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A variational method which provides upper bounds to energies of atomic autoionization states
(Q&Q eigenvalues) without requiring knowledge of target eigenstates is sought. For two-
electron atoms, it is found that such a method is provided by a superposition of configurations
of a single set of arbitrarily chosen orbitals, with a (physically plausible) prescribed choice
of secular-equation roots. This conclusion is applicable to calculations of HoQien, and ex-
plains the observed "stabilization of roots. "

The states of interest herein are subject to auto-
ionization within the nonrelativistic approximation,
being associated with resonances in electron-atom
scattering. ' Many of the resonances are quite
narrow and it is natural to attempt to calculate
these quasidiscrete compound-atom' states by
methods similar to those which are commonly
used to calculate true discrete states. The
Rayleigh-Ritz method when applied to discrete
states has the desirable properties of providing
energy bounds and being subject to indefinite ex-
tension so as to provide as good an approximation
as desired. The variational theorem'~4 guaran-
tees that the Ith lowest root of the secular equa-
tion is an upper bound to the energy of the Ith low-
est state which is not orthogonal to the trial func-
tion by symmetry. This theorem does not apply
in a straightfor'ward way to compound-atom auto-
ionization states, which B.e above an infinite num-
ber of states of the same symmetry; this limita-
tion was formally overcome by O' Malley and
Geltman, ' as noted below. The variational theo-
rem does apply to states such as the 4Ss and 4Po
states of I i below the lowest 38 state of Li+; these
are true discrete states within the nonrelativistic
approximation, even though they lie above the Li
ionization threshold. '

Following O' Malley and Geltman, ' we define
autoionization states as eigenfunctions of QHQ,
where P = 1- Q is the Feshbach projection opera-

tor which projects onto the energetically accessi-
ble target eigenstates. For two-electron atoms,
and energies below the lowest inelastic threshold,
we have

Q. = l —P. ,
2

P.= ) uO(r. )&(uo(r.) I .
0 2 0 2

(I)

(2)

For two-electron atoms an alternative, but equiv-
alent, definition is that autoionization states are
those states corresponding to stationary-energy
functions in Q space, the space of quadratically
integrable functions which have identically vanish-
ing overlap with the wave function(s) of the lower-
lying state(s) of the target. It seems plausible to
assume that this alternative definition is also
meaningfuland appropriate for systems with more
than two electrons. It is interesting to note that
this definition also encompasses such states as
the quartet states of Li referred to above, since
the vanishing overlap is immediately assured by
symmetry properties.

The eigenvalues of QHQ, as distinguished from
those of H itself, are discrete in the energy range
of interest; hence the Rayleigh-Ritz method is at
least formally applicable and the variational theo-
rem guarantees energy bounds. O' Malley and
Geltman showed that one can deal variationally
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with II rather than qHq provided the trial function
is first operated on by q. Thus we have that

&qe lalqe &=e &qC i qC ) .

These authors' calculated a number of autoioniza-
tion states of He and H by Rayleigh-Ritz expan-
sions, each term of which was obtained by operat-
ing with the explicitly-constructed q operator on
an initially arbitrary expansion term. An ap-
proach which avoids construction of the q opera-
tor is to initially construct the trial function so
that it lies in q space. Each of these approaches
requires use of knowledge of the target wave func-
tion(s); we seek a method which provides energy
bounds while avoiding this requirement altogether.
Such a method would seem desirable for two-elec-
tron autoionization states, and would be even more
useful if it can be extended to more complicated
cases. For targets containing more than one elec-
tron, it is not a trivial matter to construct func-
tions lying in q space even if the target functions
are assumed known, and there is the further com-
plication that the exact target wave functions are
not known.

We consider the calculation of autoionization
states in two-electron atoms by use of a spatial
trial function ptr(rl, r2). In order that this func-
tion lie in Q space, it must satisfy the Q con-
straints

A particularly simple choice for the v (r) is just
the target eigenfunctions; this choice was success-
fully employed by Altick and Moore. ' Restriction
to this special form for the vi(r) might, however,
produce some limitations on over-all convergence,
as it is known. to do when dealing with discrete
states. Without making this special choice, it
should be feasible to perform calculations with
the vi(r) chosen for best convergence, subject on-
ly to the constraints (7). Note that the v.(r) are
allowed to overlap continuum target eigenstates.
We have performed in this way trivial calcula-
tions based on a single-term trial function. It is
interesting to note that the calculations of O' Malley
and Geltman' can be viewed as an example of this
method, with each of the initially arbitrary orbit-
als made orthogonal to the target ground state by
admixture of appropriate multiples of the target
ground-state function itself. Of course their cal-
culations can also be viewed as involving explicit
introduction of the q operator. Bhatia et al. '
used the q operator and nonseparable trial-func-
tion terms, which cannot be viewed as an example
of (7) a,nd (8).

As an alternative to (8), one might employ an
expansion containing some orbitals vi(r) which
are not orthogonal to lower-lying target states,
e. g. ,

M M

Pt '(rl, r2) = Z Z C..'v. (r )v.(r ) .tr 1' 2 .
1

. . zg z 1 g 2

(8)

fu *(r)v.(r)dr =0, for n&i,
n z

n = 1 through n
max ' (7)

but are otherwise arbitrary. We can form an
orbital-product expansion (OPE) trial function
which lies in q space by taking products of such
of the vi(r) as are orthogonal to target eigenstates
below the threshold of interest, i.e. , by putting

M M
C ..v.(rl)v. (r2) .

z=n +1 g=n +1 zgz 1 j 2
max max

(8)

where n ranges from 1 through nmax, correspond-
ing to all energetically accessible target states.
For autoionization states below the 2s threshold,
nmax=1. For states between the 2s and 3s
thresholds, nmax =5, corresponding to 1s, 2s,
and triply-degenerate 2p target eigenstates. We
introduce a set of M linearly independent sym-
metry orbita, ls v (r) which are orthogonal to cer-
tain of the target eigenfunctions u„(r),

The variational theorem guarantees that the I:+Ith
lowest root of the secular equation of (9) lies
above the Ith lowest root of the secular equation
of (8), and hence above the energy of the Ith low-
est autoionization state. Here K is just the num-
ber of additional terms in (9) as compared with
(8) which are introduced as a result of modifying
the lower summation limits. For the OPE itself,
the value of E is obvious. In practice it is con-
venient to use, instead of the OPE itself, a super-
position of configurations (SC) consisting of com-
binations of expansion terms which couple to the
desired over-all symmetry. When working with
a SC it is necessary to take into account, in eval-
uating K, the fact that certain orbital products
may not enter at all for certain symmetries; e. g. ,
v, (r,)v, (r, ) does not enter when calculating 'S
states. From the present point of view, there is
no advantage in actually using (9) rather than (8).
I ipsky and Russek' have, however, quite success-
fully calculated autoionization states of He with

SC equivalent to (9), the vi(r) being chosen as
target eigenstates. They justify the elimination
of low-lying secular-equation roots on the grounds
that these are approximating to physical bound
states. Temkin' has pointed out that such a justi-
fication could not be applied to similar calcula-
tions of autoionization states in H . We have just



seen that the elimination of these low-lying roots
is justified by the variational theorem, and hence
upper bounds to QHQ eigenvalues will result.
When the vf(r) are chosen as target eigenstates,
it appears that the use of (9), as compared with
(9), leads to only slightly higher (poorer from
present point of view) values in the case of He, '
but considerably higher values for H .'

All the methods described above require use of
knowledge of target eigenstate(s). We next derive
a method which avoids this requirement. %6 con-
sider an OPE, or equivalent SC, of the same gen-
eral form as (9}but with the linearly-independent
symmetry orbitals pf(r) not required to satisfy
orthogonality constraints such as (7), and put

Now we may form linear combinations of the q (r)
in such a way as to obtain a set of v.(r) which
satisfy (7). Thus we put

It is possible to find this transformation, since
the number of transformation parameters, &y&,
exceeds the number of constraints (7). It follows
that (10) is equivalent to (9), with

M M

j
Q g l j

Thus we may apply to the OPE (10), or an equiva-
lent SC, the conclusion arrived at with respect to
(9), namely that the K+ Ith lowest secular-equation
root is an upper bound to energy of the Ith lowest
autoionization state of the chosen symmetry. For
convenience of discussion we may apply the quali-
tative designations 1s, 2s, 2p, etc. , to either the
orbitals v.(r) or qf(r), but it must be borne in
mind that the yf(r) which is designated by 2s is
not necessarily orthogonal to the target ground
state. Por this reason, the value of X for a SC
equivalent to (10) must be essentially determined
from the full expansion (10); e.g. , in calculating
a 'S autoionization state, one cannot justifiably
reduce the value of K by unity by merely omitting
from the expansion (10) a term qualitatively des-
ignated by 1s2s.

In summary, upper-bound estimates of enex-
gies of two-electron autoionization states (QHQ
eigenvalues) of a preselected symmetry may be
obtained by taking the (physically plausible) pre-
scribed root of the secular equation of a SC based
on a single, arbitrarily chosen, set of orbitals.
It is not necessary to make use of knowledge of
lower-lying target state(s) in this procedure,
notwithstanding the fact that the very definition
of these states is based on the target state(s).

This is analogous to the fact that ordinary excited
states may be defined as cox'responding to station-
Rx'y-6Dergy fuDctlons ln the 8pRce of fuDctlons
which are orthogonal to the lower-lying states of
the desired symmetry, and yet upper-bound en-
ergy estimates can be obtained by the Rayleigh-
Ritz procedure without introducing wave functions
of lower states. In each case, the avoidance of
introduction of other wave functions in the compu-
tational procedure can be understood in terms of
the maximum- minimum property of eigenval-
ues. This px'opex'ty %'R8 expllcltly used ln R

previous derivation of the autoionization- state
method desex ibed above. "

The property of providing autoionization- state
energy bounds does not apply to a completely
genex'al SC calculation, but applies to the present
method as a result of the two requirements that
(1) all configurations in a particular calculation
must be formed from a single (though arbitrary)
set of orbitals, and (2) the secular-equation root
corresponding to particular state must be chosen
in a pxescribed manner. Although the require-
ment (1) is not always satisfied in SC calculations
of ordinary discrete states, it does not seem to be
a very severe or unxeasonable limitation. Such a
requirement has considerable heuristic appeal,
being consistent with the notion of forming the
configurations from the eigenfunctions of a one-
electron operator. At the same time, it is not
required that the orbitals be eigenfunctions of a
special one-electron operator, such as the Har-
tree-Pock operator, which might result in poor
convergence.

The prescxibed choice of K which enters into
requirement (2} is mathematically founded and
does not depend on qualitative arguments regard-
ing large and small components, ' insensitivity
to variation of a scale factor, "or insensitivity
to extension of the basis. ' The value of E can be
detexmined by the physically plausible process
of listing all configurations which can be formed
from the given set of orbitals (labeled in the usual
order) and counting those in which one or both
electrons are insufficiently excited. For definite-
ness we list some values of K for calculations of
'S autoionization states below the 2s threshold.
Using orbitals (ls, 2s, 2p), one can form four
S conf lgurationsy 18

~ Is28~ 28
~

RDd 2p, Por
this four-term expansion E =2, corresponding
to elimination of secular-equation roots associat-
ed with the first two of these configurations.
With orbitals (Is, 2s, 2p, Ss, Sp, M) or (ls, 2s,
2p, 38, Sp, Sd, 4s, 4p, 4d, 4f} we may form 10-
or 20-term expansions, for which the correspond-
ing values of E are 3 and 4. The 10- and 20-term
expansions also provide bounds to energies of 'S
autoionization states between the 2s and 3s thresh-
olds, the cox responding values of K being 7 and
10, respectively. The inclusion of all orbitals
consistent with a given maximum value of the
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principal quantum number in the qualitative orbit-
al designation is a rather natural choice, but is
not essential. One is, for example, free to delete
or add orbitals with /40 when treating 8 states
below the 2s threshold, without the value of K
being affected, since such orbitals satisfy the con-
straint {7)by angular properties.

Some existing calculations can be interpreted
as examples of the proposed method for two-
electron atoms. The calculations of Lipsky and
Russek' are one example, but not a very inter-
esting one for the present purposes in view of the
special choice of orbitals. More interesting ex-
amples are given by the rather extensive calcula-
tions of Holghen, "who used Laguerre functions
as orbitals, with a common exponential param-
eter for all orbitals. Although his choice of secu-
lar-equation roots mas based on different con-
sideration, it was, for a number of calculations
{e.g. , 4-, 10-, and 20-term expansions noted
above) the same as prescribed herein; the cor-

responding results lie slightly above the best
available estimates of QHQ eigenvalues, as we
mould expect. To test the plausible assumption
that such expansions in the limit mill converge
to the exact QHQ eigenvalues for two-electron
systems, further extensive calculations are in
progress by Holgfien. " The expansions will be
made more flexible by introducing more than one

exponential parameter in some of the basis func-
tions. It should be noted that the very success-
ful earlier calculations of Holgien were carried
out long before development of the Q-operator
formalism, and mere pioneering efforts based
on physical insight. The stabilization of roots
which he noted in those calculations seems to be
understandable through the present derivation
which arises from the Q-operator formalism.

It is a pleasure to thank Dr. U. Pano, Dr. E.
Holghen, and Dr. A. Temkin for very helpful
discussions and correspondence.

Work supported in part by the U. S. Army Research
Office, Durham.

A. Temkin, in Autoionization, edited by A. Temkin

(Mono Book Corp. , Baltimore, Md, , 1966).
T. F. O'MaDey and S. Geltman, Phys. Rev. 137,

A1344 (1965).
E. A. HyDeraas and B. Undheim, Z. Physik 65, 759

(1930).
J. K. L. MacDonald, Phys, Rev. 43, 830 (1933).
E. Holgien and S. Geltman, Phys. Rev, 153, 81 (1967);

P. FeMman and R. Novick, Phys. Rev. 160, 143 (1967).
P. L, Altick and E. N, Moore, Phys. Rev. Letters

15, 100 (1965).
H. Shull and P. O. Lovrdin, J. Chem. Phys. 23, 1362

(1955),
A. K. Bhatia, A. Temkin, and J, F. Perkins, Phys.

Rev, 153, 177 (1967).

L, Lipsky and A. Russek, Phys. Rev. 142, 59 (1966).
R. Courant and D. Hilbert, Methods of Mathematical

Physics (Interscience Publishers, Inc, , Neer York,

1953), Vol. 1, pp, 31 and 405.

J. F. Perkins, J. Chem. Phys. ~45 2156 (1966).
J. F. Perkins, Bull. Am. Phys. Soc. 13, 80 (1968).

E. Holgiea and J. Midtdal, J. Chem. Phys. 45, 2209

(1966), and earlier work referenced therein.

E. Holgien, Proc. Phys. Soc. (London) (to be
published) .


