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Resonant Scattering of Monochromatic Light in Gases~~
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The resonant scattering of monochromatic light in gases is analyzed. Explicit expressions
for the differential cross section are obtained in the limits (Doppler width)» (natural width)

» (collision width) and (collision width)» (natural width)» (Doppler width). In the former

limit, the frequency distribution of scattered light is narrowed in the forward and backward

directions, and has the full absorption width for right-angle scattering. In the collision-
dominated limit, the cross section separates into a coherent and a fluorescent component. The

motion of the atoms broadens the 6 function distribution characterizing coherent scattering from

a stationary target. The interference between light scattered by different atoms is assessed.

I. INTRODUCTION

In two recent papers'~' (hereafter referred to as
I and II) the author developed a theory of the reso-
nant scattering of light from perturbed atoms. The
first of these papers dealt with the scattering from
an atom which interacted with a crystal lattice.
In II the theory was generalized to perturbations
whose effect could be approximated by a randomly
fluctuating term in the atomic level splitting. The

approaches taken in both of these papers were es-
pecially suited to the description of scattering from
paramagnetic ions imbedded in insulating crystals.
In the present paper we will develop an analogous
theory appropriate to the resonant scattering of
light in gases. '&'

Light scattering in gases differs in two impor-
tant ways from scattering in solids. First, the
atoms of the gas are moving randomly with respect
to source and detector. Second, the nature of the
perturbations is qualitatively different. In a solid,
typically, the atom is continually under the influ-

ence of the thermal vibrations of the lattice. In a
gas, however, the atom undergoes random colli-
sions with other atoms. These collisions are gen-
erally of brief duration and are widely separated
in time. In the present paper we will develop a
theory which incorporates these effects. Analytic
expressions for the differential cross section will
be obtained for several limiting cases. Interfer-
ence effects between different scatterers will be
assessed and there will be some discussion of the
calculation of the fluorescence from nonresonant
levels.

Before entering into the details of the analysis,
we should like to make some brief comments about
the spirit of our approach. Our main goal is to
calculate the frequency dependence of the differen-
tial scattering cross section in the resonance re-
gion. We will show that the cross section can be
characterized by the same parameters. (shift,
width, etc. ) as characterize the absorption cross
section. The parameters, themselves, we will
not calculate. Applications of the theory to specific
systems will be reported in subsequent publications.

II. THE UNPERTURBED STATIONARY ATOM

In this section we will consider the scattering from an unperturbed stationary atom. As shown in I, the

differential cross section for a scattering process where the incoming photon has angular frequency v„
wave vector k„and polarization E, and the scattered one co„k„and 7, canbe written as the Fourier trans-

form of the induced dipole moment correlation function

d a((u, )/d&P&u, = (~,ur, /2mc) f d'te ' ' (P» P„(t)),2 3 4 ~ t((d —&d )t' (2.l)

where P», the induced dipole moment operator, is given by'

( /a) J'p [ g zHpt /5 d
zH t/S

]p (2.2)

and P»(t) is equal to exp[iHpt/I] P» exp[—iHpt/a]. In Eq. (2.2) d denotes the dipole moment eperator of the

atom and H, is the atomic Hamiltonian. The brackets in (2.1) symbolize an ensemble average. In I and II
allowance was made for situations where there might be an appreciable equilibrium population in the upper
of the resonant levels. In this paper it will be assumed that the temperature of the gas is sufficiently low

so that only the lower levels are populated.
In order to simplify the analysis, we will initially make the assumption that the upper and lower levels in-
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volved in the transition are themselves nondegenerate. This restriction will be removed in the more gen-
eral treatment outlined in Sec. 5. Any degeneracy present can of course be removed by the application of
an external magnetic field. The calculation of the differential cross section under these assumptions is
relatively straightforward. Since a similar calculation is outlined in I and II, we present only the final re-
sults. 2 ~d'o(~, ) ~,'I (f I Ã, dl i) I

'I (f I~, dl i) I
'

(2.3)

Here (f I g, .dl i) and (f I e, dI i) denote matrix elements of the dipole moment operator taken between the

two resonant states which are separated in energy by Seo; y~ denotes the natural linewidth. As noted in

I, the light scattered from the unperturbed atom is unshifted in frequency, and its phase is coherent with

respect to the phase of the incident light.

HI. A GAS OF NONINTERACTING ATOMS

We wish to describe the scattering from atoms in an ideal classical gas. This calculation differs from

the one in the preceding section in that the motion of the atoms is taken into account. It wiQ become ap-

parent that the translational motion gives ri.se to a shift and broadening of the frequency distribution of

the scattered light. The results of our calculation will apply mainly to transitions whose breadth (in ab-

sorption) is determined by the Doppler width. We will first obtain an expression for the cross section for
a single atom moving with velocity v, and then average the resulting expression over the Maxwell-Boltz-

mann distribution. The end product of this averaging is an expression for the cross section which is ap-

propriate to an ensemble of atoms as long as the effect of the interference between light scattered by dif-

ferent atoms may be neglected. Interference effects axe discussed in Sec. 6.

The motion of the center of mass of the atom is accounted for by multiplying the dipole moment compo-

nents e, d and e, ~ 1by exp(ik, r) and exp(- t%, ~ r), respectively. We will regard the position of the atom

r as a classical variable determined by the classical equations of motion. ' The frequency distribution of

the cross section is then governed by the expression.

i(a)2 —~1)t, , t(~0 (ol)(t'-—t") —y~(l t'I+ It"I )

r(t") tk r(0) —ik r(t) ik r(t+ t')
)&(e 1 e 2 e 2 e 1 ) (3.1)

As is appropriate for an ideal gas we will take r(t) to be equal to vt, so that the origin of the coordinate sys-
tem coincides with the position of the atom at t = 0. The above expression then takes the form

i(~2 —&ul)t 0, o „ i(~ —&u )(t'- t" ) —P&(l t'I+ I t"I )

x(exp[i)7, v(t+t'- t")- ik, vt]&,
(3.2)

where the average is now over a Maxwell-Boltzmann distribution in v. After performing the average, the

bracketed factor in (3.2) can be written

exp(-(O'Z&/2m)[t'+ (t+ t' t")' 2cos6 (P+ tt' t-—t")]], - (3.3)

where jp = ) k, I = I k, I, I|". is Boltzmann's constant, T is the temperature, and m is the mass of the atom.
The symbol 6 denotes the scattering angle (6= 0 corresponds to forward scattering).

After inserting (3.3) into (3.2), the resulting multiple integral can be brought, without approximation„ to
the form

Hm y ' exp[ —(~ —&ul)'/8a(1 —cos6)]
- J dy e & exp[- —'{2&v,—(u, —(u,)y- —(1+cos6)y ],

2[2a(1 —cos6) ]'"
(3.4)

where a =O'KT/2m. As long as [a(l+ cos6)]'~'»y&, we may neglect the factor exp(- y&lyl ) in the inte-

grand and thus obtain the expression



[my '/2a(l —cos'8)'~] exp[- (&u —~ )2/Ba(l —cos8)]exp[- (2&v —u& —&u )'/Sc(1+ cos8)]N 2 1 0 1 2

The differential cross section can be written

d'o((o ) (u (o 'Ay ((u —(u )' (2v —e —ur )'

d&,der, 4h'c'a(1 —cos'8)'~' Sa(1 —cos8) Ba(1+cos8)

where 2 denotes the factor l(f ) Z, ' dl i) I' 1(f I Ã, dl i)l '.
In the forward scattering limit, we obtain the expression

d~,de, 4h'c'a8 4ao' 4a

The frequency distribution of the light scattered in the forward direction is sharply peaked about the inci-
dent frequency. In the backward direction (8= m) we have the result

d'o((u ) (u ~ 'Ay ' (2v —(o —(o )' ((d —(d )

d&,d&u, 4h'c'a(w —8) 4a(m —8)' 4a
(3.B)

assuming va(m —8)»z&. The frequency distribution of the light scattered in the backward direction is
peaked about the value 2ruo- &,. In other words, if the incident light has frequency &„-&, the distribution
of the scattered light is centered about &u, + &. At right angles (8= v/2) the cross section becomes

d'o((u ) (u (u 'Ay, ' ((u —(o )' ((u —e )'

d2d~, 45'c'a 4a 4a (3.9)

with the result that the scattered light is peaked about &v, with the full Doppler width v, (ZT/mc')'~'.
The frequency dependence displayed in Eqs. (3.7), (3.S), and (3.9) has a simple interpretation in terms

of the scattering from an atom moving at constant velocity with respect to source and detector. If the fre-
quency emitted by the source ls (top &, then the photons will be scattered most strongly if the atom has a
velocity component c&/z, in the direction of the source. As seen by the detector, the scattered radiation
is radiation emitted with a frequency ~, which is Doppler shifted by an amount characteristic of the motion
of the atom relative to the detector. If the detector is in the forward direction and the atom is receding,
the frequency is shifted to e, —~, the source frequency, On the other hand, if the detector is in the back-
ward direction and the atom is approaching, the shift is to v, + &. At right angles the effects of the motion
of the atom with respect to detector and source are independent of one another as is apparent from the
cross section which becomes the product of two probability distributions, one for the incoming and one for
the outgoing photon.

There are two additional features of the analysis which also merit comment. First, if the natural width
is much greater than the Doppler width, i.e. , y&& la, the differential cross section can be written

d'o(a), ) (u, u), Aexp[- ((u, —u), )'/Ba(1 —cos8)]

dn du) v wm'c'[Ba(1 —cos8)]'~'[-,'(2(u -u) —(u )'+y ']

(u, co, 'A. exp[- ((u, —&u, )'/Ba(1 —cos8)]

Rme'c'[Ba(I —cos8)] '~'[((u —(u P + y

Equation (3.10) is to be compared with (2.3). It is seen that even if lifetime broadening is the dominant
linewidth mechanism, the motion of the atoms still influences the scattering cross section to the extent
of broadening the 6 function into a Gaussian.

The second comment pertains to the integrated intensity. If we approximate the multiplicative factor
e,&u,

' in (3.6) by &u,', we may integrate the resulting expression over &u, to obtain the equation

dQ . 2 dQ d~ 2@2 4al/2 (3.11)

Apart fromthe matrixelements, the integrated cross section is independent of scattering angle. This re-
sult is not surprising, since if we integrate again over d~, we obtain a total scattering cross section which
in the absence of nonradiative decay processes (e.g. , inelastic collisions) is equal to the absorption cross
section. The latter, in the Doppler limit, has the familiar exponential form displayed in Eq. (3.11).
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In this section we will examine the effects of collisions on the differential cross section. Our first cal-
culation will be appropriate to a stationary target. We will then incorporate the motion of the scatterers,
We utilize a very simple model for the collisions. We assume elastic collisions with the atoms of a buffer
gas and neglect inelastic effects entirely. W'e will also neglect collisions between resonant atoms where
the nonradiative transfer of excitation may be important. -The collisions themselves we will treat in an
impact approximation similax to that introduced by Anderson. It is beyond the scope of this paper to dis-
cuss in detail the situations where the model is appropriate. Typically it has the same range of validity
as the corresponding model for the absorption cross section, i.e., fast collisions and frequencies near v, .

Our analysis of the problem parallels the formulation of the impact model which was outlined by Kubo.
W'e assume that the effects of the collisions can be represented by a fluctuating term in the level splitting
5&v,(t). A formal expression for the cross section in the presence of a time-dependent splitting was ob-
ta1ned 1Q II. IQ the Qotatlon of this pape1' 1t 18 written

'"', , f dte ' ' f dt'f dt" exp[i((u —(u )(f'- t")—y (~ t'~ +
~

t"~)]

If
x &exp[-iJ0 5(o (t)+i J +

5(u (~)dt]), {4.1)

where the brackets now refer to an average over the fluctuations in 6~o.
In H it was assumed that the frequency fluctuations had a Gaussian spectrum in which case (exp[ ]) was

replaced by exp(-, [. ]'). The Gaussian model, while useful in many solid-state problems, is unsatisfac-
tory for the characterization of atomic collisions. As emphasized in Ref. 8, it is the Poisson rather than
the Gaussian distribution which is appropriate for collision broadening. In averaging over a Poisson dis-
tribution,

gPf t tl
(exp[- i f 5~,(t)dt +i f 5&v,(t)d~])

is replaced by the expression

exp{fan(exp[- i f 5(o„(Bdf +if + 5(o„(j)dt j —1&], {4.2)

where N is the number of perturbing atoms and 5v» is the frequency fluctuation associated with a single
perturber.

The calculation of the average in (4.2) parallels the calculation of the corresponding average in the ab-
sorption analysis. In the latter problem the expression analogous to (4.2) is

exp(A'&exp[i f, 5~„(t)d~]- 1&),

which after averaging has the form

(4.4)exp(in f —y If I),
C C

where ~~ is the shift 1n frequency coming from the collisions, and p~ 18 the coDision width. As shown in
Ref. 8, these parameters can be expressed as integrals over the collision cxoss section. ' To perform
the average in (4.2), it is convenient to separate the calculation into several parts which are determined
by the relative magnitudes of t, t', and t". A straightforward application of the analysis outlined in Ref.
8 leads to the result

exp(&&exp[- i f0 5(g p)dt+i f +
5& (~)d~]- 1& )

=exp[i& (f'- f")—y (If'I + I f "I)—y (I f+f'- f"I+ If l —If'+tI —I f" tl)]. — (4.5)

{4.5)

(4.7)

We may verify the correctness of (4.5) for t= 0. The left-hand side has the value

exp(A'(exp[i f „5(o„{~)dfj —1)),
while the right-hand side can be written

exp[in {f'-t")—y I
f'- f" I],

C C

in agreement with what would be predicted from (4.3) and (4.4).
An expression for the cross section is obtained by combining (4.1) and (4.5). The triple integral can be



evaluated with the help of Eq. (A3) with (x=(([,-((I„p=(OO+&c- (dl, A=yc, 8=yc, C =y~+yc, and
D =- y„. The result takes the form

(f 0'{(d ) (y +y@)/II

d((~dry I'e'[((o( —~0-a )'+(y +y ('[ ( "' ' +
y ((o -td -a ('+(y +y )') ' (4.8)

Equation (4.8) is to be compared with Eq. (2.11}of Ii (K&o,/ZT»1). It is evident that the impact model
yields the same result as the Gaussian model when the latter is evaluated in the motional narrowing limit.
This is not surprising since both models give a lorentzian shape for the absorption cross section. As
noted in II, the two terms in the bracketed factor on the right-hand side of (4.8) characterize the coherent
scattering and the resonance fluorescence,

Equation (4.8) was obtained for a stationary target. As a first step in amalgamating the effects of the
target motion with the effects of collisions, we may combine the collision broadening with the Doppler anal-
ysis of the preceding section. The resulting cross section takes the form

'=2'@,', f „dte'"' ' f „dt'f dt"exp(-(Ix ET/2')[f +{t+t'- f") -2 coze(t +tt'- ff")]]

xexp[i(~ +& -cv )(f'-f")-(y +y ){if'i+if"i)]exp[-y (if+/' f"i+-iti-if'+Pl —if"-fi)]. (49)0 e 1 N e c

There is an important assumption which is implicit in this equation. In obtaining the kinematical factor

exp(- ()'X'KT/2m)[f'+ (i+ f' f")'--2cose(P+ tt'- ff")]],
we have assumed that the atom is moving with uniform velocity. The resulting cross section is theo aver-
aged over a Maxwell-Boltzmann distribution. IQ reality the same collisions which perturb the electronic
transitions mQl also influence the motion of the atoms. However if the resonant atoms are much more
massive than the perturbing atoms, the influence of the collisions on the motion of the former is slight.
In such a situation (4.9) becomes a Xeasonable approximation.

In the limit as b,c and yc approach zero, (4.9) reduces to (3.8). In the opposite limit, where the collision
vndth is much greater than the Doppler width, the motion of the atoms has little effect. on the resonance
fluorescence, butit does broaden the 5-function in the coherent cross section. The magnitude of this effect
cR11 be RscextRilled 'bl[ I'eplaclIlg 't116 klIlenlatlcRl fRct01' 111 (4.9) b'/fits llllll't111g fol'111 fol' f » f y f y

Rn Rp
proximation which is appropriate whenever yc+yAI» (01(KT/IIIC')'I'. Then we have

,)-(2.) f . —
exp[ (n ZT/ )(I-cose)f ]dfi(~, —co,)t 2 2

exp[- (~, —&u, )'/(40'KT/m)(I —cose)]
2II'I' [(O'lf'T/III)(I —cose)] 'I'

It is evident that the amount of broadening depends not only on the average speed but also on the scattering
angle with the 6 function being recovered in the forward scattering limit.

The equations derived in this section were obtained under the assumption that the perturbing collisions
were elastic. If inelastic collisions are present as vreB, they influence the cross section in bvo mays.
First, in (4.8)-(4.10) the natural linewidth y~ is replaced by y~+ yci, where yci is the inelastic collision
width. Second, in addition to the resonance fluorescence centered about &0, there will also be fluorescence
at frequencies ~z, vy, etc. , vrhere the levels a, b, . . . are the terminating states for inelastic transitions
from the resonant level.

The cross sections for the fluorescent transitions are readily derived by means of the MlovHng argu-
ment. Sincethefluorescence is an incoherent process, the cross section for emission from level a is the
product of four factors: (1} a factor associated with the probability of absorbing a photon while making
R tx'Rllsitloll to-.the llppel' I'esonRllt level, (2) R branching 1'R'tlo wlllcll is equal to tile fl'Rctlon of tl'Rllsit1011s
depopulating the resonant level which terminate at level (I, (3) a factor proportional to the fraction of
transitions from the level (I which involve radiative emission terminating at the ground level, and (4) a
lorentzlan factor characterizing the frequency distribution of the emitted photon. That is vie have

d 0((Ly ) l(0iZI'dig)i {y& +y . +y )RO
2 0 0 0

dO d(d, 02 0 0 02 0 0[(~1-~O- &, ) + (y~ +y„. +y, ) ] {y„.+y~ )
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l(gl ~2 1 la&l (yN +y . +y )

(yN +y . )[(~2- ~ - n ~ +(yN +y . +» ]
0 Q 0)2 0 0 0 2

ei 2 a c N ei c

+ is the transition rate from the resonant level to level a, yN@, y&z@, y~, and 4+ are the nat-
ural wldthp the inelastic width and the elastic width, and shift of a; yNO ycgo yco and ~co are the corre-
sponding parameters for the resonant level, and g denotes the ground state.

V. GENERALIZATION

The results presented in the preceding sections were obtained from a rather simple model in which we
assumed nondegenerate initial and final states and rectilinear motion of the atom as a whole. We wish to
generalize our findings to more realistic situations where there are overlapping lines and where there may
be changes in velocity resulting from collisions with the perturbers.

Our approach to the more general problem is founded on the assumptions that first, we can represent
the effects of the collisions on the transition by a time-development operator having matrix elements be-
tween the electronic states of the atom and second, that we can separate the average over the motion of
the atoms from the average over the time-development operator. The significance and appropriateness
of the first assumption has been discussed by Baranger in connection with the calculation of the absorption
lineshape. ' The second assumption is somewhat more severe, since as noted, collisions which affect the
motion generally affect the electronic transitions as well. In way of justification we may say that not in-
frequently there are situations where over a given time interval only a small fraction of the collisions
which perturb the transition also significantly influence the motion. In this limit we may neglect the con-
tribution of the velocity changing collisions to the time-development operator. The velocity changing col-
lisions appear only in the kinematic factor which may then be averaged separately.

%'e summarize the discussion of the preceding paragraph by presenting the expression for the differen-
tial cross section which is obtained when we apply the two approximations to the Kramers-Heisenberg
formula

d'c(&u, ) (u, ~,' t t(~, co,)t -to „,to „(—sf', r(t") ik, r (O) —i', r(t) tk, .r(t+t'))
2 2

&&

I Z 2 8 '

(nlrb(t")

lg&(g I&, dla&(D IT (t") IC&(&l&, ~ dl &&

nP aBCD
y5 p.

&&(&I T(t) ly) (y I ~,'1 I B) (BI T(t') I&& AIZ, .d I P&(PI T (t+ t')I n
ve

Here n, p, . . . denote states of the ground manifold, which are assumed to be equally populated with a
weighting factor N& ', and A, B, . . . denote states of the resonant excited manifold. The symbol T(t) de-
notes th«ime develoPment oyerator for the atom which reduces to exP(-tHot) in the absence of Perturba-
tions (ufo is the electronic part of the free atom Hamiltonian). It is assumed to have no matrix elements
between the ground and excited manifold. The subscript ave denotes an average over collisions which
perturb the electronic transition.

The calculation of the full cross section even with the approximations embodied in (5.1) appears to be
prohibitively complex, apart from the special cases considered previously. A partial solution to the prob-
lem is possible however. If we omit the kinematical factor for the moment, we may separate the cross
section into its coherent and incoherent parts, a procedure which was discussed in detail in I. The coher-
ent cross section takes the form

Coh

5 (nlÃ, .dlB&(Blr(t')I~&QI~, dlP&(PIT (t')ln&
n, PA, B ave

&&N 2 2 (nl e d IB)(BIT(t")IA&(AI ei d I p&(p I T (t")I n)
n, PA, B ave
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Equation (5.2) can also be written

&PvM) =(~,/c) le, )i ((u, ) e, l 6((u, —(u,),"2 2
coh

(5.8)

where y (~,) is the electric susceptibility of the atom calculated in the time-development approximation

n, P A, B ave
(5.4&

(5.5)

&f'o(~, )
d~zd(dz qua- coh

xexp —— kl f„+ v(t)&ft k2 J0 v(t—)dt1 t1'

Equation (5.3) is the generalization of the delta function term in (4.8). As shown by (4.10), the motion
of the atom has the effect of broadening the delta function. To see how this comes about in the general
case, we evaluate the average over the velocities in (5.1) using a Gaussian approximation similar to that
employed in calculating neutron scattering cross sections. " Thus we write

&
—ik, r(t") ik, r(0) —ik, r(t) ik, r(t+f'), 1 f'+t~~,

k t~,—,~
We may combine the results of (5.2) and (5.5) to obtain an expression for what we choose to call the quasi-
coherent cross section. "

' r & &. I~, ~I»&&l&«'~l»«&l~, &I»&&I& «'~l»),„,
o., A, B

o. , P A, B ave
(5.6)

The integrals over i' and f" in (5.6) have their major contribution from the intervals —Pc '& f, i
where y~ is a measure of the collision width. On the other hand, the integral over t has its major con-
tribution from the interval —X & t& X, where 1 is a measure of the width of the quasi-coherent distribu-
tion (X is on the order of &u, (ÃT/mc')'~' for rectilinear motion). If yc»X, as in the case when collision
broadening is dominant, we may set f' and t" equal to zero in the kinematical factor in (5.6). As a result
we obtain the cross section

&f'o((u, )

d ~&dc'&
(d&(d«

l

~ «TD(
)

~
l

2

2'ETC 2
qua- coh

x J die ' ' exp[—k (1—cose) J0 J0 (V (f )V (f ))dt dt ], (5.7)

where V is the component of velocity along the direction k, —k, .
ll

Equation (5.6) indicates how the motion of the resonant atom broadens the coherent cross section. The

width of the distribution is seen to depend on the velocity autocorrelation function (VII(tl)VII(t2)). If (e,
—&u, ) ' is much less than the mean time between kinetic collisions, we may approximate (VII(tl)VII(t2)) by

(VII ) (= KT/m) and thus obtain the Gaussian shape of (4.10). On the other hand, if ((u, —&u, ) ' is much

greater than the mean time between collisions, the diffusion approximation is valid and we may set
(VII(tl)VII(i2)) equal to 2&6(t, —f,), where & is the diffusion constant. We then have

&f v((u, )
2

dO, d~,
»,~, IZ, y (~,) e, i &0 (1 —cos9)3~ TD 2 2

mc ((&u, —w, ) +[AN'(1 —cose] )
(5.8)

qua-coh

in agreement with the quasi-coherent component in (A7).
Two final comments are appropriate here. First, the quasi-coherent cross section characterizes only

part of the distribution of scattered radiation. As noted in I the remainder is associated with the fluctua-

tions of the induced dipole moment about its average value. Second, we emphasize that Eq. (5.7) was de-
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rived under the assumption that collision broadening is the dominant linewidth mechanism. A model cal-
culation where this assumption is not made is outlined in Appendix A.

VI. INTERFERENCE

In an actual experiment light is scattered from a large number of atoms. If the wavelength of the light
is comparable with the inter-atom spacing, the interference between the light scattered by different atoms
must be taken into account. In this section we will indicate how the interference affects the intensity of
scattered light.

We begin by discussing interference in the collision-dominated limit analyzed in Sec. 5. As noted there
and discussed in greater detail in I and II, the single atom cross section can be separated into a coherent
and an incoherent component. The coherent component is associated with the ensemble (=time) average
of the induced dipole moment, while the incoherent component arises from fluctuations in the induced
moment. Such a separation is also possible in the many-atom cross section. If the fluctuations in the
induced dipole moments of the different atoms are independent of one another, a reasonable assumption for
gases, the incoherent cross section for the ensemble will be the sum of the incoherent cross sections for
the various atoms.

The scattering associated with the average of the induced moments will display the effects of interfer-
ence. In order to assess their importance, it is convenient to examine the integrated (over &u, ) intensity
of the coherent scattering. This is easily obtained from Eq. (5.7) if we first, set to, = &u, in the factor

and second, integrate over cu, from minus to plus inf inity. The cross section that results can be
written

i(k -k ) ~ (r.-r. )

j=1
do(&u, )

dO,
(6.1)

qua-coh

where y TD(tu, ) is the susceptibility of a single atom in the time-development approximation. The sum is
over the K resonant atoms (nonresonant scattering is neglected). The factor in brackets in (6.1) is the
atomic i~terference function for the resonant component of the gas. " Away from the forward direction,
this function has a value close to unity. Interference effects are negligible, and the total cross section
is the sum of the coherent cross sections for the N resonant atoms. " In the forward scattering limit, k,
=k„ the interference function has the value N and the cross section is factor of N greater than in the ab-
sence of interference.

The effect of interference on the ideal gas cross section can be determined in much the same way.
Separating the cross section into its coherent and incoherent parts leads to the result

d2 (~ ) g~~ ~ 3
&

i (~ —&1)t, , i(&uo- &ul)(t'- t") y&(l t'I+ I
t" t-)

dt 2 1 'dt' ' dt"
dA, d~, 2m@'c' OO OO

x ((exp[- ik vt" —ik2 ~ vt+ ikl ~ v(t+ t')])
1 2

i(k -k ) ~ (r.—r.) —ik ~ vt" ik ~ v(t+t')
+(Z e 1 2 ' & —1)(e 1 )(e 2 )).

j=1
(6.2)

With the assumption of complete disorder, as is appropriate for a spatially homogeneous ideal gas, the
factor (g @exp[i(kl —k2) ~ (r —rj j —1) is zero for k, different from k, ." Thus we have

(k,4 k,), (6.3)d 2tou{~ d)/Q d&2u 2Nd v{(u, /d&2d&u2
I
atom

where the single-atom cross section is given by (3.6). Thus in a spatially homogeneous ideal gas inter-
ference effects vanish except in the forward direction.

VII. CONCLUSION

In the preceding sections we have outlined cal-
culations of the differential cross section character-
izing the resonant scattering of light in gases. It

is to be noted that the scattering cross section con-
tains much more information about the target than
is to be found in the absorption cross section. This
is evident, for example, in Eq. (4.8). Were one to
integrate the differential cross section over (d, and
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the solid angle, one would obtain an absorption
cross section proportional to [(~—&uO- & c)'+ (yc
+y&)'] '. ln the absorption cross section it is the
sum of the natural width and the collision width
which enters, whereas in the scattering cross sec-
tion both the sum and the ratio of the widths appear.
Thus measurements of the scattering cross sec-
tion permit one to determine, in principle, dis-
tinct values for the two widths.

In measurements of the cross section it is im-
portant that the incident light be very close to
monochromatic. As pointed out in I, if there is a
distribution in the frequency of the incident light,
the time average of the scattering rate is propor-
tional to the average of the cross section over the

distribution. If the distribution is broad, consid-
erable information will be lost in the averaging
process. For this reason lasers are especially
promising as sources.

It should also be mentioned that the theory ap-
plies with minor modifications to the resonant

scattering of gamma rays by nuclei. Here the ef-
fects of collisions on the transition are negligible,
and the cross section is determined primarily by
the intrinsic lifetime and the kinematics. The

modifications that are necessary come about be-
cause of the recoil of the atom. The effect of the

recoil on the ideal-gas cross section is discussed
in Appendix B.

APPENDIX A. INTEGRAL EVALUATION AND MODEL CALCULATION

Here we outline the evaluation of a triple integral which arises in the calculation of the differential cross
section. The integral I is written

tt tII
I = f dte f dt'f dt" e exp[-Al tl BI t+t' -t"I —C(-l t'I + I' t"I)-D(l t+ t'I+ I

t"- tl)],
(Al)

where n, P, A, 8, C, and D are real. As a first step we rewrite I in the form

I = 2 Re e dt' dt" e exp ~ ~ ~ (A2)

where Re means the real part of the expression in parentheses. The integration in (A2) is most con-
veniently performed by first integrating over t' and t" and finally over t. As a result we obtain the expres-
sion

I=2ReQ(C+D) '(A+C+D —in+iP) '[(8+C+D+iP) '+ (8 —C —D —iP) ']

+(8+C+D —iP) '(A+C+D —in+iP) '[(8 —C+D —iP) ' —(8 —C —D —iP) ']

—(8+C+D —iP) '(8 —C+D —iP) '(A+8+2D —in) 'j. (AS)

As an application of (AS) we evaluate the differential cross section of an atom which is perturbed by col-
lisions in the manner outlined in Sec. 4, and whose velocity autocorrelation function has the form

(V(t, )V(t ))=2&~..~(t, -t ), (zq=x, y, z),
z 1 g 2 zg 1 2'

where S is a diffusion constant. The cross section that results can be written'4

(A4)

dao((g ) (g ~ &A ap t((d —(d )t p I p I~ l(Q) + 6 —(d )(t —t )
2 1 dt dt' dt"e 0 c 1

dA, d~, 2mb 'c4

xexp(-K)k [I t+ t' —t"I+ I t I
—cose(l t- t"I+ I t'+ tl —

I t'I —I
t"I')]]

x exp[—(y +y )(I t'I + I
t"I ) y(l t+ t' t")+ I t—l' —I t'+ tl -— I' t" tl )] . —

c c (A5)

The integral in (A5) is easily evaluated with the help of (A3). Since the resulting expression is rather
cumbersome, we consider only the limiting cases @k'»y&»yc and yc»&k', y~. In the limit &k'»y~
»yc we have

dg((d ) &d 4) Ay ( l I( l l

d02do)2 2mS c Dk —i &2 —&o Dk +i +o +x Dk —i o
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, ,~y„- ( ~a )( ~u
mk'c' 5&k')'g(u, —&u, ) (Sk')'+ ((u, —(u, )

1 2 N
i z

It is apparent that the diffusive motion of the atom has destroyed the coherence between the incident and
scattered wave so that the cross section becomes the product of two lorentzians, one characterizing ab-
sorption and the other emission.

In the limit yc» zk~, y@ we obtain the result

d'o(&u ) (u (u ' ( 2&)P(1 —cose) y y

dA d&u mh'c~[(e —&u —& )'+y '] ((u —R ) +[2+/'{1 cose)]2 'y (~ + ~ —& ) +y
0 c c 2 0 c 2 c /

In this limit the only effect the motion has on the cross section is to broaden the delta function into a
Lorentzian, in agreementwith the results of Sec. 5.

APPENDIX 8. THE EFFECT OF RECOIL ON THE IDEAL-GAS CROSS SECTION

In order to incorporate the effects of target recoil on the cross section for scattering from an ideal gas,
it is necessary to treat the vector r(t) appearing in (3.1) as a quantum-mechanical operator whose evolu-
tion is determined by the Hamiltonian p'/2m. We then have

exp[ —ik, ' r(t")]exp[ik, r(O)]exp[- ik, r(t)]exp[ik, r(t+t')]

= exp(ip't "/2m@) exp{- 87, ~ r) exp{—ip't"/2 mh) exp( ik, ~ r) exp(ip't/2m') exp(- ik, ~ r)

x exp(- ip't /2mb) exp[iP'(t+ t')/2m%] exp( ik, ~ r) exp[- iP'(t+ t')/2mft] .
If we make use of the operator identity

exp(- i k r)f (p r), exp(i k r) =f(p+ nk, r),
with f(p, r) being a function of momentum and position operators, we find that (Bl) can be written

exp[- ik, r(t")]exp[ik, .r(O)] exp[- ik, r{t)]exp[ik, ~ r(t+t')]

(a2)

= exp[i p k, (t+ t' —t")/m —ip ~ k, t/m] exp[is(k, —k, )'t/2m+ ice,'(t' —t")/2m]. (»)
The first factor in (83) is the result obtained when recoil effects are neglected. The second factor gives

rise to the frequency shifts associated with the recoil. These are negligible for electronic transitions,
but may be important in y-ray scattering. If we replace the momentum operators by the classical vari-
ables and subsequently average over a Maxwell-Boltzmann distribution, we obtain an equation similar to
(3.6) but with +2 replaced by &o, + k(k, —k2)'/2m and &uo by +0+ Kk, '/2m.
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