ¥,) must
be antisymmetric in the space coordinates when
the spins of the two electrons are parallel, and
symmetric when antiparallel. This requirement
on the ¥(¥, F,) requires that the 4,5 must be
antisymmetric for the spin triplet states and sym-
metric for the spin singlet state.

The asymptotic behavior of the total wave func-
tion is, then, determined by that of either F(y|T)
or G(BIT), which represents the projectile elec-
tron. From Egs. (1) through (4), and the use of
the orthonormality of the hydrogenic wave functions,
one finds the differential equation satisfied by
FlylT,) as in the following:
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[2k *~HE)]F(nIT)
= [¥* I F)V 9, F)dF, 5)
with 3k 2=E-E .
n n

Now, using the Coulomb Green function Gc(Fl, T,;
k;), obtained by Hostler® in (1964), one can ex-
press F(n| Fl) in the form of an integral equation
as

F(nlr):énlzp(knlr)+ch(r, k)
x*(n| T,V ,U(F,, T,)d®rd®r, .  (6)

The Kronecker delta 6,; assures the inclusion of
elastic processes (with n=1). Using the available
asymptotic form® of the Coulomb Green function,
one obtains for the excitation processes, where
n#*l,

F(n1%)~7 C@)explik r+in 0))/r,
¥—co, (7)
with fnc(e) =—(2m) [(- Enlfl)zp* (n]F,)
XV, ¥(F,, T,)d% d%, , (8)
and

nn(r)= (Z/kn)anknr, (Z =atomic no.) . (9)

Similarly, through a procedure similar to one
which led to the asymptotic form of the F(n|T),
one finds for that of the G(n|¥) in Eq. (4) that

- C o )
G(nlT) g, (6)exp[zknr+znn(r)]/7 R
Y=o, (10)
with

g,50)== @0 [y* (T u-F 15

2

XV U, ) dor dor, . (11)

Thus one obtains the asymptotic form of the total
wave function ¥(¥ , ¥,) for the excitation processes
as follows:

UF,T)~D it )r C6)
xexplik v, +in o )]/7, ,

¥ /¥y~ , (12)

~Z sn1F g C6)
xexp[ iknrz + inn(rz)] /1’2 s

Vo/V ~o0
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The asymptotic form for the exchange excitation
processes, which is the same as in the second
equation of (12), has been given by Mott and
Massey' without giving any detailed derivation,
while the asymptotic form for the direct scattering
as given in the first equation of (12) has never
been given in literature to the author’s knowledge. ’
The asymptotic forms in (12) are contrasted with
the following well accepted forms??

b zk r
W(FI,F2)~Z)n WnlT,)f " (0)e /1’1 )
1"1/’)’2-000 ,
(13)
ik v
~Enll)(n l 'fl)gnp(e)e " 2/1'2 ,
rz/'rl_.ao ’
with » .
£.06)=- (2n)"f¢*(kn IF))*(nlFy)
X(V,+V,)¥(T,, T,)d%rdr,, (14)
nd »
g, 0)==- @' [ ¢o*(k IF)p*(nIF))
X (Vy+ VR )T, T,)d% d%, . (15)

The ¢(k | T) in the above refers to the plane wave
with the wave vector kn The conventional asymp-
totic form in Eq. (13) has been obtained through
the use of the free-particle Green function, in
place of the Coulomb Green function. It can be
shown without too much difficulty that the two
forms of both the direct and exchange amplitudes,

f andg, respectively, are related by a phase factor,

e“? (7’ whose argument diverges logarithmically
as follows:
in ()
fp(G)f 6 lime "
T i )
in (r
and g P(6)=g C@) time " . (16)
n n Y = 00

The proof of Eq. (16) consists of expressing both
£2(9) and g,2(9) of Eqgs. (14) and (1 5) as surface
integrals at infinity in the T, and the T, space,
respectively, and using the asymptotic form of
the total wave function in Eq. (11). In fact, Rudge®
recently obtained a relation similar to the second
of Eq. (16), but he did not distinguish the g,,C(6)
from the g ?(6), ending up with a paradoxical re-
lation

+in (r)

8,8, lim e

Ny o

) 17)

and concluding that the Coulomb wave approxima-
tion by Kang and Foland,5 or, the integral ex-
pressions for the direct and exchange amplitudes
as in Eqs. (8) and (11), were not acceptable.

III. THE COULOMB SCATTERING
AMPLITUDES

If one describes the initial state of the electron
by a plane wave, the Coulomb scattering amplitude
contains an indefinite phase factor whose argument
diverges logarithmically. Indeed, this fact can
be shown with the variational method by calculating
the integral of the form,

T )d3

f¢*(k IF vk, (18)

b 1°
The source of the phase factor in 7P in Eq. (18)
can be traced to representing the initial state by
the plane wave, when one observes the asymptotic
behavior of the exact Coulomb wave function. It
is interesting to point out that Dalitz® (1951), later
Kacser® (1959), and more recently Kang and
Brown'® (1962) studied higher Born approxima-
tions for the Coulomb scattering of a charged
particle. They found that while the first Born
approximation gives the correct Rutherford or
Mott cross sections, the higher Born scattering
amplitudes which are divergent, can be grouped
into a phase factor with a divergent argument,
multiplied by the sum of the first Born term and
some finite correction terms. These results are
in accordance with the fact that f? in Eq. (18)
has an indefinite phase factor. As was pointed
out by Dollard!! in (1964), there exists no “pure”
plane wave state of an electron even in the asymp-
totic region of a Coulomb field. This can be seen
easily by transforming into a new gauge for the
four-vector electromagnetic potentials,

A -A'=A +v A[T),
[T TR TR
with the gauge function A(F) given by
A(F):—nn(ﬂ . (19)

In the new gauge the scalar potential becomes
zero. Thus the wave function in the new gauge of
a charged particle in the Coulomb field becomes
a plane wave in the asymptotic region, and the
wave function in the asymptotic region of the Cou-
lomb field is a “pseudo” plane wave which is the
product of a plane wave and the phase factor,
exp| in,(r)]. If this “pseudo” plane wave is sub-
stituted for the ¢ in Eq. (18), then the indefinite
phase factor will be cancelled out, resulting in a
finite and definite amplitude. This very aspect
of the Coulomb scattering has in recent years
attracted attentions of many authors'? [Mapleton
(1961), (1962); Okubo and Fieldman (1960);
Dollard (1964); Ford (1966); West (1967)].

IV. REMARKS ON ELECTRON-ATOM
COLLISIONS

We now want to show that the f,(6) in Eq. (14),
for instance, has the indefinite undesirable phase
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factor .
+in_(r)
. n
lim e y
Y — 00

and that the corresponding amplitude f,,C(6) in the
Coulomb wave formulation is finite definite. Ac-
cording to Eq. (14) the plane wave ¢(k,|¥1) inter-
acts via the V, with the nucleus of the atom and
becomes the Coulomb wave, and then an attractive
Coulomb wave electron interacts with a bound-state
electron, resulting in the inelastic process. In

the first stage, the bound-state electron is merely
a bystander whereas the other positive energy elec-
tron undergoes a potential scattering. In the final
stage, the scattered electron undergoes for the
second time a potential scattering in the repulsive
Coulomb field of the bound electron, averaged

over the process. In Eq. (14), the exact wave
function ¥(¥ ,, T,) is used while the intermediate
states are described implicitly. Thus no error

is made in describing the second stage of the pro-
cess. Therefore the fﬂP(G) is a product of a finite
definite quantity and the indefinite phase factor.
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In view of Eq. (16), one concludes that the f,,C(6)
is finite definite.

It is emphasized that as reference states in de-
scribing the electron-atom collision processes,
the Coulomb waves are preferable to the plane
waves, contrary to the statements made by Rudge®
(1968) and by Kyle and McDowell* (1968). It is
pointed out that those equalities by Day, ef al.,'?
and later by Kang and Foland® exhibiting the equiv-
alence of the expressions for the inelastic scatter-
ing amplitudes between the plane wave and the Cou
lomb wave formulations are correct provided that
the “pure” plane wave is replaced by the ‘pseudo”
plane wave, as are displayed in Eq. (16).

Finally, it is remarked that the asymptotic form
of the total wave function for electron-hydrogen
atom collision processes is unique and the forms
in Eqs. (12) and (13) are the same. It is empha-
sized that the expressions for the scattering am-
plitudes £,,C(6) and £, (6) in Eqs. (8) and (11)
are preferable to the f,”(6) and the g, (6) in Egs.
(14) and (15), because the former’s being finite
and definite, in addition to the reasons cited by
Kang and Foland.
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