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A perturbation expansion of the electron energy has been used to calculate the density of states in liquid
lithium, cadmium, and indium. The full nonlocal form of the optimum model potential proposed by Shaw has
been used in these calculations. It is shown by comparing the nonlocal calculation to various approximate
calculations that the nonlocal effects produce large changes in the second-order corrections to the electron
energy and a considerable smoothing of the structure in the density of states. The first-order, k-dependent
corrections to the electron energy have been included, and k-dependent effective masses have been calculated
for several elements. The density of states for crystalline lithium, cadmium, and indium has also been cal-
culated by determining the distortion of energy surfaces due to the first few zone planes. The results for
liquid and solid are compared, and agreement with experiment is discussed.

I. INTRODUCTION

ONSIDERABLE effort has been devoted to the
study of liquid metals in recent years.'~5 Most of

this work has been concerned with developing formal
methods; few attempts have been made to evaluate the
theoretical expressions numerically and compare the
results with experiment. Ballentine® has calculated the
density of states for several liquid metals using results
from the Green’s-function theory due to Edwards.?
However, Ballentine used a local, energy-independent
form of the Heine-Abarenkov model potential in his
calculations. In attempting to use Ballentine’s method
for other metals, we found that the results were ex-
tremely sensitive to the position of the first form-factor
node. This was a disturbing observation because it is
well known®7 that the form factor is not uniquely de-
fined, and that the precise position of the node can,
therefore, have no physical significance. Since there is
no @ priori reason to suspect that perturbation theory
cannot be used to compute the density of states, we
considered the validity of using a local form factor.
Recent work on the model potential®® has shown that
nonlocal effects can be appreciable. We have, therefore,
used the full nonlocal form of the optimum model po-
tential® to calculate the electronic energy and the
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density of states for liquid lithium, cadmium, and
indium. We find that structure in these properties is
reduced relative to the results of similar local calcula-
tions and that the results are insensitive to arbitrary
changes in the potential.

Our motivation for considering lithium, cadmium,
and indium was primarily experimental. Recent
photoemission experiments on indium in the solid and
liquid states!®!! have shown that the energy distribu-
tions of photoemitted electrons exhibit pronounced
structure which has been tentatively attributed? to
structure in the density of filled states. Part of the
structure is found to disappear in the liquid state,
suggesting a large change in the density of states on
melting. Our aim was to provide a theoretical test of
this interpretation. It will be seen below that our theo-
retical results throw doubt on the adequacy of this
explanation of the photoemission data. Cadmium differs
from most other metals in that it shows a large jump
in the Knight shift at the melting point.!? Ziman® has
attributed this to an abrupt change in the Fermi-
surface density of states, but no detailed theoretical
calculation has been done. Lithium is of particular
interest since Ham!* has predicted rather large devia-
tions from the free-electron density of states in the solid.
We wished to determine if these deviations persist into
the liquid. In addition, the three metals provide ex-
amples of monovalent, divalent, and trivalent behavior.

In each of the three metals there is, therefore, some
reason to suppose that the density of states might
change quite appreciably on melting. In order to test
this possibility, we need calculations of the solid density

1 R. Koyama, W. E. Spicer, N. W. Ashcroft, and W. E. Law-
rence, Phys. Rev. Letters 19, 1284 (1967).
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of states with which to compare. It is clear that such a
comparison will be most meaningful if the solid and
liquid calculations have been performed with the same
potential and by essentially the same method. This con-
sideration led us to make calculations of the solid
density of states. The method consists of determining
the distortion of the constant energy surfaces due to
the presence of the first three zone planes.

The paper is divided into four parts: We discuss,
first, the perturbation approach, which we have used
to calculate the density of states in liquid metals. Then
we consider in some detail the evaluation of first- and
second-order corrections to the electron energy and the
corresponding density-of-states corrections. In Sec. 1V,
we discuss the method for computing density of states
in crystalline metals and compare the results with those
obtained for the liquid. Finally, we compare our cal-
culations to experimental results.

II. ELECTRONIC STRUCTURE
OF LIQUID METALS

A. Perturbation Theory

To a very good approximation, liquid metals can be
studied using standard perturbation techniques. The
calculations proceed exactly as for crystalline simple
metals.”16 We replace the crystal potential with a weak
model or pseudopotential, W, which may be written
as the sum of potentials at individual ion sites:

W=Z_: w;. (2.1)

The Schrodinger equation for the metal is now re-
placed by a model wave equation,

(TH+W) | Xe)=E|xs), (2.2)

where |Xx) is a smooth model (or pseudo-) wave func-
tion. The unperturbed model wave functions are plane
waves. Therefore, the perturbation expansion for
| Xi) is simply

IXe)=[1+a0(%) ][ k)+ L’ ao(k) [ k+q).  (2.3)

We regard the coefficients a, (k) as first-order quantities,
substitute (2.3) into the model wave equation, and
calculate ¢,(k) and E;, using ordinary perturbation
theory. The result for E; is simply (we use atomic units
throughout)

Ex=3k+N (k| w|k)
N(k|w|k+q)(k+q|w|k)
3 (k- |k+q|?) '

In this expression the off-diagonal matrix elements of
the single-ion model potential, (k+q|w|k), which are

T2 S@)? (2.4)

18 W, A. Harrison, Advan. Phys. 16, 383 (1967).
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referred to as form factors, are, in general ®? functions
of the magnitude of k and q and of the angle between
them.

The structure factor, S(q), is zero except at reciprocal-
lattice vectors for a perfect crystalline solid. However,
for a liquid, S(q) is nonzero for all wave vectors. It is
customary to define a liquid interference function,
a(g), as follows:

1
sQ=NIS@I'=— T E et @5)

This interference function is obtainable from x-ray
and neutron-scattering measurements on liquids. One
can also attempt a direct calculation of a(g), using, for
example, the Percus-Yevick theory as done by Ashcroft
and Lekner.!®* We will not be concerned with the calcu-
lation of @(g) but will use either x-ray data or Ashcroft-
Lekner functions in our calculations.

Since a(g) is a continuous function of ¢, we must
convert the sum to an integral using the relation

Q

Z’—+——P/dsq. (2.6)
q (2x)3

Note that there is no spin degeneracy to be accounted

for in this conversion. For a liquid metal, the perturba-

tion expansion for the electron energy may then be

written

20 .
Ep= 34 N (k| w| k)— —— / i a(g) | wq(k)|
(27)3 ¢+2k-q

, (27)

where
Qo=atomic volume=Q/N, w,(k)=N(k+q|w|k).

The perturbation expansion for E; in a solid is
singular when k falls on a zone plane. To obtain the
dispersion in the region of zone planes, we must diag-
onalize a degenerate matrix (Sec. IV). In a liquid there
is a singularity for every k since we are integrating over
¢ instead of summing over reciprocal-lattice vectors.
The prescription for handling this singularity is, in
the spirit of nondegenerate perturbation theory, to
conduct the integral in (2.7) as a principal-value
integral.”

The density of states may be obtained from the
electron energy by using the general expression

2Q AT
2m)3) | ViEx|

N(E) , (2.8)

where the integration is over constant energy surfaces.
For a liquid, these surfaces are isotropic, and (2.8)
may be written

NE) k(aE">_l. (2.9)

Nre(E) ok
16 N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
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Nre(E) is the free-electron density of states. We will
use the perturbation expression for Ej to evaluate Eq.
(2.9). The important point to note here is that we will
use the full nonlocal model potential to evaluate the
second-order term in (2.7). We will discuss in some
detail why this careful evaluation of the energy is
essential after we compare our approach to the more
standard Green’s-function method.

B. Green’s-Function Method

Perhaps the most unsatisfying feature of the simple
perturbation treatment of liquid metals is that we have
regarded the liquid wave functions, Eq. (2.3), as per-
turbations around a single plane wave with a well-
defined crystal momentum k. As Edwards? and Faber*
have pointed out, a more reasonable wave function for
a metal is a packet, centered around a wave number k,

[Xi)=2 ag(k) | k+q), (2.10)

in which the components around and including ¢=0
are all weighted about equally. That is, in (2.10) all
of the a,(Kk) are of the same order, whereas in (2.3) the
¢=0 component has a zero-order weight and all the
other components are of first order.

We now substitute (2.10) into the model wave
equation and obtain an expression for the coefficients,

3,(K)= T ap (W (kta| Wk+a), (211)

E—}|k+q|

where E is the exact energy of the state. This expression
may be iterated by substituting an analogous expression
for ¢, (k) into the sum. At each step, we extract the
term proportional to ¢,(k). Suppose for convenience we
consider the ¢=0 case and proceed with the iteration.
The result after two iterations is, for example,

(E—3k?)ao(k)=ao(k)
(k| W |k+q){k+q| Wlk>}
E—}|k+q|?
(k| W |k+q){k+q|W|k+q')
E—3}|k+q|?

If we continue this iteration indefinitely, the coefficient
ao(k) cancels out, and on the right we have an infinite
series of terms which includes all scattering diagrams in
which no internal momentum is equal to the external
momentum k. This series is precisely what is referred
to as the electron self-energy, (k| Z|k). In terms of this
self-energy, the dispersion is now simply

E—3k2—(k|Z|k)=0. (2.13)

This is a well-known result and is identical to the dis-
persion relation obtained from the poles of the one-

X k| W k)+Z
=0

+ X ap(k)

2,9'70

(2.12)
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electron Green’s function evaluated in the k repre-
sentation,

G(kE)=1/{E—}k*—(k|Z|K)},

as discussed by Edwards? and Ballentine.®
It is interesting to note that we could have obtained
a result analogous to (2.13) by iterating (2.11) for arbi-

trary g,

(2.14)

E—%|k+q|>—(k+q|Z|k+q)=0.  (2.15)

This does not mean that E is not uniquely defined,
provided we evaluate the self-energy to all orders. One
obtains the same result in Green’s-function theory if
one takes the |k+q) diagonal matrix element of the
Green’s function

G(E)=(E—Ho—V)'=G+GVGot+GVGoVGot- - -,
Go=(E—Hy)™, (2.16)

instead of the |k) diagonal element. However, it does
mean that the first few terms of a perturbation expan-
sion will not necessarily yield the same result. This is
simply a reflection of the fact that in writing (2.10),
we have acknowledged that crystal momentum is not
a well-defined quantum number in a liquid. We cannot,
therefore, expect E to be a uniquely defined function
of momentum. It has, however, become customary to
describe the state in terms of the momentum k at the
wave packet center, as we have indicated in (2.10)
by labeling the state with k. We will adopt this con-
vention and use (2.13) to compute the energy.

If we expand (2.13) to second order in W we obtain

|S@ || (®)|?
E=}+Nk|w|k)+> ————.  (2.17
BN Klell0+E e i)

The perturbation approximation we made previously
was to replace E in (2.17) by its zero-order value 32
This is a consistent procedure within the framework
of ordinary perturbation theory in which matrix el-
ements of W are regarded as first-order quantities.
We recall that exactly the same approximation has
been made in the self-consistent screening of the
model potential. Therefore, to justify a more elaborate
approximation in the energy calculation, one ought to
redo the screening in the same framework.

Though we are inclined to view the simple perturba-
tion approach as the most justifiable method for com-
puting the energy of electron states in a liquid, this
point of view is not presently in vogue. We will, there-
fore, consider an alternative scheme due to Ballentine®
and investigate numerically the difference between the
two approaches. Ballentine has attempted to introduce
a certain internal consistency by arbitrarily replacing
the zero-order propagator in the second-order self-
energy by the exact propagator, G(%,E),

[S(a)]?]w,(k)|?
k[Z:|k)y=3 . (218
o0 E—3|k+q|*— (k+q|Z|k+q) (218
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Fic. 1. Optimized model-potential form factor for lithium
(dashed line) and the k-independent part of the form factor (solid
line).

This approximation is equivalent to extracting a partic-
ular set of diagrams from the self-energy expression
and summing these diagrams exactly to all orders in
the perturbation W. This has the effect of introducing
a lifetime broadening of the wave packet, if Z has an
imaginary part. Also, Ballentine found that in order to
evaluate (2.18) it was necessary to suppress the ¢ de-
pendence of (k+q|Z|k+q) in the energy denominator.
If we make the same approximation and use Eq. (2.13),
we immediately obtain Eq. (2.4). Ballentine’s approach,
therefore, differs from ours only in that we have not
included an imaginary part of the self-energy. This is
reasonable since it is clear from (2.12) that the self-
energy obtained by perturbation theory is explicitly
real. In addition, it is not entirely self-consistent to
include lifetime broadening in the energy calculation
since it has not been included in the screening of the
potential. We have, however, investigated numerically
the importance of lifetime broadening (Sec. III).

The expression we have given for the density of
states, Eq. (2.9), is equivalent to the usual result ob-
tained from Green’s-function theory when the imaginary
part of the self-energy is zero, which is the case if
(2.7) is to be used.!” The density of states is defined as
an integral over a spectral density, p(k,E):

N(E)= 0 3% p(k,E) 2.19
<>—@f o(kE). (2.19)

The spectral density is related to the Green’s function by

p(k,E)=(—1/m) Im G(k, E+ie)

=3(E—3k*—(k|Z|k)), (2.20)

where in writing the § function we have used the fact
that the (k|Z|k) is real. If we substitute (2.20) into
(2.19) and make use of an identity for é functions, we
obtain (2.9) directly.

There is one further point to make concerning the
consistency of our density-of-states calculation. The

17 N. Watabe and M. Tanaka, Progr. Theoret. Phys. (Kyoto)
31, 529 (1964).
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form factors which we use in evaluating E contain th®
free-electron Fermi momentum kg. If the density of
states which we calculate differs considerably from the
free-electron density, the Fermi momentum will, of
course, be shifted. To achieve complete internal con-
sistency, we should recalculate the screened form factors
using the new kp, then obtain a new density of states and
repeat the process until no further changes occur. We
have not gone to these lengths in our calculations.

C. Nonlocal Potentials and the Validity
of Perturbation Theory

It should be entirely clear that the expressions we
are using to compute the energy and the density of
states are well-known results. In the present calculation,
we are introducing only two new features which have
to do essentially with the nature of the model potential
we use in evaluating (2.7). First, we will account for
the & dependence of the diagonal matrix element ex-
plicitly instead of treating it as a constant or absorbing
it into an effective mass. Second, and far more impor-
tant, we will include the full nonlocality of the form
factor in evaluating the second-order contribution to
the energy,

i) Q 4o 9e(@) * dosin&]wq(k)lz
=—— a
’ 27r2/o e

————. (2.21)
—x  q+2k cost

We have chosen to use the optimum form of the re-
formulated Heine-Abarenkov model potential®® in our
calculations for two reasons: First, form factors ob-
tained from the reformulated model-potential theory are
the only ones available in which the full nonlocality and
energy dependence of the potential are accounted for
correctly. And second, an extensive program library
previously created for other model-potential computa-
tions could be readily adapted for use in the density-of-
states calculation.

The screened model-potential form factor can be
written

wy (k)= (v,+24g)/ () + f(k, @) +g(9) -

We refer the reader to the paper by Shaw and Harrison?
for a detailed discussion of the nomenclature used here.
The important point for our present purposes is to note
that (2.22) is the sum of several terms which depend
only on the magnitude of ¢ and a term, f(k,q), which
depends on both the magnitude and direction of k and g.
To illustrate the relative importance of the nonlocal
term, we have plotted in Figs. 1 and 2 the screened form
factors for lithium and indium, evaluated for scattering
on the Fermi surface when ¢<2kr and for backscatter-
ing when ¢>2kp. From these form factors we have sub-
tracted the term f(kr,q) and have plotted the remaining
g-dependent terms. It is clear that the nonlocal term
represents a substantial contribution to the form
factor in both cases. To further emphasize the signifi-

(2.22)
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cance of these nonlocal effects, we have plotted in Fig. 3
the form factor for indium as a function of cosf for
two different scattering momenta and for the initial
state at k/kr=0.5. We have also listed on this figure
the values of w, (k) for backscattering from the k= 0.5k
energy shell and from the Fermi surface. It is clear that
variations in the form factor of several hundred percent
can occur as k and 6 are varied. We now consider pre-
cisely why it is crucial not to ignore these variations in
evaluating (2.21).

The procedure that Ballentine used in evaluating
(2.21) was to replace the nonlocal form factor by a form
factor for Fermi-surface scattering. In other words,
for ¢<2kr the form factor was evaluated only for the
case k= |k+q|, and for ¢>2kp it was evaluated for
pure backscattering. This effective local potential,
which we will denote by w,(kr), depends only on the
magnitude of ¢. The angle integration in (2.21) may
then be performed analytically to give

2k+

Qo 0 q ,
Ey(k))=———[ dgqa(@)ws(kr)In . (223
== [ dago@eitnn =, @)

The numerical evaluation of this integral is rather
straightforward. However, one immediately notes that
the value obtained for (E.(k)) is sensitive to the posi-
tion of the first form-factor node relative to the initial
peak in a(g). This sensitivity is disturbing because we
know that w,(kr) has a certain degree of arbitrariness
inherent in its construction. The position of the first
form-factor node has no real physical significance. We
know that if a perturbation calculation is carried to all
orders, the arbitrariness in the form factor is of no
importance whatever. Yet, here we have encountered a
second-order perturbation calculation in which the
details of w,(kr) are critical. We might surmise that
perturbation theory is not valid for this calculation.

We find, however, that it is not perturbation theory
which is invalid. Rather, it is the crude local approxi-
mation made in (2.23) which has led to the difficulty.
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Fi1c. 2. Optimized model-potential form factor for indium
(dashed line) and the k-independent part of the form factor
(solid line).
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Fi1c. 3. Form factor for indium as a function of scattering angle
for two scattering momenta. The initial state has a wave vector
k=Fkr/2 in both cases. The table gives the corresponding form
factors for energy-shell scattering, w,(k), and Fermi-surface
scattering, w,(kr), at the same scattering momenta gq.

If we use the full nonlocal expression, (2.21), to com-
pute E»(k), we find that the results are very insensitive
to variation of parameters used in constructing the
potential. The reason is that, because of the strong angle
dependence of the form factors, the effective node
sweeps across a wide range as we carry out the integra-
tion, and that this range is not strongly dependent on
the minute details of the potential. We conclude that
reliable calculations of electronic properties of liquid
metals, and in particular of the density of states, can
be made if the full nonlocal nature of the model po-
tential is included, but that similar calculations using
local approximations are likely to be deceptive.

III. EVALUATION OF ELECTRON ENERGY AND
DENSITY OF STATES

A. First-Order Corrections

It has been shown by Shaw and Harrison® that the
first-order corrections to the electron energy may be
determined within a constant (which we set equal to
zero) by evaluating the long-wavelength limit of the
form factor,

E\(k)=N(k|w|ky=—3Er+f(k)— f(kr). (3.1)

This correction to the free-electron energy produces a
deviation from the free-electron density of states

given by NA(E) 1 8f (BN
: —(1+— ——) :

—_—= 3.2
Nrr(E) k ok 3.2)

We can regard (3.2) as defining a density-of-states
effective-mass ratio, m*(k)/m.”'® It is important to
note that this mass is 2-dependent.

In Fig. 4, we have plotted E,(k) as defined by (3.1)
for indium and lithium. Though there is a 109, varia-

18 D. Weaire, Proc. Phys. Soc. (London) 92, 956 (1967).
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TasLE 1. Density-of-states effective mass for ten elements evaluated as a function of 2/kr. Comparison is made to
Weaire’s® results obtained using the original form of the Heine-Abarenkov model potential.

m*/m=N(E)/Nre(E)
k/kp Li Be Na Mg Al K Zn In Rb Cd
0 1.0569 1.0780 0.9619 0.9504 0.9564 0.8707 0.9791 0.9374 0.8294 0.9614
0.1 1.0572 1.0783 0.9620 0.9510 0.9571 0.8712 0.9804 0.9368 0.8300 0.9614
0.2 1.0583 1.0793 0.9624 0.9529 0.9592 0.8728 0.9772 0.9335 0.8313 0.9612
0.3 1.0601 1.0809 0.9630 0.9559 0.9628 0.8754 0.9751 0.9294 0.8338 0.9610
0.4 1.0627 1.0831 0.9639 0.9602 0.9677 0.8792 0.9724 0.9244 0.8373 0.9606
0.5 1.0659 1.0858 0.9651 0.9656 0.9739 0.8842 0.9692 0.9194 0.8420 0.9599
0.6 1.0700 1.0888 0.9666 0.9721 0.9813 0.8904 0.9658 0.9152 0.8480 0.9589
0.7 1.0744 1.0921 0.9684 0.9797 0.9897 0.8980 0.9624 0.9124 0.8554 0.9572
0.8 1.0794 1.0953 0.9705 0.9881 0.9988 0.9071 0.9592 0.9116 0.8645 0.9546
0.9 1.0848 1.0981 0.9730 0.9972 1.0084 0.9176 0.9564 0.9131 0.8755 0.9506
1.0 1.0902 1.1000 0.9758 1.0067 1.0179 0.9295 0.9540 0.9170 0.8884 0.9444
Weaire 1.19 1.28 1.00 1.01 1.04 0.99 0.93 0.89 0.97 0.87
» Reference 18.

tion of E;(k) over the range of occupied states, there is,
clearly, no interesting structure in this variation. We
have also evaluated the density-of-states ratio, (3.2)
for a group of eight simple metals. The results are given
in Table I, and those for lithium and indium are plotted
in Fig. 5. Evidently the & variation of the effective mass
is not dramatic, so that approximating with a constant
effective mass does not introduce any severe errors. The
preferable procedure is, of course, to include the &
dependence exactly, as we have done. Differences
between our results and those obtained by Weaire'®
are due to differences in the potentials used. It is worth
noting that the second-order contributions shift the
density-of-states effective mass considerably. For this
reason, it is worth cautioning against attaching undue
significance to the values in Table I, either ours or
Weaire’s.

B. Second-Order Corrections

We turn now to the second-order corrections to the
electron energy. The general expression which we wish
to evaluate is given by Eq. (2.21). If we were to treat
the form factor as local and include a broadening, we

k/kg

(o] 02 04 06 08 [X¢] 1.2 1.4 16
T T T T T T T T

=0l

-0.12- LITHIUM

-0.13[
~Ql4 [ | 1 | | B 1 T N

“
=0.19—
-0.20]
-0.21

INDIUM

N<k|wlk> (IN a.u.)

-0.22
-0.23]
-0.24

-025 S | | T 1 1 L I TR S

F16. 4. The first-order corrections to the free-electron energy
[Eq. (3.1)] for lithium and indium, as a function of initial-state
momentum, k/kp.

would evaluate

Q
(Ez(k,v))=—@ /0 dq qa(q)'l(vq (kp)) .
2k+9)* 4"
Xl ———— "], (3.3
n[<2k—q>z+vz<k>] G

For computational convenience we have introduced the
broadening by replacing £ in (2.21) by k+3v(k) as
suggested by the work of Phariseau and Ziman.! This
is somewhat different from the procedure used by
Ballentine,® but leads to the same effects in the final
results. We have varied v from zero to ymax, wWhere
Ymax 1S consistent with the mean free path deduced
from resistivity measurements.

In order to compare our results with those obtained
using a local potential, and to investigate the possible
effects due to broadening, we have considered the fol-
lowing four cases:

(1) E,(k) evaluated using (2.21). This includes all
of the important angle and & dependence of the form
factors and is of primary interest to us here.

(2) (Ey(k)) evaluated with a k-dependent form
factor. This is an intermediate approximation which
includes various initial states but restricts scattering
to energy shells. In this calculation, we have used a
lifetime broadening of v (k) =0.05k .

(3) (E:(k)) evaluated using (2.23). This case is the
perturbation theory equivalent of the approximation
used by Ballentine. We should note that for ¢>2kp
the form factors which enter are for backscattering. In
this calculation, we are making a completely local
approximation by ignoring both the % and angle
dependence of the form factors.

(4) (E:(k,y)) evaluated using (3.3). We have used
completely local form factors in this case and have
allowed v (k) to vary from 0 to 0.05%r. This case allows
us to investigate the importance of lifetime broadening.
We have selected the range of ¥ on the basis of earlier
calculations using Ballentine’s method.



178

TaBLE II. Summary of the expressions used to compute E;(k)
for each of the cases (1)-(4). Principal-value integrations are
implied in cases (1) and (3).

Case Second-order energy expression
Qo/‘°° /’ o lu®)?
1) Ey(k)=—— 1| dgqa(q) | d6sing————
272 ), — g+2k cosd
&% [* (2k+gr+y
2 (E(R))=——— / dq g a(Qwg (k) Ln[——————
8«0 (2k— )+

¢<2k: energy-shell scattering; ¢>2k: backscattering

v=0.05kr
Q [ 2k+q
Q) (Ea(R)=———] dgga(q)we(kr)In
4n%k /o 2k—gq
¢<2kp: Fermi-surface scattering; ¢>2kp: backscattering

o [ (k4
@ (Balky))=——o f dq g a(q)ue(kr) 1n[———~——
8k J o (2k—g)+v?

g¢<2kp: Fermi-surface scattering; ¢>2kr: backscattering
0<y<0.05%F

We have summarized in Table II the equations used
in each of these calculations.

A program has been written to evaluate E»(k) for
each of these cases. For indium we have used an experi-
mental a(g) due to Ocken and Wagner'; for lithium we
have used the theoretical hard sphere a(g) from
Ashcroft and Lekner.!® The cadmium a(g) was computed
by Tomlinson,® using the Ashcroft-Lekner method. We
should remark that the full nonlocal calculation does not
appear to be sensitive to minor modifications in a(g).
The principal-value integrals were performed numeri-
cally using techniques similar to those used previously
in the evaluation of screened form factors. The accuracy
of these methods has been checked using integrable
functions.

The second-order energies are plotted in Figs. 6-8
for lithium, cadmium, and indium. Several important
features are immediately evident : In all cases, the exact
calculation (case 1) reduces the second-order energy
by a factor of 2 compared with the local calculation
(case 3). We note, however, that the structure is pre-
served in the lithium calculation, whereas for cadmium
and indium it is considerably reduced. This is a re-
flection of the fact that form factors for monovalent
metals have very weak angular dependence. It is
quite obvious from these results that including the
k-dependence of form factors but ignoring their angle
dependence [case (2)] is a rather bad approximation.
We will comment on the reasons for this later. Finally,
we note that increasing v, the lifetime broadening, over
a rather large range [case (4)] produces only a slight
reduction in structure of the dispersion curves.

The second-order corrections to the density of states
can now be determined by differentiating the E.(k)

1 H. Ocken and C. H. J. Wagner, Phys. Rev. 149, 149 (1966).
2 J. L. Tomlinson (private communication).
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F16. 5. The first-order corrections to the density of states normal-
ized to the free-electron density for lithium and indium. These
curves illustrate the slight 2 dependence of the density-of-states
effective mass.

curves. Since numerical differentiation procedures are
notoriously unreliable, we have cross-checked all
differentiations graphically. In Fig. 9 we plot the cor-
rections to N (E) for indium arising from E, (k).

Ny (E) =(1 , 3E2(k))-l
Nex(E®) \ o [/’

(3.4)

for cases (1) and (3). The structure is reduced over
50% by accounting for the nonlocality of the model
potential. The structure obtained in case (3) is sensitive
to how much the initial peak in a(g) overlaps the form-
factor node. If we move the node away from the a(g)
peak, the structure can be more than doubled. By
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F16. 6. Second-order corrections to the electron energy for
liquid lithium. (Refer to Table II.) The key is as follows: ——
case (1); - - - case (2); - - - - case (3); — - - case (4).
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F16. 7. Second-order corrections to the electron energy for
liquid cadmium. The key is the same as in Fig. 6.

contrast, variation in the parameters of the nonlocal
form factor produces changes in the density of states
which are insignificant. We will discuss the reasons for
these results in more detail later. These observations
have led us to conclude that the nonlocal calculation
gives the more reliable picture of the actual density-of-
states structure in a liquid.

To obtain the complete density of states to second
order in W, we must use (2.9) and include both first-
and second-order terms in the electron energy

N(E) 19f(k) 1 0Ey(k)\™
( —(1 ® ()>. (3.5)

Nex(®) \ & ok k ok
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F1c. 8. Second-order corrections to the electron energy for
liquid indium. The key is the same as in Fig. 6.
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The results of this calculation for lithium, cadmium,
and indium are shown in Figs. 10-12. Corresponding
results for all four cases are plotted on these figures. We
can immediately make two general comments about
these results. It is clear that, with the exception of case
2, all methods give very similar density-of-states
structure. This is because the structure, but not the
magnitude, of E,(k) is reflected in the density. The
nonlocal calculation leads to some smoothing in the
density-of-states structure for indium but, essentially,
none for lithium. Finally, we observe that the Fermi-
surface effective mass for lithium is shifted considerably
by the inclusion of second-order corrections; the shift
is less pronounced for indium and cadmium.

C. Numerical Interpretation of Results

We can attempt to understand the variations in E,(k)
for the four cases we have considered by studying the
behavior of the integrands of the ¢ integration. We will
confine our attention here to indium but the situation

SECOND-ORDER CORRECTION = N(E)/Ngg(E)
o
©
@®
T

0.96|
0.94 E
‘( | | 1 | | 1 1 1 !
[0] O.l 02 03 04 05 06 07 08 09 1.0
K/kg

F16. 9. Second-order corrections to the density of states normal-
ized to the free-electron density [Eq. (3.4)] for liquid indium.
Cases (1) (solid line) and (3) (dash-dot-dot) are plotted. The
density-of-states structure is reduced by 509, for case (1).

is similar for both lithium and cadmium. We can re-
write our expressions for the second-order energy in the
form

Qokr
Ey(k)= — 0t f i E@mE),
472 Jo

3.6
n=q/ker. G0

In Fig. 13 we have plotted the integrand of (3.6) for
cases (1), (2), and (4) at k/kr=0.5. For case (1) we
have indicated the weak logarithmic singularity ex-
plicitly. The shoulder at ¢=2k for cases (2) and (4)
is due to the logarithm. We should remark that E(z,k)
varies with &, because of the shift in the singularity, and
for cases (1) and (2), because of the & dependence of the
form factor. However, the general structure for all %
is similar to that shown in Fig. 13. The peak in E(z,k)
at 9=21.5 is a reflection of the corresponding peak in
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a(n). The size of this peak in cases (2) and (4) is strongly
dependent on the position of the form-factor node.
However, for case (1), the peak represents an average
overlap between the a¢(n) peak and the form-factor node
and it is, therefore, not very sensitive to the form-factor
parameters. The structure in E,(k) arises largely from
the movement of the logarithmic singularity across this
peak as k increases.

The large differences in the magnitude of E,(k) for
the various cases are accounted for by the interesting
differences in E(»,k) at large values of q. To understand
these differences, we refer again to Fig. 3. At large ¢,
the form factor for backscattering from an initial state
on the Fermi surface is larger by a factor of 3 than the
form factor for backscattering from an initial state at
energy 3k. (Recall that we are discussing the case for
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Fi16. 10. Normalized density of states as a function of k/kr
for liquid lithium. The key is the same as in Fig. 6.

k/kr=0.5). This difference, when squared, accounts
for the order-of-magnitude difference in the second peak
for cases (2) and (4). The weighted angle average of
the full nonlocal form factor is, following Fig. 3, reduced
by another factor of 2 compared to the energy shell
scattering case. Hence, the high ¢ peak for case (1) is
essentially eliminated.

As k increases over the range of occupied states, the
second peak for case (2) changes from a small peak,
roughly comparable to that for case (1), to a peak
equivalent to the one for Fermi-surface scattering. This
accounts for the marked discrepancy of the E,(k) curve
for case (2), as shown in Fig. 8. The second peak in-
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for liquid cadmium. The key is the same as in Fig. 6.

creases with increasing k for case (1) as well, but the
increase is only by a factor of 2 and does not lead to
an appreciable change in E,(k). It does, however, serve
to smooth the dip in E.(%k) near the Fermi surface,
and consequently to smooth the density-of-states
structure.

We might remark briefly on the situation for lithium.
The first peak in E(»,k) is very small. This is because
the inital a(y) peak is above the form-factor node in
monovalent lithium. The structure in E,(k) for
lithium is due to the movement of the logarithmic
singularity across the second peak. We did not observe
comparable structure in indium because the range of
was not extended far enough. The large differences in the
magnitude of Ey(k) for the various cases are again due
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F16. 12. Normalized density of states as a function of k/kr
for liquid indium. The key is the same as in Fig. 6.
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F1c. 13. The integrand of Eq. (3.6) evaluated at 2/kr=0.5 for

three cases: case (1); - - - case (2); — - — case (4). Table II

gives detailed expressions for E(n,k) appropriate to each case.
The weak logarithmic singularity for case (1) has been indicated
explicitly.

to differences in treatment of scattering from the initial
state for large g.

We may summarize our remarks on the second-order
dispersion as follows: In each of the cases treated, the
structure in E,(k) is due to the motion of the logarithmic
singularity across structure in the integrand, E(n,k).
The more pronounced the integrand structure, the more
pronounced is the final E,(k) structure. The differences
in treating off-energy-shell scattering for the various
cases are responsible for the significant differences in
the magnitude of E;(k). We have found that assuming
pure backscattering leads to second-order energy cor-
rections which are typically twice as large as those
obtained by averaging over all scattering directions.

In calculating second-order corrections to the energy,
we have found that the full nonlocal calculation gives
substantially different results from the local approxi-
mations. The difference is less dramatic for the density
of states. Evidently, the structure in both E,(k) and
N (E) is not strongly dependent on the nonlocal effects.
We do find some smoothing of structure for indium and
cadmium. However, for lithium the density of states
is essentially unaltered by the local form-factor ap-
proximation. The important point here is that by using
a nonlocal potential we obtain a density of states which
is insensitive to alterations in the potential. We should
emphasize that the apparent similarity of the density
of states obtained using the local and nonlocal potentials
is largely fortuitous since arbitrary changes in the local
potential can produce large changes in the density-of-
states structure.

Finally, we should comment on the importance of
including lifetime broadening. As expected, the prin-
cipal effect of lifetime broadening is to smooth structure,
both in the dispersion curve and in the density of states.
If broadening were introduced into the nonlocal cal-
culation we would evidently observe an even greater
smoothing than has already occurred. The essential
point is that inclusion of even substantial lifetime
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broadening yields only minor changes in the magnitude
and structure of second-order corrections to the energy.

IV. DENSITY OF STATES IN A SOLID

It is important to compare the liquid density of
states with that in a solid. As we have already remarked,
the perturbation expression (2.4) is not valid when k
is near to a boundary of the Brillouin zone. Therefore,
to include correctly the distortion of energy surfaces
due to zone planes, we must use degenerate perturbation
theory. Our aim is to obtain a reasonably precise de-
scription of the density of states without resorting to a
full band-structure calculation.

The method we have used is to compute the change
in volume, Q(E), inside a constant energy shell when a
single zone plane is introduced. We then superpose the
results for all sets of planes which distort the energy
shell. We have included only two OPW’s in this cal-
culation. That is we diagonalize a two-by-two de-
generate matrix and ignore the effects of intersecting
planes. It is quite clear? that we do not ignore any
significant effects in this scheme. No important density-
of-states structure will be overlooked. The nonlocal
nature of the model potential introduces far more im-
portant effects than those we are ignoring.

Our procedure is, then, to diagonalize the degenerate
matrix,

32+ (k|w|k)—E (k|w|k+q)
det| (k+qlwlk)  3|k+q|? =0.
+(k+q|w|k+q)—E

@.1)

We have found that the diagonal matrix elements may
be accounted for with good accuracy by using the
effective-mass approximation. Consequently, we absorb
them into the kinetic energy. This has the effect of
multiplying all energies by m*/m.

To compute the volume Q(E), it is convenient to
define two new variables in terms of the components of
k parallel and perpendicular to the reciprocal-lattice
vector, g,

='—k||"—%q, and p=k1.

The algebraic steps used in computing the volume
follow exactly those given by Harrison.” We find that

p*=2(m*/m) E—2*— 3£ {’¢*+ 4(m*/m)*
X (k|w|k+q)k+qlw[k)}2.  (4.2)

The plus sign is to be used when 2>0, the negative
sign when 2<0. Now the volume inside the surface of
energy E is given by

) (B)
QE)== / 0%dz,

o E

(4.3)

where the limits, z(,) (E), are obtained by setting p=0
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in (4.2). We find that 3, (E) is simply
3 (B)=—{2(m*/m)E+}¢*+[2¢*(m*/m)E

+4(m*/m)(k|w|k+q)(k+q|w|k)]2}72,  (4.4)
and 2z (E) is
) ()= (2 (" /m) E+ g~ [26*(m*/m) E
+4(m*/m)*(k|w|k+q)(k+q|w|k) ]2}z (4.5)

() (E) is negative if the energy surface does not touch
the zone plane, zero if it touches but does not extend
across the plane, and positive otherwise.

The change in density of states per unit volume due
to the one plane in question is obtained from Q(E) by

1 9Q(E *\ 3/2
BN(E,q)=———aLEz—('—:—) Nre(E). (4.6)

If we now substitute (4.3) into this equation, recall
that p%(z(4)) =0, and use (4.2) to compute dp?/dE, we
obtain, simply,

8N (E,q) = (1/2a%) (m*/m)[ 24> (E) — 2 (E) ]

— (m*/m)**Nyge(E). (4.7)

To obtain the total density of states we sum 8N (E,q)
over all planes using the appropriate multiplicity,
G(g), for each plane

m*

32
N(E)=X G(q)BN(E,q)‘*‘(;-) Nre(E). (4.8)
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function of energy. Ep is the free-electron Fermi energy. The
effective mass used in the solid calculation was m*/m=0.96.
The liquid curve corresponds to the full nonlocal calculation.

In arriving at (4.8) we have ignored the E dependence
of the form factors, (k+q|w|k), when we evaluated
the differential in (4.6). This dependence can be in-
cluded at the cost of considerable complication in Eq.
(4.7). We have found that the change in the density of
states due to these terms is less than 19}. Therefore,
we have neglected them in the present discussion.

If the actual 2 dependence of the form factors were
included explicitly in (4.1), it would not be possible to
obtain simple expression for p? and z2. Yet we know that
the form factors vary considerably over the range of
occupied states. A simple way to account accurately
for the most important part of this variation and still
retain the relative simplicity of the expressions we have
given is to compute (k+q|w| k) for energy-shell scatter-
ing and let

k=|k+q|=QE)"".

In this way, we use in our expressions a matrix element
appropriate to the scattering event which actually
contributes to the distortion of a given energy shell.

We have evaluated the density of states for lithium,
indium, and cadmium using Eq. (4.8). The results are
plotted in Figs. 14-16. We have also included the liquid
density of states and the free-electron density in each
figure for comparison. We should point out that the
atomic volumes we have used are the same for both the
liquid and solid calculations and are appropriate to the
density of the crystalline materials at zero temperature.
The density of states of the unperturbed free-electron
states is, therefore, the same for the liquid and solid
and so are the screening parameters for the potential,



996 R. W. SHAW,

0.08 4

0.07

0.06

0.05

0.04

DENSITY OF STATES / VOLUME - N(E) (INa.u)

0.03| /
; INDIUM
0.02 SOLID
—— - — LIQUID (NONLOCAL)
/ ----- FREE ELECTRON
0.01 f
i
0 1 1 1 1 1 1 1 1 1 |
) 0.2 0.4 0.6 0.8 1.0
E/E

F1G. 16. The density of states for liquid and solid indium as a
function of energy. Er is the free-electron Fermi energy. The
effective mass used in the solid calculation was m*/m=0.92. The
liquid curve corresponds to the full nonlocal calculation.

Figures 14-16, therefore, illustrate the change in density
of states due to change in structure alone. In order to
obtain the change in the actual density of states, one
must remember to scale the curves according to the
appropriate free-electron values. Tanaka and Beeby?
have argued that a constant-volume approach, such as
the one adopted here, is probably more reliable than
the alternative constant pressure approach.

In cadmium and indium, the structure in the solid,
due to the intersection of constant energy surfaces
with zone planes, is rather less pronounced than might
be expected. What structure there is becomes consider-
ably smeared out in the liquid. A slight memory of the
solid structure can be discerned in the normalized density
of states shown in Figs. 11 and 12. However, the curves
for the unnormalized density of states in the liquid are
very smooth and are remarkably free-electron-like,
aside from the effective-mass shifts. For lithium the
structure in the solid density of states is more pro-
nounced ; and the memory which persists into the liquid
is correspondingly more noticeable.

Before comparing our results with experiment we
must first locate the true Fermi level. This occurs not at
Epr (the free-electron Fermi energy) but is the energy
which accommodates 1, 2, and 3 electrons per atom for
lithium, cadmium, and indium, respectively. Referring
to Figs. 14-16, the Fermi levels were found to occur at

# M. Tanaka and J. L. Beeby, Phys. Rev. Letters 16, 1088
(1966).
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0.865EF for lithium, 1.01Ep for cadmium, and 1.06Er
for indium. The effects of this adjustment are most
important in the case of lithium. At E= Ep the density
of states for solid lithium is 239, higher than for liquid
lithium. But at the adjusted Fermi level the difference
is only slightly greater than 19,. For solid lithium the
ratio of the density of states at the true Fermi level to
the free-electron value at E= Er is 1.27. This is some-
what smaller than the 1.66 obtained by Ham!' and
illustrates the importance of calculating the liquid and
solid density of states with the same potential and by the
same method.

V. COMPARISON WITH EXPERIMENT

Our calculations on lithium show that the density
of states at the adjusted Fermi level decreases by 1.5%,
on melting. This, however, is the change due to struc-
ture alone, since the calculations have been performed
for constant atomic volume. The change in volume at
the melting point would, by itself, produce a decrease
of 1.0% in the free-electron value of the density of
states. Combining the structure and volume effects we
predict a 2.59, decrease in the density of states of
lithium on melting. This is in remarkable agreement
with the 29, decrease deduced by Hahn and Enderby?®
electron-spin-resonance experiments.

The density-of-states curves for liquid and solid
lithium coincide to a striking degree for E<0.9Er.
Since the adjusted Fermi level falls at 0.865Er, the
profile of filled states is practically identical in the
liquid and solid. This goes a long way towards explain-
ing Skinner’s observation?® that the soft x-ray spectrum
changes very little on melting. Another interesting
feature of the lithium results is that the memory of the
zone structure which persists into the liquid state
follows quite naturally from the main peak in the liquid-
interference function a(g). Consequently, experimental
observations of this memory effect, as in the soft x-ray
work on aluminum by Catterall and Trotter,?* do not
necessarily constitute evidence for local crystallinity
in the liquid, as is sometimes claimed.

We find that the density of states at the Fermi level
for lithium, cadmium, and indium decreases on melting
by 2.5, 0.7, and 09, respectively. Again, the values
for cadmium and indium include the adjustment of the
Fermi level and the scaling for the change in atomic
volume. It has long been held that the very small
changes observed in Knight shift on melting?® provide
strong evidence for a correspondingly small change in
the Fermi-level density of states. The changes we
calculate are indeed very small and, therefore, lend
some support to this general interpretation of the Knight
shift data. Our general conclusion is that the change in

2 C. E. W. Hahn and J. E. Enderby, Proc. Phys. Soc. (L.ondon)
92, 418 (1967).

% H. W. B. Skinner, Phil. Trans. Roy. Soc. London A239, 95

(1946).
% J. A. Catterall and J. Trotter, Phil. Mag. 8, 897 (1963).



178

the Fermi-level density of states on melting will be appre-
ciable only if the Fermi surface in the solid is in intimate
contact with the zone boundaries. This agreement with
the Knight shift data is not so encouraging when we
come to examine the metals individually. The changes
in Knight shift for lithium and indium are essentially
negligible?®-26 and are, therefore, consistent with our cal-
culated densities of states. However, cadmium exhibits
a 339, increase in Knight shift'?:?” whereas our calcu-
lated density of states decreases by 0.7%,. Ziman’s asser-
tion!3 that the strong change in the Knight shift of cad-
mium is a density-of-states effect is not borne out by
our detailed calculations.

Finally, we consider very briefly the implications of
our results with regard to the photoemission experiments
on indium.!*!* Qur prediction for the change in density
of states at the solid-liquid transition will be compared
with the photoemission data elsewhere.!* Here we will
confine our attention to the data on the crystalline
solid only. In the nondirect model of the photoemission
process, where the optical matrix elements are treated
as constant, the energy distribution of photoemitted
electrons is essentially a replica of the density of filled
states. On the basis of this model, Koyama et al.'°
have attributed the pronounced structure observed in
the energy distributions to corresponding structure in
the density of states, and have presented a theoretical
calculation which provides further support for the
model. These results are illustrated in Fig. 17. However,
their theoretical calculation was performed with an
empirical local potential which is probably inadequate
for determining the density of states over a wide energy
range. A comparison of Figs. 16 and 17 shows that the
amplitude of the structure in our solid density of states
is about three times smaller and, therefore, insufficient
to explain the structure in the energy distribution of

% W. E. Knight, A. G. Berger, and V. Heine, Ann. Phys.
(N. Y.) 8, 173 (1959).

2 J. E. Adams, L. Berry, and R. R. Hewitt, Phys. Rev. 143,
164 (1966). Note that these authors measured the Knight shift
for solid indium at 4°K. F. Rossini (private communication)
points out that the constancy of the Knight shift in indium across
the melting point has to be inferred by comparison with the
results for liquid indium (Ref. 25).

7 E. M. Dickson, thesis, University of California, 1968 (un-
published).
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Fic. 17. Comparison of experimental and calculated energy
distributions of photoemitted electrons for solid indium, from
Koyama, Spicer, Ashcroft, and Lawrence [ Phys. Rev. Letters 19,
1284 (1967)]. Apart from a smooth threshold factor, the theoret-
ical curve is essentially a replica of their calculated density of
states.

photoemitted electrons. An alternative explanation for
the peak of high-energy electrons observed in photo-
emission is that it arises through direct transitions
between states in the vicinity of the zone boundaries
where the joint density of states and the optical matrix
elements are expected to be rather large. Berglund and
Spicer®® have shown that for the s and p derived
portions of the bands in copper and silver, direct transi-
tions can give rise to important structure in the energy
distributions of photoemitted electrons. We hypothesize
that a similar situation prevails in indium. This would
serve to explain why there is structure in the energy
distributions but very little structure in the actual
density of states.
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