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We describe a versatile code for the calculation of the electronic properties of atoms in the Hartree-Dirac
approximation. Calculations may be made for excited-state and multihole configurations as well as for the
ground state of the neutral atom. Exchange may be included in the Slater approximation. The properties
of metals may be calculated in the Wigner-Seitz approximation. The calculations may be made for a point
nucleus or for a finite nucleus with a diffuse surface. We give results from a calculation made in the Wigner-
Seitz approximation of the way a gold atom changes as a result of compression. This includes results about
the way the charge density changes both near the gold nucleus and throughout the atom as the Wigner-Seitz
radius is decreased from infinity to a value somewhat less than that for metallic gold at zero pressure. It was
found that the charge density near the nucleus goes through a minimum which is related to the Wigner-Seitz
boundary condition. The eigenvalues for all of the states occupied in atomic gold are given as a function of
compression, of Slater exchange, and of nuclear size. Using these, the change with nuclear size of the eigen-
values of all of the electronic s states is calculated and is compared with a first-order perturbation-theory
calculation of this change. The hfs coupling constant of the 6s state of a free atom of gold is calculated and
compared with experiment. The core polarization in gold is discussed. Finally, a brief discussion of internal
conversion in 1%Tm is given. The calculations given for gold are pertinent to a measurement of the change of
energy of the resonance v ray of ¥7Au with pressure. This measurement was made through the use of the
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Mossbauer effect.

I. INTRODUCTION

N this paper we describe a code which treats the
atomic many-body problem in the self-consistent
field approximation using the Dirac equation to describe
the motion of the individual electrons. The self-con-
sistent potential is chosen to be of the Hartree type with
the provision of incorporating the effect of the Pauli
principle approximately in the form of an exchange
potential. Within the framework of these approxima-
tions, this code can be used to compute the electronic
structure of any atom in any given configuration,
including two-hole states.! A number of relativistic self-
consistent-field codes have recently become available.?8
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Liberman et al? have calculated the ground-state
energies of a large number of elements. Tolliver ef al.?
and Hager et al.8 have studied the internal-conversion
problem using their code. Coulthard’” did an extensive
theoretical study of the eigenvalues of Hg in which he
took the exclusion principle into account properly, i.e.,
in the sense of a complete integral kernel of the Fock
type instead of as an exchange potential.

The code presented here includes as options the
choice of a point or of a distributed nuclear charge, the
choice of free-atom or of Wigner-Seitz? boundary condi-
tions, and the choice of omitting the electron exchange
interaction or of including it in the form of an approxi-
mate exchange potential.

We discuss an application of this code to the calcu-
lation of the wave functions of metallic gold as a func-
tion of compression. This application of the code was
made to provide a basis for the interpretation of
measurements of the y-ray energy of gold as a function
of pressure. This high-pressure work is described in
another paper.1®

9 E. P. Wigner and F. Seitz, Phys. Rev. 43, 84 (1933); 46, 509
(1934). A use of Wigner-Seitz boundary conditions for relativistic
Hartree-Fock-Slater wave functions which differ somewhat from
those in this paper has been investigated by J. T. Waber, D.
Liberman, and D. T. Cromer, in Proceedings of the Conference on
Rare-Earth Research, Phoenix, Arizona, edited by L. Eyring,
(Glor;ion and Breach, Science Publishers, Inc., New York, 1965),
p. 187.

0 1. D. Roberts, D. O. Patterson, J. O. Thomson, and R. P.
Levy, Phys. Rev. (to be published).
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Our code is quite versatile and has a more general
usefulness than is indicated by this specific application.
For example, the code has been used to obtain wave
functions to interpret Mgssbauer measurements for
Au ® and for Ni and Ge," to help in the interpretation
of outer shell internal-conversion measurements'? for
169T'm, for an extensive calculation of electron shake-off
probabilities'® and for the calculation of certain proper-
ties of the superheavy elements.'

In Sec. II we give a detailed description of the theory
related to the code, and in Sec. III we give results from
calculations of the eigenenergies and wave functions of
gold for both Wigner-Seitz and free-atom boundary
conditions. This is done for atomic volumes ranging
from infinity to somewhat less than the atomic volume
of metallic gold. The way in which the wave functions
of gold respond to compression is investigated and the
relationship of these calculations to the high-pressure

oo

where Fi(r)=rfi(r), Gi(r)=rgi(r), fi(r) and g;(r) are,
respectively, the minor and major radial components of
the wave function, and « is the fine-structure constant.
We have used a=(137.0389)'. & is the quantum
number combining the total angular momentum j and
the parity (determined by the angular momentum J),

with
—(—=N2j+1). (2)

The dimensionless energy eigenvalue ¢; associated with
each electron in the 7th orbit of energy E; is given by

ei= (m?—E;)/mc?, 3)

where m and ¢ are, respectively, the rest mass of the
electron and the velocity of light. In Eq. (1), the radial
distance 7 is expressed in Bohr units, az=%2/me?. The
potential functions Vy(r) and V;(r) represent, respec-
tively, the potential generated by a nucleus of total
charge Z and the potential originating from the inter-
action of the electrons. In the Hartree approximation
we use

4)

—k.'/f

Vi(r)=Vuir),
with

1 1
Vai)== 2 quvyYon'l'j';)—=Yo(nlj; 1),

r i’y r

)

where (nlj)=1 specifies the quantum numbers of the
electron in the ith subshell, ¢u;; is the number of
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H. H. F. Wegener, Phys. Rev. 174, 331 (1968).
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and F. B. Malik, Phys. Rev. 174, 118 (1968).

(2—e&)/ata[Vy(r)—Vi(r)]
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paper!® is indicated. Brief discussions of the hfs coupling
due to the 6s state in gold and internal-conversion co-
efficients for 1Tm are given. In the Appendix we discuss
a few interesting points related to the computation of

wave functions and energy eigenvalues.

II. THEORY

A. Equations

In the relativistic self-consistent-field approximation
the motion of each electron is described by a set of
coupled radial wave equations of the Dirac type with
a central electrostatic potential generated by the
combination of the potential due to the nuclear charge,
and the average potential originating from the mutual
repulsion of electrons.’®1 The motion of the ith electron
in the field of other electrons and of the nucleus is
given by

e/a—a[ Vi (r)— V.-(r)])(Fs(')) ’ 1)

k,‘/?’ G.‘ (7’)

electrons in the subshell specified by the quantum
numbers (#'l'j’), and Yo(nlj;r) is given by

Yo(nlj;r)= / [P () + G () 10"
0

© ar’
tr[ PGt ©
r
r
For a point nucleus the nuclear potential function is
Z/r, where Z is the atomic number, or total nuclear
charge. However, where we are interested in the study of
the effect of finite nuclear size on the electronic motion,
the nuclear potential function can be expressed in terms
of a nuclear charge distribution function py by

1 rr o
Va(r)=- / Anr'%pn (r')dr'+ / dxr'py (rdr', (7)
rJo r
where py is normalized such that

47r/wr2pN(r)dr=Z , ®)
0

with Z the total nuclear charge.

The Hartree potential, Eq. (5), neglects the effect of
the exclusion principle which yields in addition to Eq.
(5) a nonlocal potential. A simple approximate local
form of this nonlocal potential has been obtained by
Dirac!®17 on the basis of the statistical theory of atomic

16 B. Swirles, Proc. Roy. Soc. (London) A152, 625 (1935).

16 P, A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

17 For a detailed discussion, see P. Gombas, in Handbuch der
g’étysiki Oegdited by S. Fliigge (Springer-Verlag, Berlin, 1956), Vol.
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structure. This exchange potential may be expressed in
terms of the electronic charge density distribution

pe(r) as
Vex(r)= [3Pe(")/7r]”3 . (9)

When the exchange potential is incorporated, the
total potential due to electron interaction is

V.ir)=Vai(r)—Vea(r)+r ¥ o(nljr). (10)

The potential Eq. (10) tends to zero exponentially as
the radial coordinate of the electron under consideration
becomes large, whereas with NV electrons the correct
asymptotic form of the potential for the free atom is
(Z—N+1)/r. Therefore, we have followed the pre-
scription of Latter'® to obtain the correct asymptotic
form in free-atom calculations. No correction to Eq.
(10) is needed for the Wigner-Seitz case. Since the form
Eq. (9) for the exchange potential is an approximate one
provision has been made in our code to use any multiple
¢ of Eq. (9). For {=4, the exchange potential is iden-
tical with the one proposed by Slater.!®

B. Boundary Conditions

The electron radial wave functions for a free atom
extend to all space, and hence are subject to the normal-
ization condition

f [F*()Fi(r)+G*(r)Gi(r) Jdr=1. 11)

Asymptotically these wave functions fall off at large »
like a Dirac hydrogenic wave function with a central
potential (Z—N+1)/r.

In a pure metal, because of the translational invari-
ance of the lattice, the wave function of an electron of
momentum k and position vector r will have the Bloch
form Uy(r)e*™ ' . So far as we are aware, no calculation
of Ug(r) has ever been made in which self-consistency
was required for all of the shells of the atom. This
complete self-consistency has been required for the
calculations presented here. Some years ago, Wigner
and Seitz'® gave an approximate treatment of several
metallic properties in which they used a model wave
function Uy(r)e’sr, where Uo(r)=2Uy(r)(k=0). The
latter equality is only approximate in the Wigner-Seitz
model because the polyhedral cell of volume V sur-
rounding an atom on which the boundary conditions of
Ux(r) are defined is replaced by a sphere of radius
Rws, where 4 Rws®="V. In the calculations of Wigner
and Seitz Uy(r) was calculated in the Hartree-Schroe-
dinger approximation under the boundary conditions
that (dUo/dr)rys=0 and

Rws
/ dr PUg(r)=1.
0

18 R, Latter, Phys. Rev. 99, 510 (1955).
B J, C. Slater, Phys. Rev. 81, 385 (1951).
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This model has been widely used in the approximate
theoretical treatment of many metallic properties.

At high atomic number relativistic effects become
important, for example, in the calculation of the electron
charge density near the nucleus or in the calculation of
hyperfine structure coupling. To obtain an approximate
calculation of these quantities for metallic systems we
have obtained a solution to the Hartree-Dirac problem
in a Wigner-Seitz type of approximation.

Since the major component g of the relativistic wave
function corresponds to the nonrelativistic solution, we
have chosen g to satisfy the boundary conditions

dg(r)/dr| r=rws=0 for evenl (12a)

and

g(r)| r=rws=0 for odd ! (12b)

with the normalization condition
Rws
f [FAF()+GH G TIr=1.  (13)
0

In Egs. (12) we have specified the boundary condition
for the large component only. One might wish intui-
tively to specify a boundary condition on both com-
ponents, for example, f'=g’=0 at Rws. This is not
possible, however. With two boundary conditions, the
solutions to the Dirac equations, which are of first
order, are overdetermined. Since most of the electron
density in the outer region of the atom is contributed by
the major component, it is believed that this choice of
boundary conditions gives a useful approximation to
the metallic wave functions at the bottom of the band.

The choice of boundary conditions [Eqs. (12)] is not
unique. Another and possibly better choice in some
cases would require Eq. (12a) to apply for all J, for
example. Qualitatively, condition Eq. (12a) will
approximate a bonding, and Eq. (12b), a nonbonding
wave function. For gold our use of Egs. (12) should be
satisfactory since only states of even / have an appreci-
able amplitude at Rws. For s-p metals such as Sn, on the
other hand, the requirement (12a) for all / may give a
better wave function and energy. We expect to include
a choice of boundary conditions of this type in the next
version of the program.

The nature of the solution of Eq. (1) for a point
nucleus differs near the origin from that for a finite
nucleus because of the different potential at the origin
in these two cases.?? For a point nucleus the nuclear
potential has a 1/7 singularity at r=0, but for a finite
nucleus the potential tends to a constant at the origin.
The potential caused by the distributed electron charge
can be represented very close to the origin by
(14)

u=lim V().
r=>0

2 F, G. Werner and J. A. Wheeler, Phys. Rev. 109, 126 (1958).
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Using this electron potential and a point nucleus, one
can represent the wave functions near the origin by

F(r) Y aurn
=7 w , 15
¢l IS b as)
=
with
v=(|k|?—a2Z2)'2, (16)
bo/ao=— (‘y—k)/aZ, (173)
and
(a,. 1 ( —aZ n—l-'y—k)
bn>—n(n+2'y) nty+k  oZ

[(2—€)/a—aulan
. 7b
X( (e/atau)b,—1 ) (A7)

This is the standard solution, originally derived by
Darwin? and by Gordon? for hydrogenic atoms.

Although the expansion Eq. (15) has been used
widely in first-order perturbation calculations of the
influence of finite nuclear size on various observables,
e.g., theisomer shift in the Mgssbauer effect,? the actual
character of the solution near the origin is quite different
from Eq. (15) for a finite nucleus.

In the discussion of the effect of a finite nucleus on the
electron wave functions and eigenvalues, we have
chosen to use a slight modification of the ‘“‘smoothed
uniform” charge distribution, used first for a nuclear
charge distribution by Yennie, Ravenhall, and Wilson,*
and subsequently by Elton,?® and others. This distri-
bution,

px (r)=Cn(1+4etroia)t, (18)

has a small, but nonzero first derivative at the origin.
Here ¢ is the radius at which the density is 3C» (the
“average” radius) and a gives a measure of the diffuse-
ness of the nuclear surface. For a real nucleus one would
expect the above derivative to be zero at the origin. To
achieve this, we have used the distribution

on (r)=n0+nar? for 0<r<7m, (19a)
on(r)=Cy(1+el—roie)=1 fory,<r, (19b)

where 7o and @ are those from the distribution Eq. (18),
rm is much less than 7y, and coefficients 7, 72, and Cy are
chosen such that py is continuous with continuous first
derivative at r=r, and the normalization equation
[Eq. (8)] is satisfied. We have generally used 7,,=0.1 7,
in our calculations, although distributions Eqs. (18) and
(19) differ only slightly for all 7,,<7o—3a.

2 G. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

2 W. Gordon, Z. Physik 48, 11 (1928).

% H. Frauenfelder, The Méssbauer Effect (W. A. Benjamin, Inc.,
New York, 1962).

% D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev.
95, 500 (1954).

% L. R. B. Elton, Nuclear Sizes (Oxford University Press,
Oxford, 1960).
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For the density distribution Eq. (19), the nuclear
potential at a distance less than 7, can be written as

Norm®  N¥mt mor? ot
Va(r)= 41r( + —+ | "o (r”)dr") .
2 4 6 20 J,,
(20a)
and setting
ﬂ07m2 7]2’m4 °
V0=41r( + +/ r”pN(r”)dr”) ,
2 4 o
va=—3mn,,
V4= %712 3
we rewrite the potential as
Va(r)=votvart vt (r<r,). (20b)

Since the nuclear potential Eq. (20b) contains terms
through 74, little extra effort is required if the limiting
electron potential (14) is replaced by the first terms of a
Taylor’s series about the origin for V;(r). It may be
shown that using nuclear potential Eq. (20b) gives,
through terms in 74,

V,'(f) = (.‘io'{'ctgi’z'l'(141’4 for f_<_ Tme (21)

Then, defining ¢;=»;—a;, the net potential sufficiently
near the origin can be written

Vw(r)=Vi(r)=ootor*+out. (22)

Using potential Eq. (22) we expand the wave func-
tions near the origin by

F(r) © QG
o) 2G)
G(r) n=0 \b,
Substituting expansion Eq. (23) into the Dirac equation

[Eq. (1)] and equating the coefficients of equal powers
of 7 gives the index s and the coefficients a, and b, :

(23)

s=|k|, (24)
ao=p(s—k), (25a)
bo=p(s+k), (25b)

a,=[(¢/a—ao0)bn_1—aosbs_3—aoib,_s]/
(s+k+n), (25c)
bn=[((2—€)/atac0)ar1+actn_s+acian_s)/
(s—k+n), (25d)

where p is a normalizing factor, and subject to the
condition

@n—i=b,—i=0 forn<i,i=1, 3, or 5.

From Egs. (23)-(25) it is seen that one wave function
component contains only odd powers of r while the
other has only even powers. The self-consistency of the
electron potential Eq. (20) is evident if wave functions
Eq. (23) are used in Eqgs. (6) and (9).
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An important difference in the behavior of the wave
functions for a point and a finite nucleus is that for a
point nucleus the first power of 7 in the Darwin ex-
pansion Eq. (15) is (k*—a?Z?)!/2, which is nonintegral,
and both leading coefficients are nonzero. For a finite
nucleus with py given by Egs. (19), however, the first
power of 7 in expansion Eq. (23) is an integer || and
depending upon the sign of k, either ao or & is zero.
Although we have used a very specific nuclear charge
distribution [Eq. (19)] to obtain the wave functions
Eq. (23) near the origin, it is important to notice that
the qualitative differences in leading coefficients and
powers of 7 for point and finite nuclei are independent
of the particular charge density used for the finite
nucleus. These differences occur because the 1/r singu-
larity of the point nucleus potential is replaced by a
finite value in a finite nucleus. The qualitative difference
between Eqgs. (15) and (23) will manifest itself in the
computation of the effect of finite nuclear size on any
measurable quantity involving the electronic charge
distribution in the interior of a nucleus. Expansion Eq.
(23) has been used in the finite-nuclear-size calculations
given in Sec. IIL.

III. INTERPRETATION OF HIGH-PRESSURE
MOSSBAUER-EFFECT MEASUREMENTS FOR
METALLIC GOLD THROUGH CALCULATION

OF ELECTRON CHARGE DENSITIES,
EIGENVALUES, AND 6s HFS
COUPLING

A. Introduction

In this section we present some results from a series
of calculations of the electron eigenvalues and charge
densities of atomic gold and of the way that these
change when a gold sample is compressed from infinite
atomic volume to an atomic volume somewhat less than
that of metallic gold. These calculations were made to
provide a basis for the interpretation of a measurement
—made through the use of the Mossbauer effect®—of
the pressure dependence of the energy E. of the reso-
nance v ray of metallic gold. The results from the exten-
sive printout of information given by the code which we
shall present here are those which have a particular
bearing on this Mgssbauer-effect measurement and also
on the way the gold-atom charge-density distribution
responds to the compression of the atom.

The electrons and nucleons within an atom con-
stitute a single interacting system, and the energy of a
state ¢ of this system E,({,£) depends at once on all of
the electron and nucleon coordinates £ and ¢. All of the
quantum numbers of the system are included in ¢. The
energy of a v ray depends then not only on the nuclear
coordinates but on the coordinates of the electrons as
well. Because of this, a sufficiently precise measurement
of E, can be interpreted to give information about the
electron charge density near the nucleus. The Moss-
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bauer method® provides a tool for making such precise
measurements of E,.

In a first-order perturbation-theory treatment it may
be assumed that the energy E.({,£) may be written in
the form

E(§,8)=En(¥)+Ec(8)+e(5,8). (26)

In this approximation the energy E.({) associated with
the nuclear coordinates is taken to be independent of the
electron coordinates. The energy E.(£) of the electron
states is calculated for an assumed point nucleus, and is
thus forced to be independent of the nuclear coordinates.
The nucleus is, of course, finite in radius, and the
Coulomb interaction between the actual finite nucleus
and the atomic electrons is weaker than for the point-
nuclear case assumed in the above calculation of E,(£).
Thus a term e({,£) must be included in Eq. (26) if the
calculated energy E.(¢,£) is to be compared with precise
measurements.

In the following we shall calculate the energies E,(£)
and e({,£), and the electron radial probability density

W’Rws(r) |2= {was(r) |2+ lngs(f) ‘2

for gold metal in the Hartree-Dirac-Wigner-Seitz or in
the Hartree-Dirac-Slater-Wigner-Seitz model. A sub-
script Rws, €.g., in |¥rws(r) |2, designates the Wigner-
Seitz radius for which the calculation was made.

When a pressure p is applied to the gold sample the
atomic volume V=4rRwg® is reduced, and this reduc-
tion may be described in terms of the compressibility

3 dRws

The dominant behavior of the energy e may be de-
scribed in terms of the nuclear radius o and the electron
probability density at the nuclear surface |Yrws(ro)|2
as parameters. Thus we shall write e= (o, |¥rws(70) |2)-
When the radius of the excited state of a nucleus 7, is
different from that of the ground state 7o, the resonant
y-ray energy E, will depend on this difference. Thus the
resonant y-ray energy for a Wigner-Seitz radius Rws is

Eyrws= Eno(§) —Eny(§)+e(roe, !‘prs(fOs) |2)
_3(700’ |¢Rws("00) |2) ) (27)

where the E,,(¢) and E,.({) refer to the ground and
first excited states of the nucleus. In our high-pressure
Mossbauer studies® we have measured the difference

AE=Eyrys—EyRows

=[e(0e, |¥Rws("00) |*) —€(rog, | ¥ Rws(ros) |2)]
—Le(ro., I YRows(700) I 2)—e(ro,, | YRows(Tog) l 2)] )

where Rows and Rws are the Wigner-Seitz radii for gold
at zero applied pressure and when the sample has been
compressed. In Mossbauer-effect studies, AE is often
referred to as the isomer shift.?

Our specific purpose, then, is to calculate e. We shall

(28)
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do this in two ways: (a) as an explicit function of 7o and
of |¥rws(ro)|? by a method described by Breit,® and
(b) through direct calculations of the eigenvalues of the
Dirac equations for a gold atom first with a finite
nucleus of radius 7o and second with a point nucleus,
both with the same Rws. For the first method, a calcu-
lation of |YRws(r)|? for an atom which is assumed to
have a point nucleus is used.

Near the nucleus only s1/2 and pys states contribute
appreciably to |Yzws(r) |2 For a calculation in which a
point nucleus is assumed, this charge density near the
nucleus may be obtained from Eq. (15), and in general
takes the form

Vs () [ =272 >°';0 CoiaRws)™.  (29)

The Cnja(Rws) are a set of numbers with a summation
index « which characterize the charge density as a
function of Rws, for a state of principal quantum num-
ber # and angular momentum 7. In addition to giving a
numerical solution to the Dirac equations for 0<r
< Rws, the code gives a calculation of the first 12 terms
in this series. From the calculation of the Cajq it may be
seen that, for the range 0<r<~r7q, the first term
Cnio(Rws)r®m gives the charge density surrounding a
point nucleus to within a few percent. We will use the
abbreviation Caj(Rws)=Cnjo(Rws), and much of the
following discussion will be relative to this quantity.
As we shall see, only Ce,(Rw,) will change appreciably
with Rws for Rws~Rows.

As we mentioned above, Breit? has given a first-order
perturbation-theory calculation of e. In this calculation,
he assumed a spherical nucleus of uniform density with
radius 7o and an electron charge density given by
[#(7) | n#=Cnj(Rws)r*2 (atomic units) for a point
nucleus. In terms of our notation his result may be

written
3Cn;(Rws) Ze\ [ro"\ ¥
GG @
v(2y+1)(2v+3)\2au/ \ax

eni® (ro,Rws)=

and the isomer shift AE; Eq. (28) may be given in a
form suitable for use in the discussion of our high-
pressure studies':

E.;

6 VA
= -————————(——)(an (Rows)ro®)
(2y+1)(2y+3)\2ax

d lnC,.j Aro\ /ARws™3

Xl G ) @
dInRws™3/ rows\ 70 / \ Rws™®

In the interpretation of our high-pressure measure-

ments through the use of Egs. (30) and (31) we shall
then need to calculate C,;j(Rws) and

(d InC.j/d InRws™) Rows-

26 G, Breit, Rev. Mod. Phys. 30, 507 (1958).
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The numerical calculation of |Yrys(r)|? for the whole
range of 7, 0<7< Rws will also be of interest in gaining
an understanding of the behavior of the function Cy;
=Cpj(Rws). The application of these calculated results
to the interpretation of our high-pressure measurements
is given in another paper.l® The Wigner-Seitz model
gives a good approximation to the metallic wave func-
tion only at the bottom of the band. Thus the results
given here should be regarded as an interim treatment.
It will be most useful to obtain a full band-theory
calculation of the problem.

B. Calculations of | {rws(7)|2 and C,,(Rws) for a
Point Nucleus as a Function of the Rys

Calculations of |Yrys(r)|? and of Cn.,(Rws) have
been made for values of Rwg in the range 2.9< Ryg< o,
where Rws is in Bohr units. The Wigner-Seitz radius for
metallic gold at zero pressure is Rows= 3.00 Bohr units.
All of the values for C.; were calculated for a point
nucleus for use in the calculation of e(ro,Rws) in the
Breit approximation.

Most of the calculations were made with the Hartree
potential [Egs. (4) and (5)], although a few calculations
were made with the exchange approximation of Egs. (9)
and (10). This was because an early version of the code
with which most of the C,j(Rws) calculations were
made did not include the exchange potential Vex(r).
This omission of Vex does not give a serious error in the
calculation of e(ro,Rws), however, for C,,(Rws) has
only a weak dependence on V. For example, with a
point nucleus and with Ryws=3.010239 atomic units
Cg:=1606.67 with Vex(r)=0, and Ce;=67.24 with Ve(r)
as given in Eq. (9) included in the calculation.

In Table I we give values for C.;j(Rws) for all of the
s12 and pij» states occupied in atomic gold for Rwsg
values of «, 3.000000, and 2.899999. Between Rwsg
=3.000000 and Rwg=2.899999, which is a large com-
pression compared to present experimental capabilities,
it is found that the total charge density near the nucleus
due to all of the inner shells is constant to within the
precision of the calculation of a few parts in 10°. Only

TasLe I. This table gives C,;j(Rws) near a point nucleus
|¢gw§(r)|’ECn;(Rws)r27‘2 for all of the si/2 and pi. states for
atomic gold for the free atom and for two values of Rwg near
metallic gold. Rwg is the Wigner-Seitz radius.

Electron

quantum
state Cri(®) C»;(3.000000)  C,;(2.899999)
15172 414 529.55 414 527.53 414 527.62
25172 61 624.07 61 623.86 61 623.88
29172 4356.15 4 356.09 4 356.05
3s1/2 13973.45 13 974.01 13 974.07
3p172 1100.78 1100.84 1100.84
4s51/2 3 552.47 3 553.26 3553.31
49172 274.51 274.59 274.59
Ss1/2 700.25 705.35 705.32
S5pis 47.21 48.00 48.08
sum 500 158.44 500 163.77 500 163.53
651/2 4014 6727 7368
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Fi1G. 1. The electron charge density near a point nucleus may be
represented in good approximation by |[¢(r)|?=Crr2 Here
Ces(Rws) for gold is plotted versus 1/Rws?® and also versus the
gold average density in g/cc. Rwsg is the Wigner-Seitz radius. This
graph gives Cs, for atomic gold, for gold metal, and for the whole
range of 1/Rwsg? in between. It shows that in the intermediate
range of 1/Rwg?, C may be expected to go through a minimum.
The arrow corresponds to Rws for metallic gold.

Ces(Rws) is found to change appreciably with Rws.
This is a very helpful result, for it implies that

(d InC,;/d lans_z)Rows'\’O

for all of the inner shells and that our high-pressure
y-ray-energy measurements!® can be interpreted in
terms of Cg,(Rws) alone without direct reference to the
inner shell electrons.

Figure 1 is a graph of C¢;(Rws), which is proportional
to the electron charge density near the nucleus, versus
the average “metallic”’ density. Most of this graph is for
low metallic or Wigner-Seitz density values but this

0 | ] ] ] ] |
05 103 0! 10
7, RADIAL DISTANCE (bohr units)

F1G. 2. Radial probability density function for the gold 5ds/.
state as a function of radius r and of the Wigner-Seitz radius Rws.
As Rwg is decreased, i.e., as the atom is compressed, the 5ds,;
charge which is displaced inward tends to pile up near the inner
surface of the Wigner-Seitz sphere. In the inner region of the atom
the S5ds;» charge changes only slightly with compression. The
Sd3/2 charge density behaves in a similar way.

r, RADIAL DISTANCE (bohr units)

F1c. 3. Radial probability density function for the gold 6s1/2
state as a function of radius » and of Wigner-Seitz radius Rws.
This graph illustrates in a more complete way the result which is
shown in Fig. 1, namely, that, as the atom is compressed, the 6s
charge at first may be expected to move outward and then inward
again with decreasing Rws.

low-density range is of interest in gaining an under-
standing in detail of how the atom, in the Wigner-Seitz
model, responds to compression.

As Rys is decreased from infinity, the average metal-
lic density correspondingly is increased from zero, and
in the Wigner-Seitz model the electron probability
density near the nucleus at first decreases to a minimum
near an average metallic gold density of 3 g/cm® and
then increases monotonically.

For the interpretation of the high-pressure measure-
ments, we need the value for the logarithmic derivative
in Eq. (31). This derivative is related to the rate of
change of the electron charge density near the gold
nucleus with respect to the average metallic density.
We find that

(d InCes/d InR=3) pys=0.86, (32)

where the subscript means that the derivative has been
evaluated at the density of metallic gold of 19.3 g/cm?
or more precisely for the range 2.97< Rws<3.00 Bohr
units.

The dip in the curve of C versus Rwg™ is noteworthy
because one might at first expect that the charge density

TasLE II. The charge density near the proton in hydrogen
calculated with Wigner-Seitz boundary conditions. Near the proton
|¥rws(7) |222C1s(Rws)r® 2. C1,(Rws) is given versus V! with
V=4%rRwg3. Rws is the Wigner-Seitz radius.

14 1/v Ci,
© 0 4.0000475
125.02280 0.007999 3.9873027
19.17287 0.0521570 3.0495676
5.16031 0.1937868 2.5564446
2.94025 0.3401071 2.8175614
2.02081 0.494851 3.1673774
0.95456 1.047603 4.4273013
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near the nucleus would increase monotonically with the
average gold density. This effect arises mostly from the
nature of the Wigner-Seitz boundary condition but also
in part from the change of 54 electron screening with
Rws. This is discussed further below.

In Fig. 2 we give a plot of the 5ds,» radial probability
density function versus r on a log-log plot for four
values of Rws, namely, 3.000, 5.142, 6.055, and 15.051
Bohr units. This graph illustrates the fact that for the
5ds,; state, as the radius of the Wigner-Seitz sphere is
decreased, the charge which is displaced inward tends
to pile up just inside the surface of this sphere, and also
that the 5ds/» charge density further within the atom is
very little modified. This pile-up near the surface of the
sphere is presumably related to the centrifugal force
arising from the orbital motion of the electron.

In Fig. 3 we show the 65y, radial probability density
function as a function of 7 on the same type of log-log
plot and for the same set of four Wigner-Seitz radii as
in Fig. 2. Here the behavior, which is quite different
from that of the d electron, is also qualitatively different
for two different regions of r. For r values inside of r,,
the radius of the outermost node near one Bohr unit,
the electron charge density in good approximation
changes simply by a factor independent of 7, i.e., in the
sense of a normalization, as Rws is changed. For 7
values greater than 7,, the radial dependence of the
charge density changes with Rws. As may be seen from
Fig. 3, the charge density in the inner region of » has
decreased, and for r>r, has moved outward for Rws
=5.142 and Rwg=06.055 relative to the charge density
distributions for Rws=3.000 and Rws=15.051. This
shows how the minimum in Cs(Rws) is related to an
outward and then inward motion of the 6s charge as
Rws is decreased.

It is of interest to note that, as is to be expected, the
nodes of the wave functions do not move appreciably as
the atom is compressed.

In a strongly coupled many-electron system such as
gold, it is difficult to separate the effects of screening
and boundary conditions. To aid in this we have calcu-
lated C1,(Rws) for Wigner-Seitz hydrogen, for which
there are of course no many-electron screening effects.
The results of this calculation are shown in Table II.
It is seen that here also C1,(Rws) first of all decreases
but then increases again as the average density of
Wigner-Seitz hydrogen is increased.

Returning to Fig. 2, we see again that with decreasing
Rws the 5ds/2 electrons tend to build up in the outer
region of the atom. Qualitatively, this 54 screening
charge build up for 7~ Rwg will tend to force the 6sy/2
charge inward as Rwsg decreases.

The Wigner-Seitz boundary condition which we have
used requires that the slope of the large component of
¥ss be zero at r=Rwg. As compared to the wave func-
tion of the free atom, the requirement that (df/dr)rws
=0 tends to “lift” or increase the amplitude f(r) near
r=R and move charge outward in the normalized wave
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function when Rwsg is large. For values of Rws less than
about 5 Bohr units, however, the effects of compression
do become dominant, and the 6s charge density through-
out the atom increases as Rws decreases in this region.
These facts imply that the minimum in C(Rws) in
Fig. 1 and in Table IT is a characteristic of the Wigner-
Seitz boundary condition.

C. Eigenvalues for Au as Function of R, and r,

In Table ITI we show how the calculated eigenvalues
for gold change when the atom is compressed, when the
exchange potential [Eq. (9)] is introduced (with an
exchange parameter {=1), and when a finite nucleus is
introduced. The measured binding energies®” are also
listed. The calculation for Rwgs=3.010239 and including
Vex(r) [Eq. (9)] and a finite nucleus gives our best
approximation to metallic gold. A comparison between
this calculation of the eigenvalues with the measured
values shows an agreement within a few tenths percent
for the 1s and 4f states. Otherwise the agreement is
within 1-29, for L and M shells, within about 49, for
the N shell and 4-69, for the O shell.

When we use the exchange parameter { =3 with Eq.
(9) and free-atom boundary conditions, our eigenvalues
agree with those obtained by Liberman, Waber, and
Cromer? in their comparable calculation to within a few
hundredths percent.

The dependence of the eigenvalue of an atomic state
on the nuclear size may be calculated with the code
using Egs. (19) to describe the nucleus. This nuclear
size effect is illustrated in Table III, where calculated
eigenenergies are shown for two Wigner-Seitz atoms
which have Rws=3.010239 and include Ve(7), but
where 7o=a=0 in one case and 7y=6.38 F, a=0.567 F
in the other. Here

enx(rO,RWS)=Euu(’0#0)_Ens(r()=0) . (33)

Table IV lists the ens(r0o,Rws) obtained from Table IIT
for these two cases through the use of Eq. (33).
Breit’s formula [Eq. (30) Jmay be written in the form

€ns 3 Zer\ [ 1o \¥Y
o Reeromre remmes ) o) G
Cuns/B v(2y+1)(2v+3)\2an/ \an
Thus, in this treatment, €,,/Cns depends only on the

nuclear radius and on physical constants. For r¢=6.38 F
and for gold with Z=179,

(€ns/Crns)p=1.274X 1074,

35)

where e,; is in €V, and C is in atomic units. In Table IV
we also list our calculated values for C,,, the values of
e, calculated from Table IIT and Eq. (33), and the
ratio e,s/Cns. This ratio is seen to be nearly constant
and about 209, smaller than the above value [Eq. (32)]
obtained from perturbation theory. The small fluctu-

27 J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39, 125 (1967).
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. . . e . G dius
. Energy eigenvalues for gold calculated for various values of the nuclear radius 7, and diffusivity e, the Wigner-Seitz ra
Rv}:g.l;lﬁ Ivgilth ar:dg\z’ithgout the exchagge potential Vex [Eq. (9)]. The experimental values corresponding to these eigenvalues are shown

in the last column. The energies are in eV. 1 Ry =13.6053 eV.

R=3.010239
R=o R=3.010239 R=3.010239 70=6.38 F .
r9=0 ro=0 r0=0 a=0.567 F .Experlmentql

Shell without Vex without Vex with Vex, =1 with Vex, ¢=1 binding energies

.121516X 104 8.121674X 10* 8.059108x 10* 8.054601 % 10¢ 80 724.9+0.5
éf-i;: ?.4112\%27?;5 104 1.423451 X104 1.421182X 104 1.420516X 104 14 839.3+1.0
2p172 1.369883 X 10* 1.370056X 104 1.363082X 10# 1.363065X 104 13 733.6:0.3
2pas 1.185487X 10* 1.185661X 10* 1.179708 X 10* 1.179734 X 10# 11918.7+0.3
35172 3.347571X 108 3.349057X 108 3.355955%x 10° 3.354444 X108 34249403
3p12 3.086957 X103 3.088460< 10% 3.094513 X108 3.094472x 108 3147.840.4
3pas 2.685716X10° 2.687196X 108 2.689931 X103 2.690002 10° 2 743.040.3
3dse 2.265301 X 10° 2.266818X 10° 2.254980% 103 2.255044 < 103 2291.14+£0.3
3dss 2.178552X 108 2.180090% 103 2.167987 X 10° 2.168048 108 2205.7+£0.3
4512 7.225551X 102 7.238646X 102 7.300208< 102 7.296371X 102 758.84-0.4
4p12 6.109975X 102 6.123054 X 102 6.186096 102 6.186002x 102 643.7+£0.5
4pg) 5.144000% 102 5.156816X 102 5.213144 X102 5.213328 X102 545.44-0.5
4dz/ 3.340860X 102 3.353725%X 102 3.388407 X 102 3.388554 X102 352.0+0.4
4dy, 3.161874 102 3.174601X 102 3.207105%X 102 3.207242X 102 333.940.4
55172 1.109359X 102 1.116857 %X 102 1.108358X 102 1.107582X 102 107.840.7
4fsp 8.721970X 10* 8.846768x 10! 8.637980% 10! 8.638795X 10! 86.44-0.4
41 8.338152X 10! 8.462104 X 10! 8.255475% 10t 8.256357x 101 82.8+40.5
5pie 7.440365X 10! 7.496369< 10! 7.429439X 10! 7.429269x 101 71.7+0.7
S5pas 5.751726X 10! 5.779117 10t 5.721664 X 10! 5.721960x 10! 53.74+0.7
65172 6.909459 X 10° 1.159874 % 10t 1.180646X 10! 1.179905% 10!
5das 8.989940< 10° 1.024083 10! 1.081404 X 10! 1.081482X 10
Sdsa 7.241904% 100 8.885858X10° 9.457758 X 10° 9.458603 X 10

» Reference 27.

ation of our calculated values for the ratio in Table IV
may be in part because the energy difference [;Eq. 33)]
is near the limit of precision of our calculation of the
eigenvalues which, like Ch,, is of the order of a few parts
in 108.

An exact agreement between our value for €,,/Ca,
(Table IV) and the perturbation-theory result [Eq.
(35)] is not expected. In addition to our calculations
being more comprehensive and exact, the assumptions
as to the nuclear shape and electron wave functions in
the two calculations differ somewhat (see above and
Sec. II). The comparison of the two r?§ults, however,
provides some indication of the reliability of the per-
turbation-theory estimate for e.. in the case of gold.
For heavier elements this agreement will be increasingly
poor."

. The energy difference ens(ro,Rws) [Eq. (33)] be-
tw’cIe‘eA: t}lxae ?t,omic eigenvilues calculated for a finite and for a point
nucleus for all of the sy states of gqld. The c‘alculatlons‘were made
using our Dirac-Hartree-Slater-Wigner-Seitz code with an ex-
change parameter {=1. Cns gives a measure of the charge densﬂ;y
near the nucleus; see Eq. (29). In first order en!(r.?,Rws) /Cna i
expected to be a constant independent of the principal quantum
number #. The energies are in eV. 1 Ry=13.6053 eV.

104X ns (r0,Rws)/

State ens(ro,Rws) Chne ne
45.07 413 961.16 1.088

;f‘ 6.66 62 163.836 1.072
3s 1.510 14 229.379 1.061
4s 0.3837 3 630.7706 1.056
Ss 0.0776 737.38189 1.052
6s 0.00741 67.242266 1.101
average 1.073

The isomer shift [Eq. (28)] may be written in the
convenient form

62E,., (.R,fo,a)
AEn,,=———" " ARAr,. (36)
ORIr 0

The precision of our calculation of the eigenvalue Eg, of
a few parts in 10° is not quite sufficient to obtain an
adequate value for the second derivative 82E,,/dRdr,.
Thus we have used the Breit treatment along with our
value for Cg,(R) and the value for the logarithmic deriv-
ative Eq. (32) in the interpretation of our high-pressure
measurements.”® It will be of much value in the future
to perform atomic calculations with a somewhat higher
precision so that it will be possible to obtain values for
second derivatives of this type. In such calculations it
will be desirable to include correlation and a more exact
treatment of exchange.

D. Calculation of hfs Coupling
for 6s State of Free Au Atom

In general in the discussion of Mossbauer isomer shift
measurements, and also of measurements in numerous
other areas in solid-state and nuclear physics, a value
for [¢(ro) |?is very useful. Often a value for this quantity
is obtained from the hfs coupling constant 4 [Eq. (37)]
measured for the free atom. Here we have obtained a
value for the Ca;(Rws) and thus of | zy,(ro)|? for dgol
in the Hartree-Dirac-Slater-Wigner-Seitz approxima-
tion, for all values of Rwg from o, the free atom, to
Rws~Rows for metallic gold. Because of the intimate
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relationship between C,; and the hfs coupling constant,
we give in this section a calculation of the hfs coupling
for the free atomic 65y, state of gold and compare this
with the measured value. This comparison will serve to
emphasize the fact that if |¢(r) |2 is estimated from 4
in the usual way,?® a considerable error may occur unless
the contributions of nuclear structure and atomic core
electrons to the hfs coupling are taken into account.
Also, an estimate of |¢(ro)|? from 4 will not usually
take into account the change of this charge density as
one goes from the free atom for which 4 is measured to
the solid for which the charge density is frequently used.
(See Fig. 1.)

For a point nucleus the hfs interaction may be written
in the form?

Fnes=AS-1

4 eu,

3 SIdyz

/ eI SL. (T

Here ¢ is the electron charge, u, is the nuclear mag-
netic moment, S and I are the electron and nuclear spin
operators, and S=% and I=% are the eigenvalues for
these appropriate to the ground state of gold. The
integral is in atomic units. Using the functions f(r) and
g(r) which we have obtained for the 65y, state, we have
calculated the value of the integral as

/ fodr=—0.6137 (38)
0

atomic units. If we substitute this value for the integral
in Eq. (37) along with the values for the required
physical constants, we obtain a value for 4 of 2067
Mc/sec. The experimental value for 4 obtained from
atomic beam measurements® is 3054 Mc/sec. Thus our
value for 4 due to the 65y, electron is some 309, lower
than the experimental value. This does not mean,
however, that our 65,2 wave function is correspondingly
in error, because the contribution of the core electrons
and the effects of nuclear size and structure have not yet
been introduced into our hfs calculation.

In the case of the %S ground state of lithium, calcu-
lations of the hfs coupling in a restricted Hartree-Fock
approximation give a calculated hfs interval of 579.1
and 627.0 Mc/sec,* compared to the experimental
value of 803.512 Mc/sec.® When the contribution of the
core electrons to the hfs coupling is taken into account
through an unrestricted Hartree-Fock calculation, an

28 H. Kopfermann, Nuclear Moments (Academic Press Inc.,
New York, 1958).

2 E. Fermi and E. Segre, Z. Physik 82, 729 (1933).

® G, Wessel and H. Lew, Phys. Rev. 92, 641 (1953).

31 L. M. Sachs, Phys. Rev. 117, 1504 (1960).

3 R. K. Nesbet, Phys. Rev. 118, 681 (1960).

8 P, Kusch and H. Taub, Phys. Rev. 75, 1477 (1949).
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interval of 781.1 Mc/sec is obtained,® and the use of the
Bethe-Goldstone equation leads to a calculated interval
of 801.1 Mc/sec.

Our calculation is a restricted Hartree calculation in
that all of the radial wave functions in a given shell are
restricted to be identical and independent of spin pro-
jection. It is reasonable to expect that, as with lithium
and a number of other cases, our calculated hfs coupling
constant 4 will be in much closer agreement with experi-
ment when the contributions of nuclear size and struc-
ture, and of the core electrons, are taken into account.
The contribution of the core could be taken into account
approximately, for example, through an unrestricted
treatment in which the radial wave function may be
spin-dependent.

The total potential due to the core V.(r) [Eq. (10)]
in which the 6s electron moves will not differ greatly,
however, between the restricted and the unrestricted
treatments. Thus we stress the fact that the gold 6sy/s
wave function and the C,; values which we have ob-
tained here should be close to the correct values. On the
other hand, the comparison of our calculated value for
A with the measured value emphasizes the fact that, in
estimating the charge density near the nucleus from a
measured 4, a substantial error will be made if the
contributions to 4 of nuclear structure and of the core
electrons are neglected.

We have also calculated Ag,=Ae(Rws), the hfs
coupling constant for the Wigner-Seitz atom. It was
found, as expected, that 4¢,(Rws) was proportional to
Cs:.(Rws) and displayed the same behavior as that
shown for Ce,(Rws) in Fig. 1. In a complete calculation
of A (Rws) it would, of course, be necessary to include
the effects of core polarization, as discussed above. Here
A(Rws) and C(Rws) would not in general have the
same behavior with Rysg.

E. Internal Conversion Coefficients for !°Tm

The internal conversion coefficient a,, in an #zs shell
is approximately proportional to Cn,. Thus an./an,
~Cys/Cns We have checked this relationship® for our
calculated C,, with measured relative intensities of the
internal conversion electrons coming from the 8.4-keV
transition of ¥*Tm. The « and C ratios for the s-shell
electrons were in agreement to within a few percent
except where the valence shell was involved. We did not
expect agreement in this latter case because chemical
effects were not taken into account in the calculation of
the Cn,. This agreement provides a kind of figure of
merit for our calculated C,, values, but a further com-
parison of our C,, values with absolute experimental
values for this quantity is, of course, desirable.

#R. K. Nesbet, Collog. Intern. Centre Natl. Rech. Sci.
(I»‘;arjl§) 1&64, 817 (1967).

® T. A. Carlson, P. Erman, and K. Fransson, Nucl. Phys. A
371 (1968). uel: Phys. AllL,
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APPENDIX: NUMERICAL TREATMENT

We have endeavored to minimize errors resulting
from the numerical treatment. We discuss here several
areas in which we have used unusual numerical methods
to this end.

It has generally been considered adequate to use the
asymptotic, exponential solution of the Dirac equation
[Eq. (1)] for all radii larger than that for which the
wave functions reached an arbitrarily small value. For
inner subshells, this radius is well within the atom, even
for the Wigner-Seitz boundary condition. However, the
terms of Eq. (1) which involve ! are far from zero at
that point. Therefore, we solve Eq. (1) to the same
outer boundary for all subshells to assure that the major
and minor wave functions are in the proper ratio when
they do become significant.

A second innovation, applicable only to the free-atom
boundary condition, is closely related to the first.
Rather than use the asymptotic ratio of major to minor
component, T, as the boundary value at the finite
radius to which numerical integration is used, we have
developed a series solution for I. By combining the two
equations in (1), the differential equation for I' can be
written as

ar_ (2___‘+a[VN(r)— V.'(r)])

dr a

2k €
+—I- (——a[VN (r)— V.-(r)])l‘z. (A1)

r a
If 7 is sufficiently large, the term Vy(r)—V.(r) can be
replaced by the effective potential Z./7, where

Z=Z—N+1, (A2)

and an asymptotic series can be obtained for T' by
substituting the formal series

()= é Bur (A3)

into Eq. (A1). The lowest-order coefficient 3, is iden-
tically T, and is given by

Lo=Bo=—[(2—¢)/e]"? (A4)
and the higher 8, can be calculated recursively from

(2k+n)aﬂn (12Ze

wp1=———+
ﬁ * 2660 26}80

(5n0+ Z Bn—kﬂk)
k=0

1

" BusriBe, (AS
2ﬂ0k=lﬂ+l WBr, (AS)

with the convention that the second sum is zero for
n=0. As an illustration of the need for using the
asymptotic series in place of the first term, the following
results were obtained for the 1s shell of lithium, with
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r=>50 Bohr units (certainly well beyond any non-1/r
behavior of the potential),

e=1.317X10~4, Z,=1:
Bo=lim I'(r)=—123.2,

T'(r)=—122.6 [taking four terms of (A3)].

While these values differ by only 0.5, the values ob-
tained from the differential equation for dT'/dr are

dU/dr=—2.71  (T=8),
dT/dr=—0.009 [T=T(r)].

Thus starting only with the ratio T, [i.e., only 8o in
(A3)], one may be close to the actual value, yet the
slope of T could be wrong by orders of magnitude. It is
therefore advisable to use the expansion (A3).

Since there exist linear multistep methods for the
numerical solution of a single differential equation such
that the error introduced at one step will decrease while
the solution increases through succeeding steps, it is
generally assumed that a system of differential equa-
tions having only increasing solutions may be solved
accurately by one of these methods. Unfortunately, as
shown by the analyses of Milne and Reynolds,*® Crane
and Klopfenstein,® and others, this assumption is not
valid. Depending upon the eigenvalues of the coefficient
matrix of the differential equation and upon the inte-
gration step size, a method which is stable for a single
equation may cause exponential growth of errors pre-
viously introduced into a system of two or more equa-
tions. (Errors are always introduced by starting values,
discretization, or round-off.) The coefficient matrix of
the differential equation [Eq. (1)] for the radial wave
functions is such that, for e>o?[ Vy(r)—V;(r)], errors
will grow exponentially, whether integrating inward or
outward, unless the step size is very small (of the order
10~%/¢ Bohr radii). Therefore, to avoid the prohibitively
small step size necessary for performing the inward
integration by a multistep method, we have used
Gragg’s® method of extrapolating the step size to zero.
Using only the number of extrapolations needed to
achieve a specified consistency in two successive extrap-
olations, the step size is automatically adjusted to the
largest practical value. The inward integration is
terminated at the greatest radius such that e<a?
X[Vn(r)—Vi(r)] is satisfied, thus insuring that the
outward integration may be performed accurately by a
fast linear multistep procedure.®
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