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A method is proposed whereby the partial-wave phase shifts which characterize the scattering of plane
waves by the ionic cores in a metallic lattice may be deduced from experimental Fermi-surface data. The
method is applied to an analysis of currently available experimental data on the shapes of the Fermi surfaces
of the alkali metals. Starting from the full many-body theory of conduction electrons in a metallic lattice,
it is shown that the shape of the Fermi surface may be derived from a one-electron-like Schrodinger equation
which involves a nonlocal effective potential. The augmented-plane-wave method is applied to solve the
nonrelativistic Schrodinger equation for the shapes of the surfaces of constant energy in k space, in the
approximation where the effective potential may be represented by an angular-momentum-dependent
potential of muon-tin form. The partial-wave phase shifts of the muKn-tin potential are adjusted to bring
the area distortions of the computed surface into agreement with the experimental data. The phase shifts
deduced in this way are shown to be largely independent of the radius of the muon-tin sphere. It is found
that the shapes of the Fermi surfaces of the alkali metals are systematically influenced by the position of
each metal in the periodic table. Lithium shows a strong p phase shift, which anticipates the onset of the

p resonance in the second row of the periodic table. The phase shifts in sodium are found to converge rapidly
in angular momentum, presumably because the p-like component of the ionic potential is largely cancelled

by the p-like core states, while the d-like component of the ionic potential is rather weak. Potassium, rubid-

ium, and cesium show increasingly strong d phase shifts, which are associated with the positions of these
metals at the heads of the 3d, 4d, and 5d transition series. Only for potassium are the experimental data

sufficiently accurate to show the influence of a small f phase shift. The method of phase-shift analysis has
several advantages as a technique by which the radial distortions of the Fermi surface of a metal may be
deduced from experimental data on the anisotropy of its extremal cross-sectional area. These include rapid
convergence of the series of phase shifts, the use of a model surface generated in a way closely related to a
first-principles band-structure calculation, and the possibility of applying the technique both to nearly-free-
electron metals and to metals of the transition series. The radial distortions of the Fermi surfaces of the
alkali metals are computed, and the results are compared with those of earlier calculations. Finally, it is
shown that our results impose criteria which must be satisfied by any effective potential of muon-tin form
that may be proposed to represent the effects of electron exchange and correlation in the alkali metals.

INTRODUCTION
' 'N recent years, experimental studies have yielded

quantitative information about the anisotropies of
the Fermi surfaces of the alkali metals. Measurements
of the de Haas —van Alphen effect in potassium and
rubidium were made by Shoenberg and Stiles. ' Okumura
and Templeton' investigated the de Haas —van Alphen
eBect in cesium, and Lee' studied the eBect in sodium.
In each of these investigations, the anisotropy of the
extremal cross-sectional area of the Fermi surface was
deduced directly from the experimental data, and an
inversion scheme was used to estimate the radial ani-
sotropy of the Fermi surface. Experimental dBBculties
have so far prevented systematic de Haas —van Alphen
studies of lithium, but Donaghy and Stewart' applied
the somewhat less accurate technique of positron an-
nihilation to measure the extremal cross-sectional areas
of the Fermi surface normal to the (100), (110), and
(111) symmetry directions, and used an inversion
scheme to deduce the radial distortions of the Fermi
surface.

The interpretation of the results of these studies is
now well established. The experimental data relate to

'D. Shoenberg and P. J. Stiles, Proc. Roy. Soc. (London)
A281, 62 (1964).' K. Okumura and I. M. Templeton, Proc. Roy. Soc. (London)
A287, 89 (1965).' M. J. G. Lee, Proc. Roy. Soc. (London} A295, 440 (1966).' J. J. Donaghy and A. T. Stewart, Phys. Rev. 164, 391 (1967).
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TABLE I. Experimental-radial distortions of the Fermi surfaces of
the alkali metals as given in the literature. 4

Lib
Nac
Kd
Rbe
Cs'

10'(k1pp —kp)/kp

—100~100
—7.83&0.40
+14.7~0.4

—23+14
—94ai0

10 (k»p —k,)/k.

+400&100
+9.27a0.50
+10.8&0.4

+95+5
+33ia10

10'(k111—kp) /kp

—100&100
—1.54&0.10
—11.0+0.4

—46~10
—143~10

& The radii set out above were deduced by the several authors from the
experimental area data {Table III) by using various inversion techniques.

b Reference 4.
e Reference 3. e Reference 1.
d Reference 9. & Reference 2.

' F. S. Ham, Phys. Rev. 128, 82 (1962); 128, 2524 (1962).
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the Fermi surfaces of the alkali metals in the bcc
crystal structure. The extreme radial distortion of the
Fermi surface from the free-electron sphere is found
to increase from about 0.1% in sodium to 3.3% in
cesium, while the Fermi surface of lithium is somewhat
more distorted than that of cesium, as shown in
Table I.

In addition to experimental studies, the Fermi sur-
faces of the alkali metals have been the subject of
several theoretical discussions. Ham' combined the
quantum method with the Green's function method in
a systematic study of the band structures of the alkali
metals, and was able to predict the observed trend of
Fermi surface anisotropy within the alkali series, al-
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though his calculated distortions were rather larger
than those found experimentally, and the shapes of
the computed Fermi surfaces of potassium, rubidium,
and cesium did not agree in detail with the experi-
mental data. Heine and Abarenkov' calculated the
band structures of the alkalis from their model po-
tential, ' and found that the computed Fermi surfaces
were considerably less distorted than those found by
Ham, and therefore in rather better agreement with
experiment. However, Heine and Abarenkov did not
make detailed predictions of the shapes of the Fermi
surfaces of the alkali metals. Ashcroft' analyzed the
experimental data of Shoenberg and Stiles on potassium
and rubidium in terms of a local pseudopotential, and
Lee' carried out a similar calculation for the experi-
mental data on sodium. Lee and Falicov' showed that
the shape of the Fermi surface of potassium is strongly
inQuenced by low-lying d-like energy bands, and that
certain features of the experimental data can be ex-
plained only if nonlocality (angular momentum de-
pendence) is introduced into the pseudopotential.

There is no reason to believe that potassium is alone
in this respect. The low-lying d-bands are associated
with the position of potassium at the head of the 3d
transition series in the periodic table. Rubidium and
cesium occupy similar positions in relation to the 4d

and 5d transition series, and presumably the distor-
tions of their Fermi surfaces would also be inQuenced

by the low-lying d-like energy bands. Similarly, the
shape of the Fermi surface of lithium would be in-

fluenced by the p-like energy band just above the
Fermi surface. Finally, the Fermi surface of sodium

might be expected to show some residual nonlocal
effects, although nonlocal effects are known to be weak
in the second row series Na, ' Mg" and Al" because
of the partial cancellation of the s- and p-like compo-
nents of the ionic potential by the s- and p-like core
states.

The aim of the present paper is to interpret the
experimental data on the shapes of the Fermi surfaces
of the alkali metals in terms of the interaction between
the conduction electrons and the ionic lattice. We have
found it convenient to represent the nonlocal effects
directly in terms of the partial-wave phase shifts which
describe the scattering of plane waves by the ionic
potential. We begin by describing the calculational
scheme; then the analysis of the experimental data is
set out, and Gnally the results and conclusions of this
w'ork are discussed.

6 V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).
~ I. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965}.' N. %. Ashcroft, Phys. Rev. 140, 935 (1965).
~ M. J. G. Lee and L. M. Falicov, Proc. Roy. Soc. (London)

A304, 319 (1968).' J. C. Kimball, R. W. Stark, and F. M. Mueller, Phys. Rev.
162, 600 (1967)."N. %. Ashcroft, Phil. Mag. 8, 2055 (1963).

METHOD OF CALCULATION

Schrodinger Equation

The one-particle Green function" for a system of
nonrelativistic interacting electrons in thermal equi-
librium with an ionic lattice may be expressed in the
operator form

G(r, p,E)= [E—(p'/2m) —Vo(r) —Z(r, p,E)j ', (1)

where E is the complex generalization of the single-
particle energy of a system of noninteracting particles,
VD(r) consists of the bare nuclear potential together
with the Hartree 6eld of the electrons, and Z(r, p,E) is
a complex operator (the proper self-energy) which
includes all exchange, correlation, and lifetime effects.

The poles of G(r, p,E) determine the energies of those
elementary excitations of the system which correspond
to the single-particle excitations of a system of non-
interacting particles. The complex energies of these
elementary excitations, the Landau quasiparticles, are
therefore solutions of the Dyson equation which, ex-
pressed as a relation between operators, takes the form

(p'/2m) / Vo(r)+Z(r, p,E)=E. (2)

The imaginary part of Z vanishes at the Fermi level
of a metal in the limit of zero temperature. In many
band-structure problems, and especially those involv-
ing the Fermi surface, it is an adequate approximation
to consider only the real part of Z. Then the Dyson
equation reduces to a single-particle-like Schrodinger
equation

~(E)e(r,E)=E|t (r,E),
where

3C(E)= (P'/2m)+ Vo(r)+ReZ(r, p,E) . (4)

In a crystal lattice, the structural periodicity of
3'.(E) leads at once to a Schrodinger equation of the
form

aC(E.(k)y, (r) -E.(k)y„,,(r), (5)

where the parametric energy dependence of the wave
function has been absorbed into the band index. Thus
it follows from the Dyson equation of many-body
theory that, under the assumption that lifetime effects
are negligible, the band structure is the set of eigen-
values of the one-electron-like Schrodinger equation

I
—(&'/2m)&+V. H(r p E)9., &(r) E (k)Q-, R(r) (6)

where V,q~(r, y,E) is a nonlocal effective potential de-
6ned by

V,ff(r, p,E)= Vo(r)+ReZ(r, p,E). (7)

That exchange and correlation corrections may be
folded into an energy- and momentum-dependent effec-
tive potential accounts for the well-known success of
the one-electron picture as a description of the dynamics

"See, e.g., D. A. Kirzhnits, FieId Theoretica/ Methods in 3fany-
Body Systems (Pergamon Press, Inc. , Oxford, 1967); V. Heine,
P. Nozieres, and J. W. Wilkins, Phil. Mag. 13, 741 (1966).
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of conduction electrons in normal metals. Similarly we

may expect to obtain good agreement with the experi-
mental Fermi surface distortions by solving the one-
electron Schrodinger equation self-consistently in the
metallic lattice, treating the effective potential as a
function to be determined from the experimental
data.

As a 6rst step towards solving the Schrodinger equa-
tion (6) it is helpful to transform the momentum de-

pendence of the effective potential so that dependence
on the radial and transverse components of momentum

may be treated separately. We assume that the radial
contribution can be absorbed into the energy depen-
dence of the effective potential, and that the trans-
verse contribution can be expressed as an angular
momentum dependence of the effective potential. In
this approximation the Schrodinger equation takes the
form

L
—(6'/2m)'P+ V,~f(r,E,E)Q,~(r) =E (k)p, ~(r) . (8)

The work of Bohm and Pines" has demonstrated that,
in a free-electron gas, correlation effects tend to cancel
the rather strong momentum dependence of the
Hartree-Fock exchange potential. Since the residual
momentum dependence of the effective potential is
weak, we would expect the approximation leading to
Eq. (8) to work well, especially for Fermi surface
calculations.

Secular Determinant

Of the many techniques that have been developed
to solve the one-electron Schrodinger equation (8) in
an in6nite crystalline lattice, we have selected Slater's
method of augmented plane waves. "The APW method
shares with the Green's function (KKR) method of
Korringa" and Kohn and Rostocker" the advantage
that the one-electron potential may be introduced
into the calculations as a set of partial-wave phase

shifts for the scattering of plane waves by the ion
cores. It was anticipated that changes of the computed
Fermi surface distortions would be substantially linear
for small variations of the phase shifts, and that for
the alkali metals only the 6rst two or three phase
shifts would differ signi6cantly from zero. These prop-
erties were amply con6rmed in the course of the
present work, and they combine to simplify the analy-
sis of experimental data. In general the KKR method
might be more convenient as a calculational scheme
than the APW method since it involves a smaller
secular determinant and can be programmed in a way
more economical of computer time. The structure
factors of the Green's function method have, however,
a singularity on the free-electron Fermi sphere, " and
since this might well introduce errors into calculations
of the Fermi surfaces of the more free-electron-like of
the alkali metals, the APW method was preferred.

In its simplest form, the form we shall use here, the
APW method may be applied to determine the energy
bands and wave functions in a crystalline solid in
which the potential is radially syrrimetric within non-
intersecting spheres centered on each lattice site, and
constant elsewhere. Such a potential is said to be of
muon-tin form. It is convenient to set the constant
potential between the muon-tin spheres equal to zero;
this defines the APW scale of energy.

The APW method has been described many times,
and for a derivation and discussion of the secular
determinant the reader is referred to the literature. "
A variational argument shows that the relation be-
tween energy E and wave vector k for conduction
electrons in a crystalline lattice is the solution of a
secular equation of the form"

det([(k+g)' —E]b,s +I'ss (k,E))=0, (9)

where, for a crystal with one atom per primitive
cell

,i (I g- g'IR.)I'„.(kE)= (4sR '/0) —L(k+g') (k+g) —E] +P(2l+1)P, (costt, )

&& j&(l k+ g IRs) jz(l k+ g' IRs) C&z'(Rs, E)/@z(Rs,E)j ~ (1O)

In this equation, g and g' are the reciprocal lattice vectors of the crystal structure, Ez is the radius of the
spherical part of the muon-tin potential, 0 is the atomic volume, 8~~. is the angle between the reciprocal
lattice vectors g and g', and I (R&'(Rs,E)/6ti(Rs, E)] is the logarithmic derivative of the solution of the radial

~3 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953); D. Pines, ibid. 92, 626 (1953)~"J.C. Slater, Phys. Rev. 51, 846 (1937); 92, 603 (1953).
~~ J. Korringa, Physica 13, 392 (1947)."W. Kohn and ¹ Rostoker, Phys. Rev. 94, 1111 (1954); F. S. Ham and B. Segall, ibid. 124, 1786 (1961)."K.H. Johnson, Phys. Rev. 150, 429 (1966).
'8 For anintroduction to many of the practical aspects of the APW method, and for a guide to the literature, see T. Loucks,

The ANgniented Plane 8'ave Method (W. A. Benjamin, Inc. , New York, 1967).
'9Note that all quantities in Eqs. (9)—(11) are expressed in atomic units. The unit of energy is the rydberg, and the unit of

length is the Bohr radius.
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TABLE II. Numerical values of various parameters of the alkali
metals that are needed in the present calculations.

Ll
Na
K
Rb
Cs

ap~

(a.u.)

6.597
7.984
9.873

10.554
11.424

g&b g&pc E+1d I gp f.e gp g e

(a.u.) (Ry) (Ry) (Ry) (Ry)

2.856 0.3491 0.2442
3.457 0.2384 0.2118
4.275 0.1559 0.1424
4.570 0.1364 0.1361 0.1292
4.947 0.116S 0.1156 0.1081 0.1737

a ao is the lattice constant.
b Rr is the inscribed-sphere radius.' Ezo is the free-electron Fermi energy.
d Ez' is the Fermi energy from APW calculations —Slater exchange.
e J. F. Kenney (private communication}.
& Ez~ is the Fermi energy from self-consistent APW calculations —Slater

exchange.
& Ey~ is the Fermi energy from self-consistent APW calculations —Kohn

and Sham exchange.

Schrodinger equation

1(t+1)
+ +V f f (r,l,E) 5t& (r) = E(R& (r), (11)

TABLE III. Experimental-area distortions of the
Fermi surfaces of the alkali metals.

10 (A1pp —A p)/Ap 10 (A11p—Ap)/A p 10 (A111—A p)/Ap

Li
Nab
Kc
Rbd
Cse

—110m85—2.04+0.20
+14.1SW0.44
+38.4~2.2
+110~10

—310a85—2.00&0.20—4.65~0.22—27.9+2.2—87~10

+140%85
+7.15W0.40
+2.36&0.12
+56.5&2.2
+214&10

a Reference 4.
b Reference 3.

e Reference 9.
& Reference 1.

Reference 2.

~ The most rapid convergence results if the muon-tin radius
E8 is set equal to the inscribed-sphere radius El. For the present
calculations we have taken Ay=El=(%/4}ap, where ap is the
lattice parameter of the structure."A. Messiah, Quantum Mechanics (North-Holland Publishing
Co., Amsterdam, 1961), p. 390. For the spherical Bessel functions
we have adopted the notation and de6nitions of M. Abramowitz
and I. A. Stegun, Handbook of 3fathensatical Functions (Dover
Publications, Inc. , New York, 1965).

calculated at the muffin-tin radius R8.'0
Since the muon-tin potential is of finite range, the

logarithmic derivatives of the radial wave function
may be related to the partial-wave-scattering phase
shifts p&(E) of the effective potential by the equation"

Gt('(Es, E) —j)'(kr) —tang((E)y)'(kr)-
(12)

(R&(Es,E) j&(kr) tang~(—E)y&(kr}, ss

where k'=E. The effective potential enters into the
secular determinant (9) only to the extent that it
determines the logarithmic derivatives of the radial
wave function. On substituting (12) into (9), it will be
seen that the shape of the surface of constant energy
E is fully determined by the set of phase shifts g&(E).

Digital computer programs were developed to calcu-
late from Eqs. (9), (10), and (12), the radii and the

cross-sectional areas of the surfaces of constant energy
for a given energy E and a given set of phase shifts

gg(E). The radius of the surface of constant energy in
a given direction was determined by computing the
secular determinant (9) for a series of wave vectors
of increasing magnitude in that direction. An inverse
interpolation technique was then applied to determine
the magnitude of the wave vector for which the de-
terminant vanished, and which would therefore lie on
the surface of constant energy E. In the areas program,
the extremal cross-sectional areas of the surfaces of
constant energy were found by numerical integration
of the radii. Checks of convergence showed that the
accuracy of the interpolation and integration techniques
was such that they introduced no appreciable error
into subsequent calculations.

In each program the phase shifts g~(E) for /=0, 1,
and 2 were treated as adjustable parameters. The phase
shifts g&(E) for 1=3 through 12 were set equal to zero,
and the summation was truncated beyond i= 12. Con-
vergence checks showed that truncation of the sum
over l introduces no appreciable error into the cal-
culations; our neglect of higher phase shifts is a sig-
nificant approximation and will be discussed below.

The calculations were carried out with a 30X30
secular determinant. Convergence was found to be
excellent, despite the relatively small secular determi-
nant; doubling the size of the secular determinant
caused no perceptible change in the shapes of the
computed surfaces. A more detailed discussion of con-
vergence will be postponed until the results of the
calculations have been presented.

Scattering Phase Shifts

When the effective potential in Eq. (8) is zero, the
solutions of the radial Schrodinger equation (11) are
spherical Bessel functions of the erst kind, whose
logarithmic derivatives are

Si'(Es,E)/Si(lf s,E)=j ~'(k&s)/j i(k&s) (13)

The phase shifts corresponding to a zero potential
within the muon-tin sphere are, from (12) and (13),
zero. Thus the free-electron band structure, and hence
spherical surfaces of constant energy, are generated if
the phase shifts in the APK secular determinant are
set equal to zero. A weak attractive potential increases
the phase shifts from zero in a positive sense, and as
each bound state is drawn into the potential well the
phase shift corresponding to the angular momentum
character of the bound state increases rapidly by 7r.

Only the tangents of the phase shifts enter into the
secular determinant, however, and the distortions from
sphericity of the surfaces of constant energy are de-
termined by the "reduced" phase shifts, from which all
integral multiples of x have been subtracted.

In order to calculate the shape of the Fermi surface,
the energy parameter E in the secular equation (9)
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TABLE IV. Partial-wave phase shifts for the alkali metals as deduced in the course of the present work.

Li

Rb

Cs

0.24
0.28
0.32
0.36
0.20
0.21
0.22
0.23
0.14
0.15
0.16
0.17
0.18
0.12
0.13
0.14
0.15
0.09
0.10
0.11
0.17

Qp

+0.0633~0.3200—0.0653~0.3200—0.1887~03200—0.2883+0.3200
+0.3128+0.0092
+0.2587~0.0092
+0.2034+0.0092
+0.2481~0.0092
—0.0136~0.0022—0.0769+0.0022—0.1381+0.0022—0.1977&0.0022—0.2577~0.0022
+0.0402+0.0115—0.0372a0.0115—0.1048&0.0115—0.1706+0.0115
+0.1363+0.0312
+0.0460a0.0312—0.0462~0.0312
—0.5131+0.0312

+0.2834&0.0154
+0.1604&0.0154
+0.2280+0.0154
+0.0876+0.0154
+0.0205+0.0016
+0.0080+0.0016—0.0047+0.0016—0.0179&0.0016
+0.0337+0.0002
+0.0123&0.0002—0.0109+0.0002—0.0351+0.0002—0.0607&0.0002
+0.0135w0.0017—0.0108+0.0017—0.0384+0.0017—0.0678+0.0017
+0.0197+0.0054—0.0068&0.0054—0.0353+0.0054
—0.2485+0.0054

"2'
—0.0102~0.0248—0.0165&0.0248—0.0244&0.0248—0.0354+0.0248
—0.0002a0.0008—0.0013&0.0008—0.0023&0.0008—0.0034&0.0008
+0.0247+0.0003
+0.0244+0.0003
+0.0233+0.0003
+0.0216+0.0003
+0.0194a0.0003
+0.0321+0.0014
+0.0334&0.0014
+0.0333+0.0014
+0.0321+0.0014
+0.0401+0.0036
+0.0450a0.0036
+0.0499+0.0036
+0.0462+0,0036

+0.3582
+0.2120
+0.0465—0.1289
+0.2376
+0.1758
+0.1130
+0.0493
+0.1343
+0.0521—0.0346—0.1241—0.2184
+0.1534
+0.0621—0.0341—0.1358
+0.2522
+0.1594
+0.0618
—0.6542

& Bg is assumed Fermi energy on the APW scale (Ry).
b po, qi, y2 are phase shifts in radians; higher phase shifts are set equal to zero.
& $(B) is the Friedel sum of the phase shifts as defined in Eq. (14).

must be set equal to the Fermi energy measured on
the APW scale (Ez) Since this quantity is not known,
our calculations were carried out for a series of energies
close to the free-electron Fermi energy. The range of
energies was guided by the results of Grst-principles
APW calculations, as set out in Table II. At each
energy, the phase shifts po, p&, and q2 were adjusted to
bring the radial distortions of the computed Fermi
surface from the free-electron sphere into agreement
with the experimental radial distortions of the Fermi
surface along the symxnetry directions, as quoted in
Table I. Slight adjustments of the phase shifts were
then made to bring the area distortions of the com-
puted Fermi surface from the free-electron sphere into
agreement with the area distortions of the Fermi sur-
face normal to the symmetry directions as quoted in
Table III, since these are the primary experimental
quantities. The remarkable linearity of the computed
Fermi surface distortions for small changes of the phase
shifts at fixed energy contributed to the rapid con-
vergence of these adjustments. It should perhaps be
emphasized that as all distortions are measured with
respect to the free-electron Fermi sphere, the Fermi
surfaces computed in this way necessarily have a
volume, within the accuracy of the calculation, of one
electron per atom. In particular, knowledge of the
volume of the Fermi surface o6ers no guide to the
correct choice of the Fermi energy parameter E~.
However, the phase shifts corresponding to a particular
choice of Ep are uniquely defined by this procedure.

g2 for the five alkali metals are given for a series of
values of the Fermi energy parameter Ep. The probable
errors in the phase shifts were computed from the ex-
perimental errors in the area distortions. Also given in
Table IV are the Friedel sums of the phase shifts,
which are defined by~

2
~(E)=~L~ (E)3=- 2(»+1)~ (E). (14)

Fermi Energy Parameter

That a fundamental relation exists between the as-
sumed Fermi energy Ep and the corresponding set of
phase shifts p~(Ep) may be seen by considering the
change in occupied electronic states as the reduced
phase shifts g~ are taken from zero, corresponding to
the free-electron model with Fermi energy E~', to their
final values gi(Ep). An elementary argument'~ shows
that for a solid of 1V atoms, a total of NS(Ep) electronic
states are displaced into the surface in k space for
which ~k~ =Ep. Since by hypothesis Ep is the Fermi
energy corresponding to the final set of phase shifts
g&(Ep), the displaced electronic states must be just
sufficient in number to hold those electrons whose
energies on the free-electron model were greater than
Ep. If the surfaces of constant energy are assumed to
remain spherical, the relation between the assumed

In subsequent discussion we shall refer to the phase
shifts for/=0, /=1, /=2, and/=3 as the s, p, ~, and f
phase shifts, respectively.

RESULTS ~ J. Friedel, Advan. Phys. 3, 446 (1954); note that the phase
shifts are expressed in radians.In Table IV we Present the final results of the Phase- ~ C. Kittel, qz@ntuvs Theory of polkas (John Riley R Sons,

shift calculations. The reduced phase shifts qo, g&, a,nd Inc. , New pork, 1963), p. 3&1,
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Twsr. z V. Sensitivity of the shape of the computed Fermi
surface to the value assumed for EJ, . 7 I I I I I I

POTASSIUM

Li
Na
K
Rb
Cs

10'(~100-~1»)/~0

—80.0&150.0{&3.0)—7.1a 0.4(~0.1)
25.7~ 0.6(~0.6)
42.2a 17.0(a2.1)
87.0& 15.0(~1.9)

10 (~110 III 111)/~0

722.0m 150.0(&7.0)
20.3a 0.5(w0. 1)
25.0~ 0.6(+0.5)

154.6& 11.0(&1.2)
529.0a 15.0(+5.0)

0.5 —x 10

0.4—

0.3—

0.2—
& The radial distortions given above are those deduced in the course of

the present work. The errors represent the uncertainty in the radial dis-
tortions due to experimental error. The errors in parentheses indicate the
variation of the radial distortions deduced from the best 6t of the area data
with the range of values of Zg shown in Table IV.

Fermi energy and the Friedel sum of the phase shifts
takes the form

14

12—

10—

SO
(hA

I I l I I

6—
(IOO) zone

0 I I I I

40 30 20 IO

0

b
I I I I I I I I

0 10 20 30 40 50 60 70 80 90
& I IO& & IOO&

degrees
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FIG. 1. The computed area distortions of the Fermi surface of
sodium together with typical experimental data in the (100) and
(110) symmetry zones (Ref. 24). The surface was computed with
the set of phase shifts corresponding to E~=0.22 Ry. The area
distortions are calculated with respect to an arbitrary sphere
somewhat smaller than the free-electron Fermi sphere. The
extremal cross section of the free-electron Fermi sphere corre-
sponds to the ordinate {dA/A%I))()0'=$, It,

For small displacements of energy from the free-
electron Fermi energy, this equation reduces to the
linear form

(Eps Fr)/Ere= ss—F(Er). - (16)

Although this simple relation holds quantitatively
only for spherical surfaces of constant energy, there
exists even for highly distorted surfaces a unique rela-
tion between the assumed Fermi energy measured on
the APW scale and the Friedel sum of the correspond-
ing set of phase shifts. The existence of such a relation
was very helpful in guiding and checking the calcula-
tions leading to the results set out in Table IV.

The physical requirement that the charge distribu-
tion of the conduction electrons should be consistent
with an assumed ionic potential would allow one to
determine the correct value of Ep. However, current
6rst principles calculations oRer no clear guide to the
correct value of Ep, since it turns out that the computed
value of Ep is very sensitive to the way exchange and
correlation effects are taken into account (Table II),
and the most appropriate potential remains a subject

0 b c
EF(rydbergs)

o+I I I I I

O. ll 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

O. 1—

Fzo. 2. The mean deviation of the computed area distortions
of the Fermi surface of potassium from the experimental data,
as a function of Eg, for three di6'erent values of the f phase shift.
The results suggest that apparent sensitivity to the choice of
EF of the Gt to the experimental data may reAect incomplete
convergence of the series of phase shifts (Ref. 25).

s4 The experimental data are taken from Ref. 3. Data in the
(100) zone are from sample 16, while data in the (110) zone are
from sample 11(2) (full circles), and from sample 3 (open circles).
Curves (a) and (b) represent two possible interpretations of the
experimental data from sample 11(2); (a) is the interpretation
of the data given in Ref. 3, while (b), which differs from (a) by
the arbitrary addition of m rad to the experimental de Haas-van
Alphen phase, is more generally consistent with the experimental
data in the (100) zone. The possibility of missing a phase change
of ~ in regions of small signal amplitude is discussed in Ref. 3.
However, the reinterpretation of the experimental data as in (hlest bq regarded as tentative.

of discussion. An experimental method of determining
Ep is suggested by a physical interpretation of the
Friedel sum of the phase shifts. An extension of the
arguments above" shows that the fraction of conduc-
tion charge that is displaced into the region of the
muffin-tin spheres by the ionic potential is equal to the
Friedel sum of the phase shifts. Thus, the Friedel sum
of the phase shifts, and hence the Fermi energy, could
be computed if one knew the distribution of conduction
charge density in the metal. However, no x-ray meas-
urements have so far been made of sufhcient accuracy
to allow one to deduce the distribution of conduction
charge in the alkali metals.

In the absence of reliable information about the
correct choice of EJ., we prefer to regard Ep as a
further parameter in the fit to the Fermi-surface data,
and we now investigate the inBuence of this parameter.
The anisotropy of the extremal cross-sectional area of
the Fermi surface of sodium as computed from the set
of phase shifts corresponding to Es =0.22 Ry (Table IV)
is illustrated in Fig. 1."It will be seen that the area
distortions of the computed Fermi surface are in good
agreement with the experimental data. That this agree-
ment does not depend signihcantly on the choice of the
energy parameter EI is demonstrated in Table V,
where the sensitivities of the radii of the computed
Fermi surfaces of the alkali metals to variations in the
value of Ep are compared with the uncertainties in the
radii implied by the errors in the experimental data.
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The results in Table V show that, for potassium
alone among the alkali metals, the computed Fermi
surface is sensitive to changes in EJ to an extent com-
parable with the accuracy of the experimental data. A
more detailed analysis of the experimental data for
potassium was therefore undertaken. The area dis-
tortions of the Fermi surface were computed at 10'
intervals in the (1001 and L110) zones for each of the
sets of phase shifts and energies in Table IV. The mean
deviation of the area distortions from the experimental
data of Lee' was then computed, and is plotted as a
function of EJ, in Fig. 2. The best fit to the experi-
mental data was found with Ep=0.162&0.005 Ry.

So far we have discussed the analysis of the Fermi-
surface data in terms of the s, p, and d phase shifts,
and have set the f and higher phase shifts equal to
zero. In order to consider the possible inQuence of the

f phase shift on our determination of the best value
of Eg for potassium, the computer program was modi-
fied to allow for nonzero values of g8. The f phase
shift was set equal to +0.0005 rad and to —0.0005 rad,
and the s, p, and d phase shifts were again adjusted to
6t the experimental area distortions normal to the
symmetry directions. The mean deviation of the com-
puted surface from the experimental data was again
calculated for several values of Eg, and the best 6t to
the experimental data (Fig. 2) was found with

Ez = (0.134&0.005) Ry, &3= +0.0005 rad,

EF= (0.173&0.005) Ry, qz ———0.0005 rad.

Thus the apparent sensitivity of the computed sur-
face to small changes in the energy parameter Eg
suggests a small but significant infiuence of the f phase
shift on the shape of the Fermi surface of potassium.
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Frc. 4. The computed radial distortions of the Fermi surface
of Iithium, derived from the set of phase shifts corresponding to
E+=0.28 Ry.

Fermi-Surface Distortions

Our success in 6tting the experimental Fermi-surface
data for potassium to high accuracy with only four
adjustable phase shifts and an arbitrary energy pa-

Ter.z VI. Comparison of the radial distortions of the Fermi
surfaces of the alkali metals taken from the literature with the
values deduced in the course of the present work.

For this reason, the value of Ep cannot be estimated
from the experimental data independently of some as-
sumption about the magnitude of the f phase shift.
Since there are no f-like core states in potassium, we
expect the f phase shift to be positive, however, and
our results suggest an upper bound on EI .'

E&& (0.162&0.005) Ry.

In Fig. 3 we compare the area distortions of the
computed Fermi surface of potassium with the experi-
mental data. The mean deviation of the fractional
area distortions of the computed surface from the
experimental data (Fig. 2) is little greater than the
estimated experimental error in the data."
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10 (k1QQ —kgg1)/kQ
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Previous Present mental

work work error

10'(k o
—k }/ko

Experi-
Previous Present mental

work work error

Li' —4.0
Nab 63
K' 25.7
Rba 23 0
Cs' 49.0

—80.0—7.1
25.7
42.2
87.0
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~0.4
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~17.0
a15.0
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FIG. 3. The computed area distortions of the Fermi surface of
potassium, together with mean experimental data in the (100)
and (110) symmetry zones (Ref. 28). The surface was computed
with the set of phase shifts corresponding to Ez=0.16 Ry. The
extremal cross section of the free-electron Fermi sphere corre-
sponds to the ordinate ()bi/AQ))&10'=4. 6.

Reference 4.
b Reference 3.

e Reference 9.
d Reference 1.

~ Reference 2.

~' The mean deviation of the best 6t to the experimental data
is about ~(0.15X10 ), while the random error in the data is
estimated as &(O.OS&10 '). The di8erence between these 6gures
reflects a small systematic deviation of the area distortions of
the computed surface from the experimental data. It will be seen
(Fig. 3) that the systematic deviation is largely confined to the
(110) zone, and that more experimental data in this zone would
be needed to decide whether or not the discrepancy is signl'L6cant.
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Io I I I I I i I I reasons we believe that our results quoted in Table VI
represent the more reliable assessment of the radial
distortions of the Fermi surfaces of the alkali metals.
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FIG. 5. The computed radial distortions of the Fermi surface
of sodium, derived from the set of phase shifts corresponding to
Ep=0.22 Ry.

rameter suggests that the method of phase-shift analysis
may provide a reliable scheme for fitting the experi-
mental data on the other alkali metals and for esti-
mating the radial distortions of their Fermi surfaces
from the experimental area distortions. For these other
alkali metals, the sensitivity of the shape of the com-
puted Fermi surface to variations in the energy pa-
rameter is substantially less than the uncertainty in
the experimental data (Tabie V). Therefore the experi-
mental data are not suKciently accurate to allow one
to detect the inQuence oi the f and higher phase shifts.
In particular, the very small sensitivity of the shape
of the computed Fermi surface of sodium to variations
in Er suggests that the f phase shift in that metal may
be very small.

The distortions of the radii and of the extremal
cross-sectional areas of the Fermi surfaces of the alkali
metals were computed from the set of phase shifts
corresponding to a Fermi energy parameter Ep close
to the free-electron Fermi energy E&'. We have seen
that potassium is the only metal for which agreement
with the experimental data is sensitive to the choice of
Ep, for potassium we have set Ep equal to the value
which gives the best over-all agreement with the data.
The radial distortions of the Fermi surfaces of the
alkali metals deduced in this way are illustrated in
Figs. 4-8, and our best assessment of the distortions
between symmetry directions is set out in Table VI.
It will be seen that there are some significant dis-
crepancies between our computed radial distortions and
those quoted from the hterature. The method of phase-
shift analysis is closely related to a first-principles band-
structure calculation, so the model surfaces constructed
by the phase-shift method should be substantially more
accurate than those constructed by the various methods
that have been used in the past. Furthermore, the
phase-shift method involves only the cross-sectional
areas of the Fermi surfaces normal to the (100), (120),
and (111)symmetry directions, in which directions the
data is least sensitive to experimental errors. For these
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Fzo. 6. The computed radial distortions of the Fermi surface
of potassium, derived from the set of phase shifts corresponding
to Ez= 0.16 Ry.

Accuracy of the Calculations

Qur calculation of the partial-wave phase shifts from
the experimental Fermi-surface distortions in the way
discussed above involves several approximations and
possible sources of error. Careful tests of convergence
have shown that the errors introduced by truncating
the sum in the secular determinant (10) beyond l= 12
were several orders of magnitude smaller than the
errors in the experimental data. Similarly, the inter-
polation technique for locating the zeroes of the secular
determinant, and the integration technique developed
to compute the area distortions of the surfaces of
constant energy, were found to introduce no apprecia-
ble errors into the calculation. The areas of the com-
puted surfaces of constant energy in a plane normal to
a given direction were found by numerical integration
of the radii calculated at a fixed angular interval of
rotation in that plane. The integration formula was

Sg = L-;(&P+r22)]-'ye)

where bA is the area of a sector bounded by radii r&

and r2, and M is the vertex angle of the sector. In the
course of the area calculations the basic angular interval
was between 5' and 9', and convergence was checked
by doubling this interval and recalculating the area. It
was found that the corresponding change in the com-
puted area was about 1 in 10' for the sodium and
potassium calculations, 1 in 10 for the rubidium, 1 in
2000 for the lithium and cesium calculations. Cora-
parison of these results with the experimental data in
Table III shows that the integration procedure does
not introduce significant errors in the interpretation of
the experimental data.
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Among the other approximations in the calcu1ation,
the only ones that might lead to errors in the final
results of the same order as those contributed by the
experimental error are the truncation of the secular
determinant, the truncation of the series of phase
shifts, and the use of a secular determinant based on a
muflin-tin potential. These approximations deserve
further discussion.

The secular determinant was truncated beyond 30
reciprocal lattice vectors. APW's were included in the
basis set corresponding to all reciprocal lattice vectors
g for which

( k+ g ~

&5.0(vr/a), (17)

where k is a wave vector on the free-electron sphere
at the center of the 1/48 sector of the Brillouin zone
within which the calculations were carried out. The con-
vergence of the final results was checked by increasing
the size of the secular determinant to include 40, 50, and
finally 60 reciprocal lattice vectors. The results are set
out in Table VII. It will be seen that the shape of the
computed surface for potassium does not change sig-
nificantly when the size of the secular determinant is
doubled. However, the inclusion of higher matrix ele-
ments results in a slight, almost isotropic, contraction
of the surfaces of constant energy, and small correc-
tions to the phase shifts are needed to compensate
for this effect. Since these corrections (Table VII) are
substantially smaller than the errors in the phase shifts
which result from experimental error in the data, we
conclude that the convergence of the calculations based
on the 30X30 secular determinant is satisfactory. This
rapid convergence refiects the nearly-free-electron
nature of the energy bands at the Fermi energy in
the alkali metals. A single APW is needed to reproduce
the free-electron energy bands when the reduced phase
shifts are set equal to zero. For nonzero phase shifts,
the eigenvectors of the secular determinant are linear
combinations of APW's constructed in such a way as
to eliminate the discontinuity in the derivative of the
single APW at the surface of the muon-tin sphere. In
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the alkali metals, the phase shifts, and hence the dis-
continuities of derivative, are generally small, and this
process is rapidly convergent. For the less free electron,
like that of the alkali metals, the phase shifts are larger
and convergence is slower. But for these metals the
experimental data are very much less accurate, and
adequate convergence is obtained without increasing the
size of the secular determinant.

We consider next the approximation involved in
truncating the series of phase shifts. In most of the
calculations reported here the s, p, and d phase shifts
were treated as adjustable parameters, and the higher
phase shifts were set equal to zero. We have shown
that for sodium the f phase shift is probably extremely
small, and that only for potassium are the experimental
data sufFiciently accurate to show the inQuence of the
f phase shift. If we may assume that the f phase shift
in potassium is positive, and lies between 0 and
0.0005 rad, "then the corresponding uncertainty in the
s, p, and d phase shifts (which must be readjusted to
restore the Friedel sum to the value appropriate to
Ep as in Table VIII), is about twice as great as that

Tmr, z VII. Illustrating the sensitivity of the shape of the com-
puted Fermi surface to the size of the secular determinant. '
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Fro. 8. The computed radial distortions of the Fermi surface
of cesium, derived from the set of phase shifts corresponding to
Ey =0.11 Ry.
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FIG. 7. The computed radial distortions of the Fermi surface
of rubidium, derived from the set of phase shifts corresponding
to Ez=0.14 Ry.

10'(k1pp —kIII)/kp 10'(k11p—k111)/kp

30
40
50
60

25.48
25.41
25.52
25.49

25.06
25.06
25.11
25.08

"The estimate q3=+0.0005 rad in potassium was taken from
unpublished calculations by J. F. Kenney (private com-
munication).

a Radial distortions of the Fermi surface of potassium with yo = —0.1381,
rf&= —0.0109, ye~+0.0233. and Bf =0.16 Ry. The size of the secular
determinant is ega. Corrections for uniform contraction of surface of
constant energy when n is increased from 30 to 60:

byo = —0.00013,

bent

= -0.00003, Bg2 = —0.00001.
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TABLE VIII. Sets of phase shifts corresponding to the best
fit to the Fermi-surface data for potassium, for di8erent values
of ye.

Eg
(Ry) gl

0.13 +0.0412 +0.0532
0.14 —0.0210 +0.0335
0.16 —0.1381 —0.0109
0.17 —0.1977 —0.0351
0.17 —0.1927 —0.0352
0.18 —0.2521 —0.0608

+0.0252
+0.0253
+0.0233
+0.0216
+0.0209
+0.0184

+0.0005
+0.0005

0
0—0.0005—0.0005

f{Ey)

+0.2104
+0.1335—0.0346—0.1241—0.1258—0.2205

due to the experimental error. Phase shifts for higher
angular momentum decrease rapidly with increasing
l and, furthermore, the summation over l in the secular
determinant is rapidly convergent. It is unlikely there-
fore that, even for potassium, our neglect of the phase
shifts for /&4 introduces any appreciable error into our
estimates of the s, p, and d phase shifts.

Finally we consider the approximations involved in
carrying out the calculations with a secular determinant
derived for a nonlocal potential of muon-tin form.
The muffin-tin potential is an idealization of the true
potential in two respects. Firstly, it is assumed that the
potential is spherically symmetric within the muffin-tin
sphere, and secondly, the potential is taken as constant
between the spheres. De Cicco" has developed methods
of correcting for these approximations within the frame-
work of the APW method. It is not possible to express
the corrected secular equation explicitly in terms of a
set of phase shifts. However, in the course of a calcula-
tion of the electronic band structure of potassium
chloride, De Cicco found that these corrections were
rather small. The excellent agreement of the distortions
of our computed Fermi surface for potassium with the
experimental data (Fig. 3)28 confirms geometrical argu-
ments which suggest that any small corrections may
be absorbed into the phase shifts. That the d and f
phase shifts for sodium are very close to zero shows
that any corrections are rapidly convergent in l.

In an attempt to estimate the errors involved in
truncating the potential at the inscribed sphere, we
have computed the best set of phase shifts to fit the
potassium data for a series of mufFin-tin radii. It will
be seen from the results of these calculations in Table
IX that the phase shifts are largely independent of the
mu6in-tin radius over the range of radii we have in-
vestigated, and that the small Quctuations of the phase
shifts are little greater than the experimental error.
For a mufIin-tin potential, the Friedel sum of the
phase shifts is determined only by the Fermi energy
on the AP% scale, and the individual phase shifts for
a given energy are independent of the mufIin-tin radius.

2' P. D. DeCicco, Phys. Rev. 153, 931 (1967).
Is The experimental points are taken from Ref. 9, and represent

the mean of six sets of experimental data in the (100) and (110)
zones, respectively. It is thought that the greater accuracy of the
Gt to the experimental data in the (100) zone rejects the larger
amount of experimental data taken in that zone.

Significant dependence of the phase shifts on the
muQin-tin radius would indicate substantial departures
of the potential from mufEn-tin form. Furthermore,
it is evident from our results that the secular equation
may be solved with a muflin-tin radius greater than
the radius of the inscribed sphere, without introducing
discontinuous changes in the phase shifts. Thus the
phase shifts obtained by analyzing the experimental
Fermi surface distortions are found to be largely inde-
pendent of the radius of the mufnn-tin sphere, and
they are therefore largely independent of our use of a
secular equation based on the muffin-tin approximation.

TABLE IX. Sensitivity of the best values of the phase shifts
to variation in the radius of the mufBn-tin sphere. Data for
potassium: E+=0.16 Ry; q& ——0.

Rs(")
3.675
3.975
4.275
4.575
4.861

—0.1416—0.1388—0.1381—0.1408—0.1385

—0.0106—0.0108—0.0109—0.0106—0.0107

+0.0242
+0.0235
+0.0233
+0.0236
+0.0232

—0.03331—0.03420—0.03456—0.03473—0.03479

~ Inscribed-sphere radius ~4.275 a.u. Wigner-Seitz sphere radius =4.80i
a.u.

DISCUSSION

Phase-Shift Method as an Inversion Scheme

%e have found that the phase-shift method has
several advantages as a technique by which the radial
distortions of Fermi surfaces may be computed from
the anisotropies of their cross-sectional areas. Perhaps
the most important of these is the rapid convergence
of the adjustable parameters, the phase shifts g~. Even
for potassium, the distortions of whose Fermi surface
are known to high accuracy, an excellent fit to the
experimental data is obtained with only four nonzero
phase shifts. Our results suggest that significant
dependence of the fit to the experimental data on the
choice of the Fermi energy parameter EJ may be taken
as evidence for incomplete convergence in the series
of phase shifts, and that the quality of the fit is largely
independent of EI. However, this condusion is based
on results in which EI was con6ned to energies rather
close to the free-electron Fermi energy.

A consequence of the small number of 6tting pa-
rameters involved in the phase-shift method is that
only a small amount of experimental data is needed
to obtain a rather accurate picture of the Fermi sur-
face. More detailed data help to con6rm and to re6ne
the interpretation; however, it appears that the phase-
shift method, being derived in a certain approximation
from the full many-body theory of electrons in metals,
makes the most efficient use of the available experi-
mental data.

Secondly, the Fermi-surface distortions are found to
be approximately linear functions of the phase shifts.



178 ELECTRON —ION I NTERACTION AND FERMI SURFACES 963

This feature of the method is a consequence of the
physical significance of the phase shifts, and it simplifies

greatly the process of fitting the experimental data.
Finally, the phase-shift method may be applied

equally to nearly-free-electron metals and to metals of
the transition series. Preliminary phase-shift calcula-
tions on the noble metals" have shown excellent agree-
ment of the computed surfaces with the experimental
data. Only in application to that group of semimetals
and semiconductors whose crystal structures in the
solid state are determined by covalent bonding, and
for which a muon-tin potential is known to be a poor
approximation, would we expect the phase-shift method
to fail.

Significanc of the Phase Shifts

The method of phase-shift analysis applied to Fermi-
surface data allows one to investigate the interaction
of conduction electrons with the metallic lattice. Solv-
ing the secular equation is equivalent to constructing
those solutions of a multiple scattering problem in
which a disturbance acts on a lattice of ions, generating
scattered waves which combine to recreate the original
disturbance. The Bloch functions that describe the
electronic states of the lattice are such self-consistent
disturbances. In the muKn-tin approximation, the
wave function in the region of constant potential may
be represented as a sum of plane waves. The plane
waves are scattered by the muKn-tin cores, generating
outgoing spherical waves which may be expressed as a
series of partial waves of increasing angular momentum,
each partial wave being characterized by an energy-
dependent phase shift. At a given energy, the multiple
scattering problem is completely defined by the set
of partial-wave phase shifts. So also is the set of wave
vectors associated with the Bloch functions which are
solutions of that problem. The set of wave vectors
corresponding to solutions of the multiple scattering
problem at the Fermi energy defines the Fermi surface.
The distortions of the Fermi surface from the free-
electron sphere are therefore completely defined by
the set of partial-wave scattering phase shifts appro-
priate to the Fermi energy. Conversely, the magnitudes
of the phase shifts (modulo s) may be deduced from
an analysis of the experimental distortions of the Fermi
surface from the free-electron sphere.

Certain qualitative features of the variation of the
phase shifts within the alkali series may be recognized
in the results quoted in Table IV, despite our uncer-
tainty about the correct choice of the Fermi energy
parameter EI. Let us consider first the d phase shifts.
For lithium, sodium, and potassium there are no d-like
core states and w'e expect the d phase shifts to be small
and, if they are derived from a simple potential, posi-
tive. For these metals, the reduced phase shifts are
equal to the true phase shifts for scattering by the

ionic potential. It will be seen (Table IV) that over
most of the energy range the d phase shift for lithium
does not differ significantly from zero. Our results
suggest that the Fermi energy on the APK scale may
be depressed somewhat with respect to the free-electron
value. A similar conclusion follows from the experi-
mental value of the d phase shift in sodium; again the
phase shift is very close to zero, and the fact that it is
slightly negative over most of the energy range may
indicate that the Fermi energy is depressed with respect
to the free-electron value, or it may result from small
negative many body and other corrections which have
been folded into the phase shifts as a consequence of
our method of analysis. The d phase shifts in potassium,
rubidium, and cesium are positive and perhaps an
order of magnitude larger than in lithium and sodium.
The large positive d phase shifts mark the onset of d
resonances and are related to the position of these
alkali metals at the heads of the 3d, 4d, and 5d transi-
tion series. These large d phase shifts show that the
shapes of the Fermi surfaces of potassium, rubidium,
and cesium are strongly inQuenced by the d bands
above the Fermi surface, confirming and generalizing
the conclusion of Lee and Falicov. '

The p phase shift of lithium is large and positive
over a rather extended energy range. Since there are
no p-like core states in lithium, the reduced phase
shifts are equal to the true phase shifts, and it will be
seen that the shape of the Fermi surface of lithium is
strongly influenced by the onset of the p resonance
which corresponds to the creation of p-like bound states
along the second row of the periodic table. The heavier
alkali metals all have p-like core states, and the reduced
phase shifts may be positive or negative, so the results
admit of no immediate interpretation.

Since all the alkali metals have s-like core states, the
reduced phase shifts may be positive or negative and
again our results allow no simple interpretation.

Thus the reduced phase shifts derived from the
experimental shapes of the Fermi surfaces of the alkali
metals are consistent with the results of simple quali-
tative arguments based on the expected resonance
behavior of the phase shifts. Conversely, the distor-
tions of the Fermi surfaces of the alkali metals from a
free-electron sphere are systematically influenced by
the position of each metal in the periodic table.

The most direct indication of the difference between
the phase shifts deduced in the present work and those
appropriate to the neutral pseudoatoms of Ziman, "is
gained by comparing the corresponding values of the
Friedel sum. For phase shifts derived from the Fermi
surface data we have no s priori knowledge of the
value of the Friedel sum. It is probably close to zero,
and its sign may be positive or negative depending on
whether there is a small net displacement of conduction
charge into or out of the mufBn-tin sphere in the metal,

29 M. J. G. Lee (to be published). 3 J. Ziman, Advan. Phys. 13, 89 (1964).
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relative to a uniform charge distribution. However, the
phase shifts corresponding to the neutral pseudoatoms
derived from the monovalent metals satisfy

since the neutral pseudoatom is defined as an ion
together with its full screening charge, so that on
average one electronic charge must be displaced by
the potential into the mufBn-tin sphere around each
ion.

Equation (15) suggests that our model would reduce
to the neutral pseudoatom model of the metal if we
were to attempt to fit the Fermi-surface data with
EJ =0. The charge density outside the spheres would
then fall to zero, corresponding to a Friedel sum of
unity. However, the charge distribution would not
approximate well the charge distribution in the real
metal, and it seems unlikely that the Fermi-surface
data would give useful information about the pseudo-
atom phase shifts. We have not investigated the be-
havior of the phase shifts in this limit.

Inhuence of Many-Body sects
We have shown above LEqs. (1)—(10)] that in the

approximation where lifetime effects may be neglected,
the many body theory of conduction electrons in metals
leads to a dispersion relation which may be derived
from a single-particle-like Schrodinger equation in which
the many-body effects are absorbed into an energy and
momentum-dependent effective potential. This result
explains our success in fitting the experimental Fermi-
surface data on potassium with a secular determinant
based on the one-electron approximation.

By adjusting the phase shifts to fit the experimental
data, we have absorbed the many-body corrections
into the phase shifts. Thus it is the effective potential
implied by our results, rather than the experimental
distortions of the Fermi surface, that we should examine
for evidence of many-body effects. Since we have reason
to believe that the experimental phase shifts must be
derived from an angular-momentum-dependent effec-
tive potential, it is not possible to deduce the form of
the effective potential directly from our results. We
therefore regard our results as imposing a condition on
the effective potential, whose form must be proposed
on other grounds.

Slater, " and Kohn and Sham, " have proposed ap-
proximate techniques by which exchange and correla-
tion effects in the solid state may be included in an
effective potential. These two approximations lead to
quite different predictions of the Fermi energy on the
APW scale (Table II), and of the phase shifts at the
Fermi energy. '3 Our results provide in convenient form
a criterion which must be satisfied by the phase shifts

"J.C. Slater, Phys. Rev. 81, 385 (1951).
'~ K. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965)."J.F. Kenney (private communication).

associated with any acceptable effective potential of
muffin-tin form. At some energy (the Fermi energy)
the phase shifts deduced from the proposed effective
potential must agree with the phase shifts derived
from the experimental data. Only if this condition is
satisfied can the proposed effective potential lead to
an accurate prediction of the shape of the Fermi
surface.

Kuhn and Van Vleck, "Brooks and Ham, "and Heine
and Abarenkov, ' in theoretical discussions of the elec-
tronic structures of the alkali metals, have avoided
the problem of representing exchange and correlation
effects by an effective potential, by extrapolating from
the atomic spectra various parameters related to the
scattering phase shifts. Our results provide a criterion
by which the success of these methods also might be
judged.

InfIuence of Relativistic Effects

We have not explicitly taken account of relativistic
effects in the course of the present work. Yet relativistic
effects are known to play a significant role in determin-
ing the band structures, and hence the shapes of the
Fermi surfaces, of the heavier metallic elements. Such
effects might most naturally be taken into account by
solving the Dirac equation for a potential of muffin-tin
form. The relativistic generalization of the APW method
has been discussed by Loucks" and by Koelling. "

Three new terms are introduced into the one-electron
Hamiltonian; these represent the relativistic mass-
velocity and Darwin corrections, and the spin-orbit
interaction. Since the first two terms are radial func-
tions, they may be treated as corrections to the crystal
potential within the muffin-tin sphere. The resulting
secular determinant is identical with that of Eqs. (9)
and (10), except that the logarithmic derivatives of
the radial wave function at the surface of the muon-tin
sphere are replaced by somewhat more complicated
parameters. "The third relativistic correction, the spin-
orbit interaction, mixes spinor components and results
in a further term in the secular determinant which
cannot be expressed analytically as a correction to the
phase shifts. "

In the present work we have fitted the experimental
Fermi surface data by adjusting the phase shifts, or
equivalently the logarithmic derivatives of the non-
relativistic radial wave function, which are related to
the phase shifts by Eq. (12). In the presence of sig-
nificant mass-velocity and Darwin terms, which repre-
sent the dominant relativistic corrections in the free
alkali atoms, " this procedure is still appropriate, al-

~ T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950)."H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958)."T.L. Loucks, Phys. Rev. 139, 231 (1965)."D. Koelling, Quarterly Progress Report No. 68, Solid State
and Molecular Theory Group, Massachusetts institute of Tech-
nology, 1968 (unpublished)."F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood CliGs, ¹ J., 1963).
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though the relativistic corrections modify somewhat
the significance of the phase shifts. Thus, within the
limits of validity of the relativistic APW method the
mass-velocity and Darwin corrections may be folded
into the phase shifts.

In general, the spin-orbit term may cause the
splitting of accidental degeneracies and orbital degen-
eracies, thereby modifying the form of the energy
bands near such degeneracies. However, there are no
accidental degeneracies close to the Fermi energy in
the band structure of cesium. " The nonrelativistic
energy bands suggest that the most significant effect
of spin-orbit interaction on the Fermi surface of cesium
would be a distortion of the surface along the (111)
direction, resulting from a splitting of the orbital de-
generacy of the lowest p-like state I'4. If we may assume
that the splitting of the energy bands at I' is of the
same order of magnitude as the spin-orbit splitting of
the 6p states in atomic cesium, and that the one-
electron states are predominantly p-like on the Fermi
surface in the (111)direction, then a simple perturba-
tion argument shows that the energy band along A

would be depressed by energy 5E, given by

where V„ is the spin-orbit splitting at P, Eg p is the
energy gap between the unperturbed state on the
Fermi surface along (111) and the next highest band
at the same point in the Brillouin zone, and EI is
the free-electron Fermi energy. Taking V„=0.005 Ry,~
E„,=0.08 Ry,"and E&=0.12 Ry (Table II), we find

(bE/Ep)= —2 6X10 '

This result suggests that the spin-orbit interaction may
contribute to only a rather small extent to the radial
distortion of the Fermi surface. To a first approxima-
tion the radial distortion may be estimated from the
free-electron dispersion relation

(8k/k) = —(hE/2E~) =+1.3X10 ' along (111),

and the result suggests that the spin-orbit interaction
may contribute less than 5% of the experimentally
observed distortion of the Fermi surface.

In the lighter alkali metals the Fermi surfaces are
substantially less distorted than is that of cesium, but
the increased sensitivity of the Fermi surface to spin-
orbit effects is more than offset by the rapid decrease
of the magnitude of the spin-orbit splitting. For these
reasons we believe that neglect of the spin-orbit inter-
action is a valid approximation in our discussion of the
shapes of the Fermi surfaces of the alkali metals.

'9 J. F. Kenney, Quarterly Progress Report No. 66, Solid State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology, 1967 {unpublished).

~ C. E. Moore, Atomic E&eergy Levels {National Bureau of
Standards, Washington, D. C., 1949).

CONCLUSIONS

We have shown how the partial-wave phase shifts
which describe the interaction between the conduction
electrons and the ion cores in a metallic lattice may be
derived from experimental Fermi-surface data. An

analysis of the experimental distortions of the Fermi
surfaces of the alkali metals indicates that the shapes
of the Fermi surfaces are systematically influenced by
the position of each metal in the periodic table.

We have found that, for sodium and potassium, the
best values of the three phase shifts go, gj, and g2 lead
to surfaces of constant energy whose area distortions
are in excellent agreement with the experimental
Fermi-surface data. We have applied the phase-shift
method to estimate the radial distortions of the Fermi
surfaces of all the alkali metals, and have suggested
that the radii computed in this way may be substan-

tially more accurate than earlier results. Experience
with calculations based on muon-tin potentials suggests
that the present method may be applied successfully
to the analysis of experimental Fermi-surface data on

a large group of metals, including nearly-free-electron
metals and transition metals, and excluding only that
group of semimetals and degenerate semiconductors in
which directional bonding is known to be important.

Finally, we have pointed out that our experimental
phase shifts include corrections for exchange and cor-
relation effects, as well as for certain relativistic effects.
Thus, the phase shifts derived from any effective po-
tential of muon-tin form that may be proposed to
take into account exchange and correlation effects for
conduction electrons in the alkali metals, must be
consistent with the present results.
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