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The variation with temperature and pressure of the velocities of 10-MHz elastic waves propagating in
monocrystalline bcc sodium was measured by the phase-comparison technique. At atmospheric pressure,
the elastic constants C», C'=$(C» —C»), and C44 appear to decrease linearly with temperature between
150 and 299'K, while their second temperature derivatives are all negative between 78 and 150'K. At
P=0 and T= 195'K, the following values of the adiabatic elastic constants were obtained: C» ——81.3 kbar,
C'=6.65 kbar, C44= 51.0 kbar. At T= 78'K, 195'K, 273'K, and 299'K, the first two pressure derivatives of
the effective elastic constants C», C', and C44 were computed by Cook's method from measurements of
the pressure dependence of the transit times extending up to 9 kbar. The pressure derivatives dC»/dp
=4.17+0.20 and dC'/dp=0. 258+0.015 are independent of temperature for 78'K&T&299'K, while
dC44/dp equals 1.74+0.08 for 195'K&T&299'K, decreasing to 1.17&0.07 at 78'K. The following bounds
on the second pressure derivatives of all the elastic constants were established: —5X10 4&C 'd'C/dP'
& —2X10 4 kbar '. To within experiment alerror, the fractional pressure derivatives of the adiabatic
elastic constants decrease linearly with temperature in such a way that at 273'K, C» 'dC»/dp=0. 054
kbar ', C' 'dC'/dp=0. 042 kbar ', and C44 'dC44/dp=0. 039 kbar ', while at 78'K these quantitiesare equal
to 0.049, 0.037, and 0.025 kbar ', rspectively. Although the absolute values of the isothermal elastic con-
stants B~=$(C»+2Cl2), C', and C44 as well as dBz/dp and dC44/dp at T= 78'K are in good agreement
with simple theory, dC'/dp is much larger than expected.

INTRODVCTIOH

S OME landmarks in the theory of the elastic prop-
erties of bcc sodium are the papers by Fuchs' '

and by Fuchs and Peng' treating the shear elastic con-
stants and the bulk modulus, and Bardeen's 1938 calcu-
lation" of the variation of the compressibility with
pressure. The early work represents further develop-
ment of the %igner-Seitz theory of metallic cohesion.
More recently, re6ned calculations by Brooks et al. ,~

in which the cellular method was also employed, have
yielded good. agreement with experiment for the co-
hesive energy, the equilibrium atomic volume, and the
I'-V relation.

Aspects of the elastic properties of sodium have often
been studied in connection with lattice-dynamicsinvesti-
gations and many-body theory. This work will not be
reviewed here since no attempt is made in this paper
to interpret the experimental results quantitatively in
terms of the propagation of phonons.

Fuchs's treatment of the shear elastic constants and
bulk moduli of static alkali metal lattices included en-
ergy terms arising from short-range (SR) forces due to
ion core exchange and polarization phenomena as con-
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tributions to the cohesive energy. The resulting SR
contributions to the ordinary second-order elastic con-
stants turn out to be small when the magnitude of the
SR forces are estimated from ionic-crystal data, as was
done by Fuchs. But, because the SR forces presumably
vary rapidly with distance, one expects direct ion-ion
interaction effects to become important in connection
with phase transitions, the I'-V relation at very high
pressure, and the structure of lattice defects.

Experimental evidence which appeared to be rela-
tively directly related to the size of the SR interaction
in metallic sodium was published by Daniels in 1960.~
Interpreting his room-temperature measurements of the
change of the elastic anisotropy with pressure in the
framework of Fuchs's theory, Daniels concluded that
the SR interaction in metallic sodium was negligibly
small. The ratio of the electron number density in the
outer part of the %igner-Seitz cell to the free-electron
value (Z,rf) was then required to be a sufficiently rapid
function of atomic volume (V) to fit the observed pres-
sure derivatives of the shear elastic constants. Both
Daniels' and Brooks' have remarked that the resulting
value of

~
dZ, fr/d V

~
is larger than that expected on the

basis of existing band calculations.
In general, the experimental situation so far as the

elastic properties of monocrystalline sodium were con-
cerned, seemed at the beginning of this investigation
to need clarification since fairly large inconsistencies
existed between static measurements of the bulk modu-
lus and dynamic values of the single-crystal elastic con-
stants at low temperatures. Estimates of the pressure
derivative of the bulk modulus at room temperature
were also in disagreement. As a consequence of recently
published ultrasonic measurements of the temperature

9%'. B. Daniels, Phys, Rev. $19, 1246 {1960).
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variation of the elastic constants below 195'K," and
the revision of earlier P-V-T data, " the conipatibility
of elastic-constants data obtained by different experi-
mental methods is now much better than was the case
three years ago.

However, the theoretical problems associated with
the size of the SR interaction in sodium and the large
apparent change of the electronic band structure with
pressure implied by Daniels's results have not yet been
resolved, nor will they be fully resolved here. The pri-
mary purpose of this paper is to present experimental
evidence for the proposition that the eGects of tempera, —

ture on the fractional pressure derivatives of the elastic
constants (1/C)dC/dp are large in bcc sodium. Measure-
ments of the first two pressure derivatives of three
independent combinations of the adiabatic elastic con-
stants are reported. Data were taken at 78, 195, 273,
and 299'K. These data are compared with theories of
the elastic properties of a static bcc sodium lattice.

Unfortunately, it appears that very little can be
concluded firmly regarding the details of the SR inter-
actions in metallic sodium by interpreting measure-
ments of the pressure derivatives of the shear elastic
constants made above 78'K in the framework of Fuchs's
theory. The strongly anharmonic behavior of some of
the lattice-vibration modes is thought to be the main
cause of the difBculty. This anharmonicity appears to
cause eGects which cannot be corrected on the basis of
the quasiharmonic approximation.

EXPEMMENTAL PROCEDURE

A. Specimen Preparation

The preparation of good ultrasonic samples of mono-
crystalline sodium is not easy. For instance, because of
the large elastic anisotropy of this material, the crystal-
lographic orientation of the ultrasonically active faces
must be controlled relatively precisely if good values
of the elastic constants are to be obtained. Since a de-
tailed account of the criteria, which must be met if
accurate elastic-wave velocity measurements are de-
sired, is available, along with a description of con-
straints placed on the experimenter by the reactivity
of sodium metal, ~ the following description of the speci-
rnen preparation procedures is an outline only.

Single-crystal sodium boules approximately 15 X 2.5
X 3.5 cm in size were grown in a glovebox containing
purified helium gas. The starting material used was
Mallincicrodt lump sodium of approximately 99.5%
purity. The Mallinckrodt sodium was not analyzed
chemically. The estimate of purity is based on values
quoted in Ref. 13 as being typical of electrolytically

"M. E. Diederich and J. Trivisonno, J. Phys. Chem. Solids
27, 637 (1966)."C.E. Monfort, III and C. A. Swenson, J. Phys. Chem. Solids
26, 219 (1965).

'~R. H. Martinson, Ph.D. thesis, Cornell University, 1966
(unpublished).

'g M. Sittig, Sodium, its Manufacture, Properties and Uses
(Reinhold Publishing Co., New York, 1956).

produced sodium metal. The crystals were grown at a
controlled rate of 2 cm/hr in a horizontal stainless-steel
mold, one end of which was cooled by a nitrogen gas
stream.

Rectangular parallelepipeds with faces of the form
(110},{100)were cut from the boules with a string
saw after preliminary x-ray studies of each boule had
established its approximate orientation. Specimens were
taken only from the middle of each boule; the front
and rear 2 to 3 cm were discarded because they were
likely to be more impure. Precision orientation of the
specimens by a diGractometer technique was carried
out with the aid of a special two-circle x-ray goniometer,
which allowed the preservation of accurate alignment
during the final specimen preparation steps. These steps
consisted of facing the specimens with a modified
American Optical model 820 microtome. Special care
was taken to limit the depth of cut to 5p, or less during
the final stages of this machining operation which was
carried out in a purified helium atmosphere. The
acoustic path length was measured with the aid of a
Van Keuren "light wave" micrometer having a least
count of 10 pin.

Circular X- and F-cut "doughnut plated" quartz
ultrasonic transducers were bonded to the specimens
with either U.S.P. mineral oil or General Electric 60 000
centistoke Vicasil which had been heated in the pres-
ence of fresh sodium chips for a few hours. The mineral
oil bonds were used for experiments from 299 to 195'K,
while the Viscasil bonds proved satisfactory down to
77'K.

The end products of these preparation steps were
monocrystalline sodium ultrasonic specimens in the
form of parallelenineds approximately 1.5 cm on a side,
two faces of which were Rat and parallel to approxi-
mately 0.0005 cm, and coincident with either (100) or
(110) planes to 0.1'. The length of the acoustic path
was known to 0.001 cm, and the direction of particle
motion of the shear-mode transducers coincided with
either the L110]or $100] directions to about 3'.

B. Ultrasonic Technique

The elastic-wave velocities were measured by "phase
comparison" technique of Williams and Lamb'4'~ ex-
cept that in the present experiments the same trans-
ducer was used both for generating and detecting the
elastic waves. For experiments such as the present ones,
the phase comparison technique is superior to direct
timing methods because of the increased sensitivity
available and because the eBect of the transducer on
the measured time can be corrected. '4

In the version of the phase comparison technique
used for the present experiments, two bursts of phase-
coherent 10-MHz rf power are applied to a piezoelectric

'4 J. williams and J. Lamb, J. Acoust. Soc. Am. 30, 308 (1958)."A. Colvin, M.Sc. thesis, Rensselaer Polytechnic Institute,
1962 (unpublished).
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transducer bonded to the specimen. The pulses are
separated by a variable delay time. Each of these
pulses generates its own train of echoes. The two echo

trains may be brought into time coincidence on an
oscilloscope screen by varying the delay time between
the exciting pulses, such that the (m+1)st echo of the
Grst pulse overlaps the nth echo of the second pulse.
If the carrier frequency is now varied, and if the rela-
tive amplitudes of the drive pulses are correctly ad-
justed, complete destructive interference of the echo
trains may be obtained. It is shown in Ref. 15 that the
transit time is most reliably obtained from measure-
ments of a sequence of null frequencies which bracket
the main resonance frequency of the transducer. During
measurements of the temperature and pressure varia-
tion of the elastic constants, the frequencies of four
nulls were followed, and the transit time ratios werecom-
puted from means of the null frequencies. No corrections
were applied for excess shifts caused by the 6nite thick-
ness of the acoustic bonds. Mcskimin" has shown that
changes in the acoustic properties of the bond between
the transducer and the specimen caused by varying the
temperature and pressure may safely be neglected if
the bond is sufBciently thin.

The details of the data gathering procedure are des-
cribed fully in Ref. 12. It is believed that the measured
carrier frequencies were converted to transit time ratios
in a way that is compatible with the sensitivity of the
phase comparison technique used —roughly 1 part in
10' at 10 MHz. Thus, most of the random scatter in
the experimental results is likely to have been caused
by uncontrolled Quctuations in the variables P and T.

A block diagram of the ultrasonic system is shown in
Fig. 1. An Arenberg 650C pulsed oscillator was con-

'e H. J. McSkimin, J. Acoust. Soc. Am. 34, 609 (j.962).
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TABLE I. Magnitude of the elastic constants of sodium at 194.7'I,
in kilobars (1 kbar = 10' dyn/cm').

86

Elastic
constant

Cll

C44

g(C„—C„)

Magnitude
(kbar)

81.16
81.30
81.32

mean 81.26

50.85
51.20

mean 51.02

6.63
6.64

mean 6.64

Specimen
length at

299'I (cm)

1.8445
1.2347
1.2405

1.7259
1.2959

1.2899
1.7921

82—

78-

l20 l60 200
Temperature ('K)

280

verted by the manufacturer to a gated amplifier capable
of providing the phase-coherent variable amplitude rf
pulses required. The carrier oscillator consists of a fre-

quency stabilized Signal Corps SC 221 frequency meter
and a home made frequency quadrupler. The other
instruments are standard commerical items.

C. Pressure System

A gas pressure bench capable of generating up to 15
kbar of gas pressure in a volume of a few cubic centi-
meters was used in this investigation. This apparatus
closely resembles a design which has been described in

the literature. '~

A cross section of the vessel used in the high-pressure
experiments is shown in Fig. 2. It is a conventional one-

piece design, made entirely of Vacomax 300 vacuum
cast maraging steel. The gas inlet tubing is threaded
and silver soldered into the lower end plug, while three
electrical leads are led out through the upper plug. The
end plugs incorporate armoured Bridgman seals with
indium packings. It was necessary to develop a special
electrical lead to seal the helium gas pressure transmit-

TABLE II. Interpolated values of the adiabatic elastic constants
of sodium between 80 and 300'K.

740—

(a)

700—

O

N
6.60-

IN

6.20-

60

56—

b 52—
Cl

tJ

48—

580 & I & I i I i I & l

60 joo I40 180 220 260

Temperature( K)

500

Temperature
('K)

80
100
120
140
160
180
200
220
240
260
280
300

Cl1
(kbar)

85.7
85.1
84.7
83.2
82.7
81.8
81.1
80.2
79.4
78.6
77.7
76.9

C44

( bar)

58.7
57.7
56.5
55.1
53.7
52.2
50,7
49.2
47.7
46.2
44.6
43.1

y(Cll —Cle)
( bar)

7.28
7.19
7.09
6.98
6.87
6.76
6.65
6.54
6.45
6.33
6.22
6.11

44
60 I40 IeO

Temperature ('K )

220 260

{c)

FzG. 3. (a) Temperature dependence of C», (b) temperature
dependence of C44, (c) temperature dependence of C'.

ting medium at low temperature. This seal is described
elsewhere. "

The pressure was measured with a manganin pres-
sure gauge by the conventional ratio method, using a
Guildline six-place potentiometer. The gauge wire was

"D. I anger and D. M. Warshauer, Rev. Sci. Instr. 32, 32
(1961).

"R. H. Martinson and R. E. Terry, Rev. Sci. Instr. 38, 1330
(1967).
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TAsLE III. Some values of the adiabatic elastic constants
of sodium in kbar (1 kbar =10' dyn/cm').

28.0

7.2

Cll
C'
C44
B,

T= 195'K
a b c

81.3 76.6
6.64 6.30 6.63

51.0 50.0 50.4
72.5 68.2 71.9

T=299'K
a e f

76.9 73.8
6.22 5.85

43.4 41.9
68.8 67.6 66.1 66.5

I0.4
O
I-

IO.

6.4

25.6

a This work.
b Reference 10.
e Reference 20.
~ Computed from Table II. Ref. 21. with pressures increased 3% and

using B,/Bg ~1.0362.
e Reference 11.
& Reference 9.
I Computed by Daniels {Ref.9) from measurements made by Bridgman

(1935).

IO.O
0

Pressure {k bar)

4.8

FIG. 4. Typical transit-time variations with pressure.

calibrated against the freezing point of mercury at (}'C
(7565 bars).

The temperature of the pressure vessel was controlled
by immersing it in suitable temperature baths. Below
room temperature, ice water, solid CO2, and liquid-
nitrogen baths were found to be convenient for this
purpose.

During measurements of the temperature dependence
of the elastic constants at one atmosphere, the tempera-
ture of the specimens was controlled by manually regu-
lating the electrical power delivered to a copper "tem-
perature bomb" which was in loose thermal contact
with a liquid-nitrogen bath. The temperature was
monitored with two calibrated copper-constantan ther-
mocouples. Data were recorded only at times when the
temperature gradient over the 6-cm-long jig supporting
the samples was less than 1 C.

EXPERIMENTAL RESULTS
A. Temperature Dependence of the

Elastic Constants

To check the reliability of the transmission line
theory of the phase comparison method, ,' wave propa-
gation velocities were measured at 194.7'K for two
sets of crystals, one of which was approximately 40%
longer than the other. The good consistency of the re-
sults which are shown in Table I indicates that trans-
ducer sects are described quite well by the transmis-
sion line theory.

In order to obtain elastic constants from measure-
ments of wave velocities according to the equation
C=pe, it is necessary to know the density of the
material. I have used the value 0.9725 g/cm' at 273'K
as the reference density" and the thermal-expansion
data of Quimby and Siegel" to correct for the temper-
ature variation of the density.

The final results of the temperature dependence ex-
periments are shown in Fig. 3 and Table II. These re-
sults have been computed from transit time ratios,
using absolute wave-velocity measurements at the dry-
ice point (194.7'K) as the reference.

In Table III the mean values of the elastic constants
at the dry-ice point and at room temperature obtained
in this investigation are compared against those pro-
posed by some other workers. Additional data may be
found in Ref. 1{3and in the other original papers. The
degree of over-all agreement between the entries in
Table III is somewhat disappointing in view of the
care with which all the experiments appear to have
been done. No doubt the discrepancies between the
recent ultrasonic values reflect the dBBculties of doing
accurate wave-velocity measurements on a soft, re-
active, and highly anisotropic material. It is not ob-
vious which of the sets, (a) or (b), is the more reliable,
but because the estimates of the shear elastic constants
obtained in the present work agree well with the results
of Quimby and Siegel I and since the adiabatic bulk-
modulus values seem to be in good agreement with the
revised data of Seecroft and Swenson, "~' I have used
the most recent values of the ad, iabatic elastic constants
Lset (a)j in subsequent calculations. This choice does

TmLE IV. Values of the 6rst temperature derivatives of the
adiabatic elastic constants of sodium, in kbar ('K) '.

~C11

dT
dC'

rJT

dC44

—0.041

—0.075

—0.0054

-0.044

—0.071

—0.0047

-0.040

—0.084

—0.0050

a This work. T &150oK.
b Computed from Ref. 10.
e Computed from Ref. 20.

"S.Quimby and S. L. Siegel, Phys. Rev. 54, 293 {1938).
R. I. &eecroft and C. A. Swenson, J. Phys. Chem. Solids 18,

329 (1962).
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not materially affect the conclusions reached in this

paper.
Three sets of values for the temperature derivatives

of three independent elastic constants of sodium are

compared in Table IV. Since the experimental methods

used in all of these investigations should yield more

accurate values for the temperature derivatives of the
elastic constants than for their absolute values, the
discrepancies in Table IV may reQect real differences

in the purity and the state of perfection of the ultra-
sonic specimens. It seems worthwhile to point out that
according to the plots in Ref. 20, the temperature vari-
ation of the elastic constants appear to be linear be-

tween 78 and 195'K, whereas in the present work a de-

crease of the erst temperature derivative was already
detected. at about 150'K, where marked nonlinearities
in the temperature variation of the thermal expansion
coefBcient also appear.

B. Pressure Dependence of the
Elastic Constants

A plot typical of the observed variation of transit
time with pressure is shown in Fig. 4. Since it was

intended to study the nonlinearities of the pressure
dependence of the transit times in this investigation,
the pressure was usually increased until the bond be-
tween the specimens and the transducers failed. This
occurred quite suddenly in most of the experiments.
Thus, it was not always possible to check whether per-
manent changes of the elastic constants had been caused

by the application of the hydrostatic pressure. Ac-

cordingly, three experiments were done at 273'K during
which the maximum pressure reached was limited to
about 5 kbar in order to study this question. Figure 4
also shows the results of one such experiment. One
notes that an irreversible change has indeed occurred
during the experiment, but that the amount of irre-
versibility is small compared to the pressure effects.
The sign of the irreversible change is consistent with
the hypothesis that the specimens were oxidized slightly
during the pressure runs by impurities in the helium
gas. The initial transit time was recovered to better
than 0.2% during these experiments, while the magni-
tude of the pressure effect on the transit time was
approximately 10%. The initial slopes of the graphs
of pressure versus transit time may then be in error
systematically by about 2% because of oxidation
problems.

In pressure experiments like the present ones, a con-
siderable amount of data reduction is required to con-
vert the observed null frequencies to theoretically
significant quantities. Since the data reduction problem
is not completely straightforward, it will be described
in some detail here.

From the measured sequence of four null frequencies
at each pressure, mean transit time ratios were hand
computed for each specimen. Two kinds of quadratic

polynomials in p, the pressure, were then fitted to the
raw data by a least-squares multiple-regression algo-
rithm (MUREG, Cornell University Computing
Center). The polynomials were of the following kinds:

r(0) '
PA: = 1+aip+a~P',

The quantity 1—r', where r is the multiple correla-
tion coefficient, was found to be about 50% smaller
for PA than for PB, and the number of subsequences
of equal sign in the ordered sequence of differences
between measured and fitted values was approximately
30% greater for PA-type fits. However, the percentage
standard errors of estimate of the coefficients in PA
tend to be larger than those in PB, negligibly so for
the first-order coefficients, but by factors of up to 6 for
the quadratic coeKcients. Thus, it is not clear which
representation of the raw data is the better. Since the
results of PB-type fits are available in Ref. 12, and
since PA-type fits appear to be more suitable for esti-
mates of the second-order pressure derivatives of the
elastic constants, the results of a polynomial representa-
tion of type PA will be presented here. The small
systematic differences between the first-order pressure
coefficients mentioned above do not materially aff ect the
theoretical implications of this paper.

The results of the multiple-regression analysis are
summarized in Table V. The mean first-order coef5ci-
ents a& vary systematically with temperature as is
shown in Fig. 5. The error bars in Fig. 5 represent
&4%, which seems to be a reasonable uniform bound
on the errors. An examination of Table V shows that
the data are uneven in quality and that substantially
different maximum pressures were attained during the
experiments. As a consequence, the uncertainty of the
second-order pressure coefficients varies between wide
limits. The starred values of a2 are those which have
been used in subsequent calculations.

Here r(p) is the signal transit time at the pressure p.
It is easy to show that the following relations between
the coeKcients should hold if the data are equally well

represented. by either PB or PA:

ai ———2bi,

a2= 3b)' —2b2.

It was found that on the average the first of these
relations was satisfied by the data to about 2% and the
second to about 50%. The differences are systematic in

sign, and are such that
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TAmz V. Results of multiple-regression analysis.

Elastic constant

g{ Cjj+C„+2C44)
Cj1

Cjj

C44

Cl j

C44

C'

Cl1

C44

C'

R011
R111

0111
0112
mean
0442
0443
mean
0001
0002
mean

C112
C441
C442
mean
C001
C002
mean

N111
N112
N113
mean
N441
N443
mean
N001
NO02
N003
mean

12
14

17
18

15
16

15
17

18
8

16

12
17

8
10
13

13
11

13
9

13

Run No. of
number observations

Maximum
pressure

(kbar)

7.0
4.0

8.3
5.3

5.3
5.3

8.3
8.3

9.0
3.3
7.8

6.5
9.0

3.1
43
4.0

6.6
4.0

6.6
3.8
4.0

(10-s kbar-~)

4.85
4.85

4.82
4.78
4.80
3.42
3.24
3.33
3.67
3.61
3.64

4.84
3.08
2.90
2.99
3.42
3.58
3.50

4.31
4.37
4.29
4.33
1.97
2.00
1.99
3.26
3.20
3.20
3.22

S.E.ap S.E.ap

(10 kbar ') (%)
48'
1.9

2.1
2.6

1.6
2 7c
2.7
53c
3 Oe

4.2
4 2c
3.8o
4.0

5.4
9.5
40'
4.0
2.7
3 Oo

2.9

4.3
1.6
3.0o
3.0
2 5c
3 Oc

2.1
3.3o
2 07

2.9c
2.9

j.8
O.g
1.4
3.3
2.5
2.9
1.5
O.g
1.2

O.g

48
1.1
3.5
3.0
1.7
2.4

0.8
2.2
2.2
1.8
1.7
2.5
2.1
0.7
2.0
1.9
1.6

63
28
28
40
30
35
16
9

13

8
450

10
10
38
22
30

460
)34
76
76
14
50
22

7
57
50
44

1.7
0.8

10.7
4.0

1.2
0.8

0.4
5.6
0.7

1.4
1.0

0.2
34
3.5

1.2
2.7

0.4
2.7
2.7

T=273'K

T= 195'K

(%) 104(1—r')&

31 2.5 T=299oK
150 4.3

& S.E. is standard error (deviation). b r is correlation coefficient. & These are the values of as which are used in subsequent calculations.

Quantity

~j01
+joO
+144

This work

0.0485
0.0372
0.0360'

Daniels

0.0432
0.0348
0.0348

& Extrapolated from 273'K.

For comparison, two data points from Ref. 9 have
been included in Fig. 5. A more complete comparison
of the results of the present work with those of Daniels's
is carried out in Table VI.

In view of the fact that difI'erent methods of data
reduction were used in the two investigations, the en-

tries in Table VI must be considered to be in satisfactory
agreement. For the elastic constants listed in Table VI,
a direct comparison of (1/r)(dr/dp)

~ &—p, that is, of the
results of PB-type fits with Daniels's data yields agree-
ment to within 5%. Daniels has stated that the esti-
mates of (1/r)(dr/dp)

~
„=p listed in Ref. 9 are likely

to be systematically low, so that the degree of com-

pa.tibility between the raw data obtained in the two
investigations must be good.

To compute the pressure variation of the elastic con-
stants from the transit time variation, a method ori-

TABLE Vg. Values of d jdp{ w(0) jg(p) j„0' at 299'K. The sub-
scripts refer to the following combinations of elastic constants:
101, ${Cjj+Cjm+2C44j; ~ kl jj»ji

ginally proposed by Cook" was modified slightly. Here,
it is convenient for typographical reasons to denote the
general adiabatic elastic constant measured in these
experiments by C,,(p) where j 0, =1, 4 and to put
Cpp ——C'=-', (Cll Cgp). Letting r,,(p) denote the oneway
ultrasonic signal transit time associated with C, (p), one
has

C,,(p)/C, ,(0) =s(p)t, ,(p),

where sP= p(P)/'p(0) is the ratio of densities, and, by
definition, for PA-type fits

~a =L~ (o)/r (p)j'= 1+~a "'p+~,,"p'.
In terms of quantities measured in the present experi-
ments, s is given by

" Ej+~(p)jdps= 1+
0 3cli~11 4C00~00

where 1+b(p) is the adiabatic-isothermal conversion
factor.

Evidently the variation of the 5(p) with pressure
must be known to first order if C;,(p) is desired to
second order in the pressure.

"R.K. Cook, J. Acoust. Soc. Am. 29, 445 (1957).
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From the definition, " at any pressure and temper-
ature one has

.05-

8 = 9p'TB./pC~, (3)

where P= linear thermal-expansion coefFicient, T= the
absolute temperature, 8,= adiabatic bulk modulus,
p= density, C„=specific heat at constant pressure.

By using standard thermodynamic relations, one can
show that to the first order in p

L
O

O
II

N Q.

pg

h(0)

p 1 dB, 2 dBr)=1+—-1+ +
Br 1+ho dP 3PBz dT l

5o 1 dP)
+ 1+——

I (4)3' dZ)

I I

077
I I

.03—

,02—

C

where all the quantities in parentheses are evaluated
at p=0 and at the temperature under consideration.
Equation (4) is equivalent in this approximation to an
expression derived by Overton. "

For sodium, the first-order pressure correction term in

.Ol
0

I

Ioo 200
Temperature ('K )

I

300

~(P) =~o+ ~ip—
is surprisingly large. For example, the thermal-expan-
sion data of Ref. 24 and the specific-heat data of Ref.
25, combined with the present elastic constant data
yield bi ———5.1 X 10 ' (kbar) ' at 299'K, while ho=7.04
&( 10 ' at this temperature.

The final expressions relating the pressure depen-
dence of the adiabatic elastic constants to the measured
transit times are the following:

C,, (p)/C (o)=1+d "'P+d "'P'
where

S,,&"=S+a, ",
5'. .(o) = a. .i&)y iQ—i[bi—Q

—i(1+go)
X (3Ciiaiii'i —4Cooaoo 'i) j+Sia,, ',

Q =3Cii—4Coo,

5'i= (1+&o)Q '

The coefficients of the polynomial C(p)/C(0) [Eq.
(5)$ and values of (dC/dp)

~
„=o computed from them

are listed in Table VII.
In view of the sensitivity of the coefIicients a,,"' to

the details of data processing procedures, and because
the raw data are not of uniform quality, it is impossible
to assign a definite common bond to the errors of the
absolute values of the coefIicients listed in Table VII.
I believe that most of the mean coefficients li are not
likely to be in error by more than 5%, while the coeffici-
ents d2 should be regarded as preliminary estimates
only. A reasonable bound on all of the d2 appears to be—5 X10"(do(—2 X 10 ' (kbar) '. In view of this

~' W. C. Overton, J. Chem. Phys. 37, 116 (1962).
~4 S. Siegel and S. L. Quimby, Phys. Rev. 54, 76 (1938).
~'T. M. Dauphine, D. K. C. MacDonald, and H. Preston-

Thomas, Proc. Roy. Soc. (London) A221, 267 (1954).

Fro. 5. Temperature variation of the quantity

d r(0)

dp ~(p) p o

The full circle represents data pertaining to C' and C44 obtained
from Ref. 9.

TABLE UII. Results of pressure dependence experiments. The
tabulated coefBcients refer to the polynomial C(p) /C(0) =1+dip
+d2p', where C(p) is the adiabatic elastic constant.

T=299'K
dC

Elastic di —d~
constant (kbar) '(kbar) ' dp

Cii
C44
C'
B.

Cil
C44
C'
B,

0.0537 0.0003 4.12
0.0390'
0.0390' 0.238

3.80
T= 195'K

0.0531 0.0004 4.33
0.0347 0.0004 1.77
0.0398 0.0003 0.266

3.96

T= 273'K
dc

di —d2
(kbar) (kbar) dp

0.0531 0.0002 4.14
0.0384 0.0003 1.74
0.0415 0.0003 0.260

3.79
T= 78'K

0.0477 4.10
0.0243 0.0003 1.17
0.0366 0.0003 0.266

3.74

a Daniels'8 data.

uncertainty in the coefficient of p', Eq. (5) is clearly
not suitable for extrapolation above, say, 20 kbar, with-
out independent confirmation such as may be available
from very high-pressure studies.

The temperature dependence of the pressure deriva-
tive of the effective elastic constants is shown in Fig. 6.
The interpolation line for dC44/dp has been broken at
155'K (the Debye temperature) in an arbitrary way.
It is interesting to note that the pressure derivative of
the bulk modulus appears to be independent of tem-
perature. This observation confirms earlier experimental
work by Swenson et al.""and the numerical agreement
between the two values of dB,/dp is excellent (3.82
versus 3.85). Since the pressure derivative of the bulk
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4.5-

4.0-

5.5—

2.0-

I.S—

dc
&l.lT

l.o-dP

T dCIl
a 4.I 7

dp

dBs—= 3.82
dp

44 =i.74
dp

spect to Lagrangian strain components. "However, the
interpretation of the pressure dependence of the shear
elastic constants of some metals on the microscopic
level is simpler when formulated in terms of certain
other quantities (proportional to d'F/dOdy', where 0
is the cubic dilation and y is a parameter describing
the shear deformation of the unit cell at constant
volume). It seems worthwhile to demonstrate that those
combinations of the third-order elastic constants in
Brugger's definition28 which relate to the present experi-
ments are actually linear combinations of such quan-
tities and ordinary second-order elastic constants.

If a cubic crystal in the standard orientation under-
goes the homogeneous deformation specified by

00
t I

l00 200
Temperoture t K)

=.2584Cl

dp

300

Qy=QSy ~

Ns =axe+ y (1+a)xs,

Q3 =OsÃ3,

(6)

FIG. 6. Variation of the 6rst pressure derivatives of the adiabatic
elastic constants with temperature.

modulus plotted in Fig. 6 is computed from the relation

dB, dcgg 4 dC'

dp dp 3 dp

the remarkably good agreement with the static measure-
ments provides a valuable check on both dCss/dp and
dC'/dp over the whole temperature range 78'K&2'
&299'K.

Recently, Pastine" has stated that some reasons exist
for believing that the effect of temperature on 1/C'
)&(dC'/dp) may be large enough nearly to account for
the discrepancies between Daniels's experimental re-
sults and the Fuchs's theory. However, Fig. 5 shows

that the effect of temperature on the quantity

d -roo(0) '

dp-roo(p)-. -o

which, apart from a small additive constant, is equal to
(1/C')(dC'/dp), is small compared with the effect of
temperature on the quantity

d ree(0) '-

dP -r44(P)- n-o

The reason for this disagreement between quasihar-
monic lattice theory and experiment is not understood
at present.

DISCUSSIOÃ

It is now customary to discuss pressure experiments
like the present ones in terms of "third-order" elastic
constants, which are proportional to third derivatives
of the Helmholtz free-energy per unit mass F with re-

'll' D. J. Pastine, J. Phys. Chem. Solids 28, 522 (2967).

where the I; are components of the displacement vector
at the point (xs,xs,xs), then the associated nonzero
elements of the Lagrangian strain matrix are

srss= ass ——
—s,((1+0)sis—1)

'sss 'ass= orle= s'r(1+0)
sos = ass+ 2nss'(1+ 2gss)

—',
$13 $12=O p

where
0= (1+a)'—1.

For such a deformation, it follows from the strain
energy expansion in Ref. 29 that

O3F

po =Css+2Css+Csee+2Csee.
OgyO$4

Using the two elementary identities

O3F O3F 4 O2F

Og 2OQ Oy2OQ 3 Oy2

which follow from Eq. (7), one obtains

O'F
Csee+ 2Csee = 3pu —4C44 —(C&s+ 2Css) (10)

OQOy2

Here, F is the Helmholtz free-energy per unit mass and
po is the density at p=0.

Two other identities which are relevant to these
experiments may be derived in a similar way:

O3F

s (Cess —Cess) =3po
OQ'O"f p

—2(Css—Css) —(Css+2Css), (11)
~~ R. ¹ Thurston, J. Acoust. Soc. Am. 37, 348 (2965).
8 K. Brugger, Phys. Rev. 133A, 1611 {2964)."P. B. Ghate, Phys. Rev. 139A, 1666 (2965).
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O'F
$ (Cur+ 6Crr2+ 2Cg23) =3po +Cn+ 2Crs. (12)

OQ~

-20

In Eq. (11), yo denotes the magnitude of the volume-

conserving shear strain associated with the shear elastic
constant C'=-', (C~~—C~2).

For purposes of discussion, it is convenient to intro-
duce the notation

po D44 y

Oaa~~

O'F
po =D

OaO~, 2

O'F
po =D

On
at this point. "

Substituting Eqs. (10)—(12) in the relations between
the isothermal derivatives of the effective elastic con-
stants and the third-order constants which are listed in
Ref. 29 LGhate's Eqs. (76)—(78)], one obtains

dC44 =BF '/&44 D44], —

4 -eo-
D

-80-

-IO-O

Cl

-l5—

-300—

0
Cl

o -35O

-4000 I I

IOO 200
Temperature ('K )

dC'
=Br '[C' D'], — (14)

FzG. 7. Variation of third-order elastic constants with tempera-
ture. The full circles are data points computed from Daniels's
measurements.

dBg = —1—Bg 'D

Here, Br= ~3(Cqr+2C&2) r denotes the isothermal bulk
modulus.

Fuchs's theory of the shear elastic constants at zero
pressure may now be applied to a discussion of their
pressure dependence essentially in the same way as
was done by Daniels. However, it is first desirable to
attempt to correct for lattice-vibration eGects, at least
in an approximate way.

Recently, Ghate" has shown that the third-order
elastic constants of the alkali halides should be linear
functions of temperature it the lattice-vibration spec-
trum is a 8 function. This should be a good approxima-
tion at a sufBciently high temperature. That the second-
order elastic constants of sodium are linear functions of
temperature above 150'K has been shown already, so
that the predictions of quasiharmonic lattice theory
seems to be qualitatively well substantiated by experi-
ment in this case. Since the D's defined in Eq. (13) have
been shown to be linear combinations of second- and
third-order elastic constants, it seems reasonable to
expect that the D's should also exhibit a linear temper-
ature dependence above about 150'K.

o This somewhat asymmetrical notation is analogous to that
now in common use for combinations of the second-order elastic
constants of cubic materials.

The extent to which this prediction is experimentally
verified for sodium is shown in Fig. 7. It appears that
these data are in qualitative agreement with the pre-
dictions of the quasiharmonic approximation. The ap-
parently nonlinear variation of D44 with temperature
need not, by itself, mean that the quasiharmonic ap-
proximation is inapplicable here since 78'K is sub-
stantially lower than the Debye temperature of sodium
(155'K) and thus qualifies as a "low temperature"
from a lattice-dynamics viewpoint. In any case, it is
interesting to compare the "athermal" ' values of the
C's and D's, obtained by linearly extrapolating these
quantities LFigs. 3(a)—3(c) and 7] to O'K, the classical
theory.

Fuchs showed that a major contribution to the shear
constants C' and C44 of the static sodium lattice arises
from the change with shear strain of the potential
energies of valence electron states with ~k~ )0. The
SR interactions of the closed shells of core electrons
were included in a semiempirical way, using parameters
suggested by the work of Born and Mayer. Blume" has
reexamined the alkali-metal shear-constant problem re-
cently, concluding that the contribution from the
kinetic (Fermi) energy of electron states with

~
k~ )0 is

negligible for sodium at an atomic volume r,=4 Bohr
~' G. Leibfried and W'. Ludwig, in SoNd State Physics, edited

by F. Seitz and D. Turnbull (Academic Press Inc., New York,
1961), Vol. 12.

»M. Slume, Ph.D. thesis, Harvard University, j,959 (un-
published).
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Quadratic interpolation
dr d~r

(&a dr/

Linear interpolation
dF

O'E d'E(r, )B=2 a' =2a—'(r, /3)'
d02 dr, ~—0.183 0.13—0155 0

—0.155—0.155
Reference 32
Reference 6 (18)

d'E d
D=2a ' =2a '(r,/3)' —6r, ' + E(r,).

dP dr, 2
units (B.u.), which he takes to be the equilibrium radius

of the s sphere.
Fuchs's results may be expressed in the following way:

Equation (18) applies to a bcc solid at its equilibrium
lattice parameter only since the condition

&AalE V&II. Values of the derivatives of I'(~s) in atomic units. in the literature. ~ The athermal values of B and D
may be obtained from Eq. (17) by evaluating the
following derivatives:

C'=2a 'L0.04985f(0)e'a '—1.333x~W(x~)
+-', W(x,) (x,—1)],

C44 ——2a—"'L0.3712 f(0)e'a '+ 0.444x&W (x&) (xg —2)
~is~

—x2W(x2)],
where

W(x)=de *

xg ——0.866a/b,

x2 a/b, ——

@=lattice parameter of the bcc unit cell, e=charge of
the electron.

The parameters f(0), A, and b are, respectively, the
square of the electron-number density at the boundary
of the s sphere, and the Born-Mayer parameters for
the sodium ion. The values 2=2)& 10 ' erg and b

=0.345 X 10 ' cm are commonly used for the latter
quantities. It is part of the purpose of this work to check
whether these values are compatible with experiment.

By differentiating the part of Eq. (15) enclosed in

parentheses with respect to 0, the cubic dilation, one
obtains the following estimates of D' and D44.'

D'= —-', a '[0.0485e'a 'g(0) —1.333x&W(x&) (x&—1)
+-', x2W(x2) (x22 —3xm+ 1)],

D44 —$a '[0.3712e'a '—
g—(0)+0.0"".'.xgW(xg)

(16)

)& (xP—4xg+2) —xmW(xg)(xg —1)],
where

g(o) =f(o)—3f'(0)

f'(0) = Ldf(fl)/did]a-0

The athermal quantities B (the bulk modulus) and
D are calculated here with the aid of a simpli6ed theory
of the cohesive energy of sodium suggested by the work
of Brooks. ' The SR interaction is included everywhere
for consistency.

I.et the cohesive energy per valence electron be given

by

E(r,)=Eo(r,)+2.2 1r, '+0.284r,—'+ C(r,)+W(r, ), (17)

where Eo(r,) = the ground-state energy, C(r,)=0.144
+p.p31 lnr, +5 X 10—', W(r, )= the SR interaction en-

ergy, r, =the correlation energy. Here, r, and E are
measured in Bohr units. The physical significance of the
various terms in Eq. (17) has been discussed at length

dr@ ra=(3/8~) / a

=0

has been used in deriving these equations. The condi-
tion dE/dr, =p at r,=3.92 B.u. , which is the athermal
equilibrium atomic volume, will be imposed a priori
even though this does not follow from Kq. (17). This
procedure allows an experimental check to be made of
the second- and third-order derivatives of E(r,) at
r, = 3.92 without introducing coniplications caused by a
nonvanishing first derivative. Calculations of the equili-
brium atomic volume and the cohesive energy are not,
in any case, immediately relevant to the present
experiments.

The variation of the ground-state energy Ep with
r, contribution a major term to both 8 and D. De-
rivatives of Ep may be obtained by the following pro-
cedure, which is suggested by Eq. (7.4) of Ref. 7.

It has been shown that

f'(0) = 21'I". (20)

The values of I'= 1 and I"=0.155 derived from Ref. 33
by linear interpolation are used here, since the results
of the quantum-defect-method investigations of the co-
hesive energy agree very well with experiment, and

"H. Brooks, Phys. Rev. 91, 1027 (1953).

dEp
=3K(r,)fV(r,)—Eo]r, '.

dr,

Setting V (r,)= —2/r, differentiating, and successively
eliminating dED/dr, by means of Kq. (19), one can
obtain relations between the second and third deriva-
tives of Eo, Eo, and derivatives of F(r,). In this way
existing calculations of Eo(r,) and I'(r, ) can be used
to estima, te relatively high derivatives of E0(r,) without
extensive numerical work. The following values of the
6rst derivative of I'(r, ) at r, =3.92 which have been
obtained from Ref. 6 and 33 by interpolation are listed
in Table VIII.

The magnitude of I"(r,) is important in the inter-
pretation of all of the present experiments since a good
estimate of the parameter f'(0) in Eq. (15) is given by
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d'Ep
6FF'r, +F(3I'+8)U+ (G—8F)V'r,

dQ' 9
d

+r,—(Fr,V')
dr,

where
G= I"r,—F(3F+1),
U= V(r,)—Ep.

(21)

Here, primes denote derivatives with respect to r,. In
this way one finds that

d'Eo
=0.130 Ry,

dQ

dEo
= 0.663 Ry.

dQ'

(22)

For reference, the SR contributions to 8 and D are
listed below:

Bsa=2a '$0 444xPW. (xg)+0 333xp'W. (x )]
Dsa= —pa '$0.444xPW(xg)(x)+6)

+0.333xpPW(x, ) (xp+6)].

The condition dE//dr, ~,,=p, pp
——0 has again been used

to derive these results. It should be noted that the SR
contributions in Eqs. (16) and (23) do not satisfy a
Cauchy relation of the type C» =C448, The reason
for this is, of course, that the lattice is not in equilibrium
under the action of the short-range forces alone.

The numerical results of the calculations outlined
above are summarized in Table IX and compared with
both athermal experimental values and those actually
measured at 78'K. The following parameters have been
used to generate the theoretical quantities: a=4.206
X 10 'cm(r, =3.92B.u.), b=0.345 && 10 'cm, 2=2.00
)&10 " erg, F(3.92)=1, F'(3.92)= —0.155 (B.u.)—',
Ep(3.92) = —0.607 Ry.

An examination of Table IX shows that the linearly
extrapolated athermal experimental values of the elastic
constants do not always agree very well with the theo-
retical values pertaining to a static lattice. The at-
tempt to include the SR forces everywhere consistently
is not a success in that agreement with experiment is not
always improved by doing so. It has been found that
no reasonable values of the SR interaction parameters
A and b yield significantly better over-all agreement
with experiment than the traditional Born-Mayer

since the variation of I' with r, may be other than
quadratic. Assuming that F(r,) is linear in r, near
r, =3.92, one obtains the following relations from Eq.
(19):

d'Ep
', (G-@+Fr,V ),

dQ2

TABLE IX. Comparison of theoretical and experimental values of
some of the elastic constants of sodium, in kbar.

Quantity

Long-
range
forces

SR
forces

Total Experimental Experimental
(theory) (athermal) (78oK)

C'
C«
Bz
D'
D44

Dr

7.49
54.7
75.9
—3.20

-23.9
—386

—0.105
5.28
8.27

-0.003
—14.3
—46.4

7.39
60.0
84.2
—3.20

—38.2
—432

7.74 &0.30
66a3
79&4

-13&2
—90&20

-370&20

7.32 %0.22
59.2 &1.8
73.8 %2.2
—13&1
-30&2

-360&10

values. The SR contributions to C' and D' are small
because of cancellation effects between first- and second-
nearest-neighbor interactions. They are not very sen-
sitive to changes of b while the SR contributions to the
other elastic constants vary rapidly with b. Hence, the
300'Pc discrepancy between the observed and calculated
value of D' cannot be reduced substantially by adjusting
b without spoiling the reasonably good agreement ob-
tained for the other elastic constants.

The work of Blume appears to rule out the possibility
that contributions to D44 and D' which arise from the
nonsphericity of the Fermi-surface sodium are large
enough to account for the unexpectedly large value of
D'. This is so because from Eq. (24), p. 72 in Ref. 32
one can show that such effects should result in a con-
tribution to D44 which is roughly four times as large
as that to D'. Since the value of D44 observed at 78'K
is in good agreement with Fuchs's theory, the "Fermi
energy" contribution to D' cannot be large enough to
account for a substantial fraction of the 10-kbar dis-
crepancy between the observed and the theoretical value
of D'.

I conclude that it does not appear to be possible
quantitatively to account for the observed magnitude
of dc'/dp

~
p=p for T& 78'K in the framework of Fuchs's

theory, even though dc44/dp~ „=p and dBr/dp
~ „p as

well as the zero-pressure values of all the elastic con-
stands of bcc sodium are in good agreement with that
theory at 78'K. It is possible that in future experiments
dc'/dp~ & p will be found to decrease rapidly with tem-
perature below 78'K in a manner simular to the ob-
served behavior of dc44/dp

~ „p below 195'K. The onset
of the rnartensitic phase transformation at about 40'K
limits the temperature interval available for the ob-
servation of such a decrease to only 40'K, but an
exploration of the temperature range 40 K& T& 78'K
should produce important information about the bcc
sodium lattice.
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