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Phase Transition in the Two-Dimensional Heisenberg Ferromagnet
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We develop a Green-function theory to describe the thermodynamic behavior of a plane square lattice
with spins of magnitude one-half located at the lattice sites interacting via a nearest-neighbor Heisenberg
ferromagnetic coupling. Our approximation technique involves a decoupling of the hierarchy of Green-
function equations similar in some respects to that found in the random-phase approximation (RPA) but
improved to include spin correlations neglected in the RPA. Such an improvement is essential for the two-
dimensional problem. Our theory predicts a phase transition at the temperature given by kT, =2J, where
J js the exchange parameter. As T approaches T, from above, the static susceptibility diverges as 1/(T —T,).
The spontaneous magnetization is zero at all nonzero temperatures, both above and below the critical
point. Therefore, our theory is consistent with the existing rigorous proof of Mermin and Wagner that the
spontaneous magnetization must be zero for T WO, and displays the divergent susceptibility predicted by
Stanley and Kaplan from an analysis of high-temperature expansions for related two-dimensional spin
systems.

1. INTRODUCTlON

ECENTI, V, the two-dimensional lattice with
Heisenberg ferromagnetic exchange coupling be-

tmeen the lattice spins has been the object of two
stimulating theoretical observations. Stanley and
Kaplan' searched for a phase transition in such a system

by studying the high-temperature series expansions for
the zero-Geld, static magnetic susceptibility. They hand

that the susceptibility diverges at a 6nite temperature
as had been found previously with similar techniques
for the three-dimensional lattice. ' Within the context of
their approach they predict a phase transition, though,
as they suggest, not necessarily to a state with spon-
taneous magnetization, at some 6nitc temperature. On
the other hand, Mermin and Wagner, ' adapting a
technique of Hohenberg' which utilizes the Bogoliubov

inequality, ' have rigorously shown that there can be no

spontaneous magnetization at any 6nite temperature in

the two-dimensional lattice mith Heisenberg exchange

iriteractions between the spins. The reason is related to
the fact that if there is magnetization, there will be
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modes, as predicted by the Goldstone theorem6 which
will have suQicient meight at long wavelengths to cause
severe fluctuations at any finite temperature. The proof
consists of showing that, in fact, the fluctuations would
be so large that inconsistencies arise which can only be
removed by requiring that there be no spontaneous
magnetization in the first place. So, if there does exist a
phase transition, ferromagnetic in some sense, it will not
involve the onset of spontaneous magnetization of the
usual sort. The problem of building a theory for this
model becomes of interest, since it promises to increase
our understanding of phase transitions and the types of
order mhich are possible at lom temperatures.

The RPA~ predicts no critical temperature of any
sort for the two-dimensional lattice. Since this approxi-
mation really involves only a single parameter, the
spontaneous magnetization, anything interesting in the
way of temperature dependence of the susceptibility
mould have to involve a nonzero temperature-dependent
spontaneous magnetization. Rather than violate the
rigorous results of Ref. 3, the RPA predicts nothing
interesting at any temperature.

%hat we succeed in doing in this paper is constructing
a thcoly which ln splrlt arid technique ls sllIlllal to thc
RPA. However, the effective 6eld parameter in our
theory, is more complicated than the magnetizati. on, so
that this magnetization can be zero at finite temperature
without washing out all other possible predictions. In
fact, we do 6nd that for the case of spins of magnitude
one-half situated on a plane square lattice, and inter-
acting via nearest-neighbor isotropic exchange forces,
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our theory is consistent with the results of Stanley and
Kaplan Rs well as those of Mermin and Wagner. We
6Qd that thc spontaneous magnetizRtion, dc6ncd ln thc
usual vray, s is zero at all nonzero temperatures, while
the static zero-6eM. Susceptibility diverges a,t a 6nite
temperature. At very low temperatures, our calculations
predict that the speci6c heat varies linearly with tem-
perature. This is in agreement with recent. experiments
of Miedema et at'. ' on the heat capacity of compounds
which, from a xnagnetic point of view, have two-
dimensional crystal structuxes.

The application of double-time temperature-
dependent Green functions to the theoxy of the
Heisenberg ferromagnet has been discussed many
tlIQcs bcforcq Rnd wc x'cfcl thc x'cRdcl to thc cxtcnslvc
literature on the subject. '0 For our purposes the follow-

ing well-known results will be su6icient.
The retarded Green function of operators A(t) and

B(f) (which are in the Heisenberg representation) is
de6ned as

where «A; B))g is the Fourier transform of
«A(f); B(f)&) with respect to the variable (1 1—')

The Heisenberg Hamiltonian for a system of X spins
S; locaHzed at each lattice site i, interacting through an
isotropic, ferromagnetic cxchangc coupling J, ln thc
presence of a uniform time-independent magnetic 6eld
H dix'ected along the 2'-axis is of the form

R= —g8 g S'—P P J"S"8

J;.;=J;;,J;;=0, J;;&0.gS is the magnetic moment pcr
ion Rt each lat tlcc site of spin S.Thc splQ opcx'Rtors obey
the usual commutation rules:

LSr* S "3 =i''~r
LSr' S +j=&Sr+5r
LSr+ Ss j=2Sr*@s

where

S&+=5& aiSp.
For spin one-half, we have the additional relations

Here 8(1) is the step function, square brackets denote a
commutator, and the angular brackets denote an
average over the canonical ensemble,

(X)=Tr exp( —PR)X/Tr exp( —PR),

where P= f/k~T, kn being the Boltzmann constant, T
the absolute temperature„and K the Hamiltonian of
thc systcxn.

Thc equation of motion of thc GI'ccn function so
de6ncd ls

'(~/~1)((~(1) ' B(1'))&=&I:~(1);B(1')X&(1—1')

+«L~(1),R3; B(f'))& (2)

The second term on the right-hand side ls, m general,
a Green function of higher order and so an approxima-
tion or "decoupling" can be used to solve the equation
of motion for «A(1); B(t'))&. Once this decoupling has
been done and «A(1);B(t'))& has been evaluated, the
correlation function &B(1')A(1)& can be obtained from
the formula,

&B(1 )~(1)&

. . «~;B)&"'.-(&~;B)).-'. ,= limi e '~i~"id', (3)
e~O+ e&~—1

This is the de6nition used, for example, by Mermin and
Wagner, Ref. 3. See also, Sec. II A of R. B. Gri6iths, Phys. Rev.
152, 240 (1966).

9 J.Koppen, R.Hamersma, J.V. Lebesque, and A. R. Miedema,
Phys. Letters 254, 37'6 (I967).

~OSee for example, D.. N. Zubarev, Usp. Fiz. Nauk 7I, 71
(1960) )English transl. : Soviet Phys. —Usp, 3, 820 (1960)g; also,
V. L. Bonch;Bruevich an.d 8, V. Tyablikov, in The Green PNNctioe
Method in Statistics 3fechunks, edited by D. ter. Haar (North-
Holland Publishing Company, Amsterdam, 1962).

(Sr+)'= (Sr)'= o

(5)

(6)

—«S'*(1)S'(1) S (1')&)&. (7)

So the higher-order Green function to be decoupled is
of the form

«Si*(1)S"(1);S (1')»
Thc RPA decoupling, ~

«S"(1)S"(l)'S' (1'))&„„-&S"&«S'+(1)'S(i')» (9)

neglects the correlations between the 2' component of
the spin at the site l and the transverse components at
the other sites i and j and replaces S~*(i) by its average
value (S').

To gain some insight into thc eGect of these correla-
tions, we use Eq. (5), valid for spin one-half, to rewrite
expression (8) as

l(&S"(1)'S (1')&)—«S (1)S'(l)S"(1);S (1')» (to)

In what follows, we shaB restrict our analysis to spin
one-half.

We consider the Green function as deftned in Eq. (1)
with A(1)=S,+(t) and B(t') =S,—(1'):

G';(1—1') =(&S'+(1);S;-(1')&)
ie(t t')—&LS;+—(1),S,—(1')j).

Its equation of motion is

i(8/al)G;, (1—1')= 2&S*&B;;b(t—1')+gHG;;(1—1')
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We see that the second term in expression (10) has a
strong dependence on the indicesi and l since this term
vanishes identically when i=3 as a consequence of
Eq. (6). Similarly, at equal time, t=t', there is a strong
dependence on the sites l and j.However, this spatial
dependence which leads to correlations between the
spin operators at the respective sites, i, l, and j is lost
completely as soon as a decoupling of the form given
by (9) is introduced. To look for an improvement over
the RPA, we must somehow take into account the
correlations neglected by the RPA.

The decoupling approximation we propose (for the
5=-,' case) is

&(5 (~)5+(~) 5 (~')))=l(&5"(~) 5 (~')))
+ „(5,-5,+)((5+(~);5-(e)))

+"&5-5')(&5'(~);5,-(~'))), (»)
where ~;E and q;& are parameters which are determined
by two conditions described below. This decoupling
reduces to the RPA for the following particular values:

n;E ———1, (5~5;+)=0, i"l
The idea of decoupling the higher-order Green func-

tion with a parameter was first introduced by GaHen "
who determined the parameter, using a plausible
physical argument. In our case, the first condition we
use is essentially one of self-consistency, while the

second condition incorporates the stringent require-
ments of spin kinematics.

The first condition uses the fact that the difference
of the higher-order Green functions

«5,*(~)5, (~);5,-(~')&)—&&5,'(~)5,+(~);S,-y)))
occurring on the right-hand side of {7)can be evaluated
exactly in the equal time t=t' limit. We can also
evaluate it, in the same limit, after introducing the
decoupling. If we require, as a consistency condition on
our parameters, that these two evaluations be equal, '2

we obtain the relation

(25pS,'+5; S~+)=(S*)+2n;'(5 S+)(5')
—2y, ~(5; 5'+)(5*). (12)

(We have made use of the fact that (5,') and {S,S,+)
are independent of the lattice index i on account of
translational invariance of the lattice. ) This provides
one equation connecting the parameters.

The second condition makes use of what has come to
be known in the literature as "Dyson's kinematical
interaction. "This is the fact that reversing a spin more
than 25 times at any one lattice site gives zero, and it is
embodied in Eq. (6). From Eq. (3) we note that the
correlation function (S,-(f)5;—(t)5,+(t)5~+(~)), whic»s
identically zero for I,=f, can be written as an integral
over the discontinuity of the corresponding Green
function:

0=lim(5;(t')5, -(t)5,+(t)5,+(~))

((5;5;+5,+ 5,-)), —(&5-5+5,+ 5-)&
«~0+, t~t' pg

On introducing our decoupling into the Green functions on the right-hand side we obtain for i/i
&(5', 5. )) +'.-((5' 5' )) -*. (&5';5' )) +'.—((5"'5' )) -'

O=a, ,(5 5+) limi dE+y, ,(5; 5,+) 1imi dE
e-+0+ PE I c~O+ PQ ]

=g,g(5-5+)(5;-Sg+)+yg(5; Sg+)(5 5+).

For (5 5+) and (S, S~+) not equal to zero, this gives

Making use of Eq. (5), we can write, for 5=-',

(SpS )=4—(5 P)+(S~ 5)+5; 5,+), i~$

The correlation function (S~-$~+5; S;+) can
pressed in terms of (5 5+) and (5; 5&+), and
parameters, if, as before, we use Eq. (3) with the
decoupling introduced into the Green functions. We
then arrive at the following relation:

&5 5')=!-(5-~)--'(5-~)'-~'(5;-5
& {14)

» H, a, Callen, Phys. Rev. 230, 59G (j.963).

Equations {12),(13), and (14) can be solved along with
Eq. {5) to obtain

-l+&5 &+&5;5')
e~= . {15)

—,
' —(5')+2(5*)(5;-5~+)—2(S,—Sg+)'

Along with Eq. (13), this determines both parameters
in terms of (S*) and the transverse correlation function
(5, Sg+).

'~ The reason for doing this is that within the Green-function
decoupling technique, the energy of the elementary excitations
(i.e., the location of the pole of the spectral Green function) caa
be obtained either by introducing the decoupling into the equal-
time correlation function or directly into the Green function. In
the RPA, for example, these two ways of calculating the energy
lead to diBerent results. So our consistency condition that the two
evaluations be equal amounts to a consistency requirement on
the energy.
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We note that our decoupling technique and method
of obtaining the parameters has taken into account the
correlations that we earlier mentioned were neglected
by the RPA. Indeed, for i =i, the second term of (10)
does identically vanish as required by spin kinematics
[this can be seen immediately from Eqs. (11)and (13)j,
while the correlation between the sites j and I at equal
time has been explicitly taken into account in the
second condition used to determine the parameters.

The equation of motion (7) can be Fourier-
transformed with respect to the time difference t—t',

giving the Green-function dependence on the energy
variable E. Since the parameters 0.;~ and y;~ are not
functions of time, they do not complicate this operation
and we get simply

equivalent nearest neighbors), then

=A))J(k).

We exploit this simplifying property, and introducing
the notation, with the assumption that all nearest
neighbors are equivalent,

P&=P ~

Qb=Q )

'V&=V ~

we get the following form for Eq. (16) after spatial
Fourier transformation:

EG„(E)=(2&5")/2 )~.,+g&G.,(E)
—2 Q &,j(G,,(E)—Gj,(E))(k+~.(p—v*) .)), (16)

where
[E—gII—E(k)]G(k,E)= 2(5*)/2w,

E(k) = (1+2' 27@)[~(0)—~(k)j.
(17)

where p=(5 S+) and j(;)=&5, 5)+). Translational in-
variance allows spatial Fourier transformation,

G . P er'k (r;—rj)G(k)
N k

1J . .— P eik. (ri rj)j(k)
E k

1
g er'k (rj—rj)

E k

and the inverse transformations

G(k)= g e 'k'(rj rj)G"
Ji-j)

J(k)= P e ' '("j "j)J, etc.
i'-j f

We assume periodic boundary conditions, so the
reciprocal lattice vectors k are summed over the first
Brillouin zone.

We shall restrict J to nearest-neighbor interactions.
That is,

J"=J if r —r =8

The previous calculations relating e( and y to j( and (S*)
can be used to rewrite this as

E(k) = (&5")/2 —p) [~(0)—~(k)) (Ig)

In the above equation, p is the nearest-neighbor part of
the transverse correlation function

p=(S, S,~)+)
=&5,'5 *)+&5,"5

Equation (18) becomes identical with the RPA result
if we set p, =0. We thus see that, in our decoupling
approximation, the effective field parameter renormaliz-
ing the free spin wave energies is not simply the
magnetization, as it is in the RPA, but is a function
both of the magnetization and a quantity related to
the short-range order in the system.

3. BASIC EQUATIONS

From Eq. (3) and the fact that for real (e and E

lim 27ri 8((e E—), —
' " (e—E+i e)—Ei—

we obtain
1

(5' 5'+)= 2(Sz) p eik (ri-r j)/ee(u~+e(k)j 1

Using the identity

where 6 is a lattice vector connecting nearest neighbors,
and

J;,=0 otherwise.

On account of this restriction, a very useful property of
certain spatial Fourier transforms becomes valid. If A;;
is any function of the lattice separation r;—r; and Aq,
the nearest-neighbor part of 2;;, is independent of the
direction of 5 and equals A& (this is the assumption of

=—,
' coth-', P(0—-,'2 pet'"—1

we get
1

(5,—S,+)= (5')—Q e'"'("(—r» coth-', )tj[gH+E(k)]

-(5 )b„. (19)

The relative magnetization is given by the expression

o = (5')/S= 2(S*) for spin one-half.
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We make use of the fact that

cosk~d'k

1+H/C ,' cos—ki——
2 cosk~

that, in this temperature region, the inequality (32)
reduces to an equality in the limit H =0. This can be
seen directly by substituting the series expansion"

( 1)a-i22e
cotlix=-+ g jP x2n—1

x ~-i (2e)!

and

1+H/C

(2ir)' 1+H/C —
2 coski —s coskg

1+H/C ', coski ——-', —cosk2

dk
for the hyperbolic cotangent into Eq. (28) and noting
that, apart from the first term I which leads to (32)),
the rest of the expansion is a power series in H and C
which tends to zero as H tends to zero.

A numerical solution for limII OC/H as a function
of P treating relation (32) as an equality leads to the
result that limlr o C/H gets larger as P gets closer to
unity. This suggests intuitively that limII p C is going

2 to zero more and more slowly compared to H as P gets

1+H/C 1~H/Ci
' closer to the value 1.

where E'(k) is a complete elliptic integral of the first
kind defined by"

w/2

It(k) =
p j.—k sin p

to rewrite (30) as

(1—&)It(t) &5~(1—P) (32)

where $= (1+H/C) '.
We wish to evaluate C as a function of the external

field II, in the limit as II becomes small, in various
temperature ranges. In this connection, "the following

property of E(f)i4 is useful: For'$~1,

4 1 4
E($) ln—+- ln—1 I$"+

i
when @=1—P. With the dehnition of $ given above,
we have that for $+1,

E(&) -,'I In(H/C) I+
and

(1—()Z(])=-', (H/C) I 1n(H/C) I+ . (33)

We have seen that for /&1, the replacement of the
hyperbolic cotangent in Eq. (28) by its first term in a
series expansion is justified in the H ~ 0 limit since

-,'PLH+C(1 ——', coski —-', coski)j«1 for all kQ( —ir,7r)

and the higher-order terms in the expansion will make
small contributions compared to 1—P on the right-hand
side of the inequality (32).

At P=1, however, 1—P vanishes and we need at
least the next term in the coth expansion. We now use
the inequality

cothx& 1/x+ iax.

Substitution in Eq. (28) yields

(2/-)(1-~)A(~) ~(1-~)
+ (P'/12)HC+ (5/48)P'C' (35)

In the limit II—+ 0, this becomes an equality for reasons
similar to those given previously. We have also estab-
lished that for P ~ 1,X($) can be replaced to a very good
approximation by -', Iln(H/C) I. At P=1 and H ap-
proaching zero, relation (35) then becomes

a. )&1
For P&1, relation (32) shows that lim~ OH/C must

tend to a definite nonzero limit. If it approached zero,
then the fact that lim, pxlnx=0 would make the
left-hand side of relation (32) approach. zero, which
would contradict P & 1.In this temperature region, then,

H B 5—ln—=—xC2.
C C 48

Solving Eq. (36), we obtain
/32 )&

lim C= H&
I lnH

I &I
H~O &15~i

(36)

lim C= b(!3)H,
H~p

(34)

» E. Jahnke and F. Emde, Tables of Func@ons (Dover Publica-
tions, Inc., New York, 1943)."E.Jahnke and F. Emde, Ref. 13.

where b is independent of H but depends on the tem-
perature. This is essentially the region of paramagnetic
response. Further, with such a behavior of C it is clear lim C~ B&.

H~p
(38)

'~ H. B.Dwight, Tables of Inregrals and OIher Ma&heyga]jul Daga
(The Macmillan Company, New York, 1963).

Since IlnHI varies much more slowly than H in the
region H-+0, we may regard Eq. (37) as the,".

, power
law relation for P= 1:
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c. g)1
For P) 1, the relation (35) already shows that

limH p C becomes independent of H. In fact, for small
but positive P—1 we have

(P 1)—'+ (39)

Since C is the effective field parameter in our theory,
a shift from a linear to a power-law behavior signifies a
change at P= 1 in the response of the spin system to an
in6nitesimal external field. In the next section, we show
that the static susceptibility diverges at P= 1.

5. DIVERGENCE OF STATIC SUSCEPTIBILITY

We proceed to analyze the static zero-field suscepti-
bility X given by

0'

lim X= lim —,
H—+0 H-+0+

as we approach P=1 from the high-temperature side.
Equation (26) for the magnetization may now be
utilized to obtain

In summary, the behavior of limH p C as a function
of H in various temperature ranges is the following:

lim C= constXIJ, p&i
H~O

=(constX~lnH~1)&(H1, P=1
= independent of H,

are considering. While we do not insist that these values
of p and T, are necessarily those which a more correct
theory would give, our theory does predict critical
behavior similar to that found by Stanley and Kaplan
for S&-,' from their analysis of the exact high-
temperature series expansions for the susceptibility.
At P=P„we can evaluate how X diverges as a function
of H. Equation (35) combined with Eq. (41) gives

x= (24/5)H-'~',

so that limH p I goes to inGnity as the 6 inverse power
of H at the critical temperature P,.

6. ABSENCE OF SPONTANEOUS
MAGNETIZATION

We now demonstrate the absence of spontaneous
magnetization in our model by showing that limH po =0
for all 6nite temperatures.

For P&1, we have shown that

lim C= lim =0
H~O H-+p &

Since p, is bounded, this can happen only if ].imH p Q'= 0.
For P&1, we found limlr OCTO. From Eq. (26) and
the property of the hyperbolic cotangent that we have
used earlier, cothx&

~
1/x~, we obtain

xH (2m)'

2
—)
0 pC(2m-)'

d'k

1+H/C gcoskg —
& coskm—

Using Eq. (31), this becomes
&(coth —,'PLH+C(1 —

2 coskq —
2 coskm) j. (40)

Substitution of Eqs. (29) and (31) into Eq. (40) yields

1 4
-&—(1—$)&(t)
X j'

1 2 1 ~ 1z
0 n pC 1+H/C) 1+H/C

In the limit of small H, this reduces to

For P& 1, (41) becomes an equality in the limit H-+ 0
(for reasons pointed out earlier) and comparing with
relation (32) we get

C const
0.&—X

T flnH
/

(43)

lim X=—
2(1—

O)
(42)

This shows that the zero-Geld static susceptibility
diverges at P,= 1, with a power-law behavior

where the exponent y= 1. Since we are measuring tem-
peratures in units of 2J, the critical temperature turns
out to be T.= 2J/k&. This value is exactly that obtained
in molecular 6eld theory for the particular lattice we

since limH OC/0. This expression can be compared
with the corresponding result of Wagner and Mermin'
who found, rigorously, that for a two-dimensional
lattice

const
X

T1 jlnH (1

Our result is quite consistent with that of Mermin and
Wagner and is, in fact, somewhat stronger as far as the
upper bound on the spontaneous magnetization is
concerned.
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7. ANALYSIS OF LOW-TEMPERATURE PHASE

In the low-temperature, T(T„phase, limH Op has
the value

11m p, = &.
H~O

we must have

lim p, = ~.1
H-+0

K~O

limo =0,
H-+0

Since this is the maximum value that p, can have, the
This can be obtained either by explicit calculation from transverse (x and y) components of the nearest-neighbor

spins appear to become perfectly correlated at low tem-

lim C/0 peratures as the external field (in the z direction) is

turned off. To investigate further, we look at the ratio
and

of p, to the correlation function of arbitrarily separated
sites, (5, 5,+). Using Eqs. (24) and (25), we find

(5,-5,+)
d k cos(ki1Vi+kg1Vg) coth2P)H+E(k)] d'k coski coth-', pLH+Z(k)]. (44)

dkidkq sinki1Vi sinks V2 f(ki, kq) =0,

where f(ki, k&) is any even function of ki and ki. A

further manipulation gives

where

(5;—S,+) Ot(H)

n(H)

We have eliminated the lattice spacing by a trans-
formation which replaces k by ku. We have also used
the fact that the spatial separation r; —r; can be written
as 1Viae,+1Via e» where e, and 8„are unit vectors in

the x and y directions. E~ and X2 are integers so that
k (ri —r;) =ki1Via+kilVia. We calculate the right-hand

side of Eq. (44) in two limits.
First, if H is finite and 1V i and/or Ei tends to infinity,

the right-hand side is zero. This can be made mathe-

matically precise but intuitively follows from the
observation that as long as IX is finite, the denominator
integral is finite, and the oscillation of the cos(ki1Vi

+ki1Vq) factor in the numerator integral, for 1Vi and/or

X2 large, makes this integral zero.
The other limit i.s that in which Ej and E2 are finite

and II tends to zero. To analyze this case, we first
replace cos(ki1Vi+ki1Vi) in the numerator integral by
cosh&X& cosk2%2. We may do this since

and $(H) is the denominator integral in Eq. (44). It is
shown in Appendix 8 that

lim X(H)(~,
H~O

and since

lim K)(FI)= ~
H~O

we get, for finite X~ and E2,

(S, S;+)
lim = 1.
H—+0

These results show that the transverse correlation func-
tion (S; 5,+) goes to zero as the separation ~i —j ~

be-

comes infinite, as long as the external field is finite, but,
if the ex'ernal field is turned off, (S, S,+) has its maxi-
mum value for all finite separations.

The fact that the limits ~i—j ~

~ ~ and H-+0 are
not commutative implies an important difference be-
tween the low-temperature phase in the present system,
as compared to the condensed phase of the usual three-
dimensional ferromagnet. In the latter case, the long-
range correlation existing between spins at widely (even
infinitely) separated lattice sites is unaffected by the
order in which the above limits are taken. To get a more
detailed idea of the spatial dependence underlying the
limiting results

lim (S, S;+)=0,
I&i—&jl~

JI,(H) = dkidkiLcoski1Vi coski1Vi —coski]

lim (S, S;+)=-,',
H-+0

(46)

we approximately analyze the behavior of (S, S,+) for

&&coth-,'ppH+E(k)] large separation. The expression we must evaluate is
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again

(S S+)=- ~ eosk2) j+C(& & coskx —
~

7 .[(~z rj)l~—~ QothkPd'p jdk 2&'

~ cosk2) j 'dk, ot '-, i&+C('dk 1
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sumes possesses conventional long-range order at suflici-
ently low temperatures is characterized by the following
properties":

I et Ebe the total number of spins and B the external
field. Then, for T&T„S—+ ~, H —+0:

(1) If NH ~ constant, then

lim (S; S;+)WO.
r &

(-+co

(2) If XH~ ~, then

lim (S;-S;+)=0.
I &s—~jl~~

results of Mermin and Wagner) nor long-range order of
the conventional type, it nevertheless suffers from one
shortcoming. The magnitude of the QODLRO as given
by Eq. (46), viz. ,

) r,—r;
~
Gnite, lim (S,—S;+)= -',

H~O

is larger than an upper limit set by a rigorous in-
equality" derived from spin kinematics. According to
this inequality (derived in Appendix C)

(4g)

In both eases,
lim (S;*S )40.

) gs—p& I~oo

/inr f

for large r. This shows explicitly that long-range order
of the conventional kind is not present in our theory. A
field of strength 1/X is not suKcient to produce order
over the entire sample. However, the correlation func-
tion drops oB very slowly with distance when this Geld
is present, and it is not surprising that we 6nd essentially
perfect correlation at all 6nite distances when we take H
to be strictly zero.

We cannot make a similar statement about the range
of the longitudinal correlation function (S S ) since
we are not able to calculate it unambiguously in our
simple decoupling approximation scheme. Our approxi-
mation involves decoupling the first higher-order Green
function. However, (S,'S,') contains (S; S~+S; S;+) and
to determine this correlation function unambiguously
we would have to go to the next higher-order Green
function. We expect, nevertheless, on physical grounds
that for an external Geld H of 0(1/E) it would display
the same behavior as the transverse correlation function.

Though the low-temperature phase in our model has
the appealing features of possessing neither spontaneous
magnetization (which would contradict the rigorous

"S.P. Heims, Phys. Rev, Letters 14, 8SO (1965}.

These facts show that, in three-dimensions, if the
external Geld H is of 0(1/N) Lor of 0(r ~), r being a
length and. d the dimensionality of the systemj, the
correlation functions, both longitudinal and transverse,
become essentially independent of IJ and also of E at
suKciently low temperatures. In an analogous fashion,
if our two-dimensional system was conventionally
ordered, a Geld H of 0(1/r') would display the inde-
pendence of the spin. correlation range (in our particular
model, the range of the transverse correlation function
(S, S;+)) on r in the limit of large r To che.ck this we
substitute H 1/r' in expression (47) for the transverse
correlation function to obtain

for a system of X spins of magnitude 5=-'„where the
notation ( ), denotes the average value of the correla, -
tion function (S; S,+) for iP j over the X-spin system.
For iV)2, the magnitude of limrr o(S, S,+) clearly
violates (48).

In view of the fact that every Green-function approxi-
mation scheme undoubtedly violates some exact con-
straints, it is not surprising that some such violation
occurs in our approximation. However, as we presently
show, neither the divergence of the static susceptibility
nor the absence of spontaneous magnetization in our
theory are crucially dependent on the magnitude of
(S, S;+) at Gnite separation in strictly zero field in the
low-temperature region. Ke can then regard the viola-
tion as pointing more to the approximate character of
the theory, rather than invalidating the main results
derived from it. We emphasize that the nature of the
low-temperature order as embodied in Eq. (47) is not
inconsistent with inequality (53). The same sort of
QODLRO with a smaller magnitude for the correlation
would be completely satisfactory with respect to any
rigorous test we can devise.

The absence of spontaneous magnetization is basically
related to the large Quctuations associated with the
long-wavelength modes, and is quite independent of the
precise magnitude of the spin correlations at 6nite
distances. An understanding of the divergence of X is
obtained by analyzing the behavior of the effective Geld
parameter C in our theory as we approach the critical
point from above. Referring to the section on the
determination of C we have the following results:

lim C=O.
H~O

T=T,: lim C H&.
B-+0

The change in the behavior of C from a linear to an
approximate power-law behavior with an in6nite slope

"Dr V. Korenman .(private communication).
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at H =0 as we approach T= T, from the high-tempera. -
ture side is responsible for the divergence of X. That
p, = ~ for T&T, at H=O is not crucial here. It is only
for T&T, when lim~ OC&0 that lim~ Op becomes
equal to -', in our approximate theory. The X divergence
does not depend on the value that lim~ pp. and
limII„O (S; S,+) acquire at lower temperatures.

The behavior of the effective field parameter and the
role it plays in the divergence of the susceptibility also
clari6es the difference between our decoupling and the
RPA. In the RPA, the effective field parameter is the
magnetization 0. and if we carry out an analysis similar
to the one used for determining C, we arrive at the
following result: For all T&0,

portion of the heat-capacity curve, since we can explain
this result even for the completely isotropic Heisenberg
interaction. Of course, the presence of two transition
temperatures in the experiments of Ref. 9 may, in fact,
indicate the presence of anisotropy which leads to
ferromagnetic ordering at a lower temperature. %hat
we point out, however, is that the linear behavior of the
specific heat is not a sufhcient condition that ferro-
magnetic ordering, caused by anisotropy, or departure
from two-dimensionality exist, for even the completely
isotropic interaction gives the same result at suKciently
low temperatures.

To calculate the specific heat, we need the internal
energy per spin, which is given by

(x) gH i
— ( Z S')—Z Z ~(f—&)(SI S ).

V E ' E f g

This implies that for all nonzero temperatures the re-
sponse of the RPA effective field parameter to the ex-
ternal field is linear. In other words, the two-dimensional
lattice remains paramagnetic in the RPA, so the
susceptibility cannot diverge at any 6nite temperature.

By standard techniques of Green-function analysis, "
this can be written in the form

U= —2gH —V(0)+(gH+V(0))—Z ra(~)&~

Recently, Miedema et al. have reported some
measurements on the heat capacity at low temperatures
of (spin one-half) ferromagnetic Cu(C2HqNHI) 2C14 and
Cu(CHINHS) ~C14. These compounds have crystal
structures which can perhaps be regarded, from a mag-
netic point of view, as being two dimensional since the
interactions between the magnetic copper atoms within
a layer are much stronger than the interactions between
copper atoms in different layers. For both compounds,
a plot of the speci6c heat versus temperature reveals
two transition temperatures. At temperatures below
O'K, the results are described by a dominant linear
dependence of the speci6c heat on temperature.
Miedema er, a/. identify the higher of the transition
temperatures with the predictions of Stanley and
Kaplan, while they attribute the lower one to possible
anisotropy or departure from two dimensionality, either
of which could conceivably lead to ferromagnetic order-
ing of the usual kind. As pointed out in Ref. 9, a
dominant linear dependence on temperature of the
specific heat strongly supports the idea of a two-
dimensional ferromagnet. However, in an elementary
spin-wave treatment of the problem, one needs an
anisotropic interaction to achieve a linear dependence
of the specific heat on temperature and anisotropy leads,
of course, to ferromagnetic ordering. In our treatment,
as we shall presently show, we obtain, at sufficiently
low temperatures, a linear dependence of the specific
heat on temperature, even for the completely isotropic
Heisenberg model without, of course, ferromagnetic or-
dering of the conventional kind. Thus, there is no need
to assume anisotropy to explain the low-temperature

-s Z Z ~(f g) ~/. (~)-d~, (49)

r/ ((0)=—p e"I' s&r(1I I0)
I

Combining Eq. (49) with Eqs. (I/), (i8), (20), and
(28) we obtain

U= 'gH —(S')P,'gH+ ,' J(0)-1--
+at.s~(0)—4J(0)(S')—V(0)u j—P~(0) (50)

The speci6c heat at constant 6eld, C~, is given by
CII=(BU/BT)II In particula. r, for H=O, we have from
Eq. (50), on remembering that

11111(S )=0 alld 11111p(T& Tp) =
g q

H-+0 &-+j}

C(T) at low temperatures, T«T„ is calculated in
Appendix 8 using techniques appropriate to a low-
'tclllpcla'tlllc cxpallsloll 111 powcls of (T/T ). Referring
to Eq. (86), we then have for the specific heat

CII =aT+bT'+

» See, e.g., S. V. Yyablikov, 3fethods As the Quusstu~l Theory of
3Isugnetssm (Plellum Press, Inc. , New York, 1967).
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a dominant linear dependence on temperature with

f(2) k 2 k~'
erg/('K) =0.13- erg/('K)'

4x J J
and

3f'(3) kii' kii'
b = erg/('K)' ——0.04 erg/('K) '.

32m. J' J2

"F.J. Dyson, lecture given at the Brandeis Summer Institute
for Theoretical Physics, 1966 (unpublished).

9. CONCLUSION

Our theory is not exact, and if a phase transition does
exist in the two-dimensional Heisenberg ferromagnet a
detailed and correct description of the low-temperature
phase will have to await more elaborate approximations.
However, simple as it is, our model does represent a first
step toward providing some insight into phase transi-
tions which, unlike those in three-dimensional systems,
do not arise from a broken symmetry.

An alternative description' "of the two-dimensional
spin system, which would fulhll the requirements of a
divergent susceptibility and no spontaneous magnetiza-
tion, has been proposed along the following lines: As
long as P„(SO'S ) diverges, the susceptibility will also
diverge and, therefore, a (So S,) function which behaves
like r " with X& 2 at large distances will be sufFicient to
guarantee a divergent susceptibility. Dyson" went on
to actually make an heuristic derivation of this asymp-
totic behavior, thereby obtaining an explicit expression
for X. While it is attractive to speculate that this kind
of power-law dependence for the correlation function
sets in at low temperatures, our theory suggests a
different form for the correlation in the system which is
consistent with a divergent susceptibility and no
spontaneous magnetization. This is the fact that the
two-dimensional lattice may possess quasi-o6-diagonal
long-range order of the kind we have analyzed earlier,
and which is suggested by our theory. QODLRO would
mean that there is much larger correlation in the spin
system than is allowed for in the suggestion of Ref. 22,
where the correlations would die down rather rapidly as
the spin sites are separated. In view of the fact that the
two-dimensional Heisenberg spin system is on the edge
of being spontaneously magnetized (the upper limit for
(S*), 1/(InH)&, goes very slowly to zero, and for
H 1/X, the upper limit is only about i'0 for a finite
system), it is not unreasonable to suppose that the cor-
relations between the spins are rather large at low tem-
peratures. QODLRO may then reflect the fact that the
low-temperature phase possesses a large total spin,
which serves to minimize the exchange energy, and zero
(S') rather than a large total spin and finite or maxi-
mum (S') which is forbidden by the large fluctuations
associated with a low dimensionality.

The shortcoming of our calculation lies in the fact
that the transverse correlation (S,*S,*)+(SpSp) is

larger than an upper limit set by spin kinematics. How-
ever, as we have pointed out previously, every calcula-
tion made on the basis of a Green-function approxima-
tion scheme will undoubtedly violate some exact con-
straints. What has to be considered is whether the
violations invalidate the principal results derived in the
particular approximation scheme or whether they point
only to the approximate character of the theory while
leaving its main conclusions substantially unaltered.
As we have analyzed earlier, neither of the two principal
results of our theory, the divergence of the static
susceptibility or the absence of spontaneous magnetiza-
tion, are crucially linked to the precise value that the
transverse correlation function attains in the low-

temperature phase as the external magnetic field is
completely switched oR. We can thus justihably regard
the violation of the inequality as being a shortcoming,
which a better approximation should eliminate, but not
a drastic enough one to invalidate our results concerning
the existence of the transition and the qualitative nature
of the low-temperature phase.

APPENDIX A

We wish to show that K(H), given by

K(H) = dkidk2

X (coskiSi cosk2iVg —coski] coth2PLH+E(lr)] j

is bounded for iVi and/or E2 finite as H tends to zero.
The only possible reason for a divergence of limni oX(H)
would be a divergence of this integral due to the be-
havior of the integrand for k~ and k2 near zero. The
analysis is simplihed if we first utilize obvious sym-
metries to write

X(H)=2
0 0

dkgdk2

XLcoskilVi cosk2iV2 —coskiiV2 coskmN i—coski —coskg j
Xcoth-,'PLH+E(k)].

For fixed E& and E2 the integrand behaves ultimately
according to the obvious small k~, k2 expansions so that
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m, (H) =
0 0

dkidk2I(ki, k2,H),

then convenient:
1 9

e—'Ie(x) = 1+—+ +
(2s x)& 8x 128x'

where for kl, k2~0, and H~O

2 (-,' ——',Ei2—-'1V22) (ki2+k22)
I(ki,k2,II)

P LH+ ', C(ki2+-kg) j
Clearly for H going to zero and C finite (we are in the
low-temperature phase), there is no divergence problem
of any sort at the zero limits so that

1 p 3 15
e .Ii(-x) = 11——— +"

(27rx) ~ 4 8x 128x'

Equation (B2) is a coupled equation for C and the most
convenient solution is obtained by substituting (B4)
in (B3) and then solving iteratively for C to any desired
power in r. In the limit II—+0, the solution correct
through O(r') is

lim Ot(H) & ~ .
H-+0

j.
+

C 2 (2x)'

d'k (1—coski)

eP [II+ce(k)J
(B1)

APPENDIX 3
Yo evaluate C as a function of temperature for T«T,

we use techniques appropriate to an expansion in powers
of T/T, . Rewriting Eq. (28) as

where t (p) is the Riemann zeta function defined by

Using the fact that the critical temperature T,=25/ke
and that P (and r) is being measured in units of ke/2J,
we can rewrite (B5) as

f'(2)(T)' t(3)(T~'
lim C= 2—

(

—
(

—
(

—
(

for T«T,. (B6)
~ &T,1 2~ kT,)

making use of the identity

e "~
n-1

APPENDIX C

To derive the inequality mentioned in (53), consider
a (sub) system of E spins of magnitude S=-,' and
compute, in any state, the quantity

we obtain

(i)"
I„(x)= e ~ "'& cosny dy,

(2s)"

and the following integral representation" of the Bessel
function of pure imaginary argument

((p 5')')= &Siot'&

=p &5,'&+g g &s;*s )

+pp &s,-s;+&. (c1)

with

1/C=-', +y, Since St,t'& ~1V(2$+1),S = 4, (5 )'= ~ for 5=-', , and

P g &S,*S*)=P &5'(S...'—5 )),

Eq. (Ci) can be reexpressed as

—',E(-,'/+ 1)&-,'E——,'X+ &(Sg.t')')
+&(&—1)(&5' 5'))- (C2)

tt= Pe eir"Pe "Ie(nx)j'
n=1

—g e e~"Pe " Ii(nx)]Pe "'Io(nx)g (B3)
+~1 where the notation (), denotes the average value of

and x=PC/2. In the above we have made use of the &S; S;+) over the 1lr(E—1) pair of spins in the system.
Since S&,&' ' &0, we then have the inequality

e(k) = 1 2 coski —g coskg.

P is in the dimensionless units defined earlier. We put
v = 1/P (7 is now the temperature in our units) so that
low temperatures means r +0 and C/r is-a large
quantity (we remember that limrI OCTO at low tem-
peratures). The following asymptotic expansions" are

(&S;-5;+)), &
4(cV—1)

(C3)

It is obvious that a similar inequality holds for
(&S'S'))-, '.

((S, S;))„&
4(E—1)


