PHYSICAL REVIEW

VOLUME 178,

10 FEBRUARY 1969

NUMBER 2

Phase Transition in the Two-Dimensional Heisenberg Ferromagnet

Vinop MuBAvr*f
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850

AND

RoBEerT V. LANGE}
Brandeis University, Waltham, Massachusetts 02154
(Received 11 June 1968)

We develop a Green-function theory to describe the thermodynamic behavior of a plane square lattice
with spins of magnitude one-half located at the lattice sites interacting via a nearest-neighbor Heisenberg
ferromagnetic coupling. Our approximation technique involves a decoupling of the hierarchy of Green-
function equations similar in some respects to that found in the random-phase approximation (RPA) but
improved to include spin correlations neglected in the RPA. Such an improvement is essential for the two-
dimensional problem. Our theory predicts a phase transition at the temperature given by kT.=2J, where
J is the exchange parameter. As T approaches T from above, the static susceptibility diverges as 1/(T'—T%).
The spontaneous magnetization is zero at all nonzero temperatures, both above and below the critical
point. Therefore, our theory is consistent with the existing rigorous proof of Mermin and Wagner that the
spontaneous magnetization must be zero for 7’50, and displays the divergent susceptibility predicted by
Stanley and Kaplan from an analysis of high-temperature expansions for related two-dimensional spin

systems.

1. INTRODUCTION

ECENTLY, the two-dimensional lattice with
Heisenberg ferromagnetic exchange coupling be-
tween the lattice spins has been the object of two
stimulating theoretical observations. Stanley and
Kaplan! searched for a phase transition in such a system
by studying the high-temperature series expansions for
the zero-field, static magnetic susceptibility. They find
that the susceptibility diverges at a finite temperature
as had been found previously with similar techniques
for the three-dimensional lattice.? Within the context of
their approach they predict a phase transition, though,
as they suggest, not necessarily to a state with spon-
taneous magnetization, at some finite temperature. On
the other hand, Mermin and Wagner,® adapting a
technique of Hohenberg* which utilizes the Bogoliubov
inequality,® have rigorously shown that there can be no
spontaneous magnetization at any finite temperature in
the two-dimensional lattice with Heisenberg exchange
interactions between the spins. The reason is related to
the fact that if there is magnetization, there will be
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modes, as predicted by the Goldstone theorem® which
will have sufficient weight at long wavelengths to cause
severe fluctuations at any finite temperature. The proof
consists of showing that, in fact, the fluctuations would
be so large that inconsistencies arise which can only be
removed by requiring that there be no spontaneous
magnetization in the first place. So, if there does exist a
phase transition, ferromagnetic in some sense, it will not
involve the onset of spontaneous magnetization of the
usual sort. The problem of building a theory for this
model becomes of interest, since it promises to increase
our understanding of phase transitions and the types of
order which are possible at low temperatures.

The RPA” predicts no critical temperature of any
sort for the two-dimensional lattice. Since this approxi-
mation really involves only a single parameter, the
spontaneous magnetization, anything interesting in the
way of temperature dependence of the susceptibility
would have to involve a nonzero temperature-dependent
spontaneous magnetization. Rather than violate the
rigorous results of Ref. 3, the RPA predicts nothing
interesting at any temperature.

What we succeed in doing in this paper is constructing
a theory which in spirit and technique is similar to the
RPA. However, the effective field parameter in our
theory, is more complicated than the magnetization, so
that this magnetization can be zero at finite temperature
without washing out all other possible predictions. In
fact, we do find that for the case of spins of magnitude
one-half situated on a plane square lattice, and inter-
acting via nearest-neighbor isotropic exchange forces,

¢ H. Wagner, Z. Physik 195, 273 (1966); R. V. Lange, Phys. Rev.
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also, R. Brout [Phase Transitions (W. A. Benjamin, Inc., New
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our theory is consistent with the results of Stanley and
Kaplan as well as those of Mermin and Wagner. We
find that the spontaneous magnetization, defined in the
usual way,? is zero at all nonzero temperatures, while
the static zero-field susceptibility diverges at a finite
temperature. At very low temperatures, our calculations
predict that the specific heat varies linearly with tem-
perature. This is in agreement with recent experiments
of Miedema et al.? on the heat capacity of compounds
which, from a magnetic point of view, have two-
dimensional crystal structures.

2. GREEN-FUNCTION APPROXIMATION

The application of double-time temperature-
dependent Green functions to the theory of the
Heisenberg ferromagnet has been discussed many
times before, and we refer the reader to the extensive
literature on the subject.’® For our purposes the follow-
ing well-known results will be sufficient.

The retarded Green function of operators A(f) and
B(#) (which are in the Heisenberg representation) is
defined as

(4 @); BE)=—i0(—){[A@®; BE)D. (1)

Here 0(f) is the step function, square brackets denote a
commutator, and the angular brackets denote an
average over the canonical ensemble,

(X)="Tr exp(—p3)X/Tr exp(—pic),

where 8=1/ksT, ks being the Boltzmann constant, T'
the absolute temperature, and 3C the Hamiltonian of
the system.

The equation of motion of the Green function so
defined is

i(3/0)((4(®); B(£)))={A®); BF)])s(t—7)
+{C4®,3c]; BEN. (2)

The second term on the right-hand side is, in general,
a Green function of higher order and so an approxima-
tion or ‘“‘decoupling” can be used to solve the equation
of motion for ({4 (?); B(?))). Once this decoupling has
been done and ({4(f); B(#))) has been evaluated, the
correlation function (B(#')A(f)) can be obtained from
‘the formula

(BE)AW)
. {{4; B))grie— ({45 B)) B—ic B (")
= }Hgl;},/ 51 € dE; (3)

8 This is the definition used, for example, by Mermin and
Wagner, Ref. 3. See also, Sec. IL A of R. B. Griffiths, Phys. Rev.
152, 240 (1966). )

9 J. Koppen, R. Hamersma, J. V. Lebesque, and A. R. Miedema,
Phys. Letters 25A, 376 (1967).

10 See, for example, D. N. Zubarev, Usp. Fiz. Nauk 71, 71
(1960) [fEnglish transl.: Soviet Phys.—Usp. 3, 320 (1960)]; also,
V. L. Bonch-Bruevich and S. V. Tyablikov, in The Green Function
Method in Statistical Mechanics, edited by D. ter Haar (North-
Holland Publishing Company, Amsterdam, 1962).
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where ({(4; B))g is the Fourier transform of
((4(); B())) with respect to the variable ((—?).

The Heisenberg Hamiltonian for a system of IV spins
S;localized at each lattice site , interacting through an
isotropic, ferromagnetic exchange coupling J, in the
presence of a uniform time-independent magnetic field
H directed along the z-axis is of the form

)

=1 z

N
Je=—gH?Y S¢—2. Z JiiS:8;,

Jii=J i, J:i=0, J3;>0. gS is the magnetic moment per
ion at each lattice site of spin .S. The spin operators obey
the usual commutation rules:

[S7,S,¥]1=1Ss"3s4,
[sz,sa:t] =8548,
[Sf+7Sﬂ*] =284%3s4,
where »
SyE=8;"415sv.
For spin one-half, we have the additional relations
Sy=3—S75s", ©)
(S7*)*=(S7)*=0. (6)

In what follows, we shall restrict our analysis to spin
one-half.

We consider the Green function as defined in Eq. (1)
with A(#)=Si(¢) and B(')=S;(V):

Gii(t=1)=((S:+(®); Si ()
=—10(—){[S:+ (), S () D).
Its equation of motion is
1(8/00)Gij(t—1") = 2(S*)6:;6(t— 1)+ gH G ;(t—1")
-2 Zl: Ja{ ((S®)S+(1); Si=())
= {(S#OSH®; SN} (D)

So the higher-order Green function to be decoupled is

of the form ,
{(Se@)S+®); S ). ®
The RPA decoupling,’

(DS +0); S5m0 752 (SHSHD; 7)), (9)

neglects the correlations between the z component of
the spin at the site / and the transverse components at
the other sites 7 and j and replaces S;*(¥) by its average
value (S?). ‘

To gain some insight into the effect of these correla-
tions, we use Eq. (5), valid for spin one-half, to rewrite
expression (8) as

FUSHD; SN — S OSHOSH9); S ))).  (10)
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We see that the second term in expression (10) has a
strong dependence on the indices ¢ and / since this term
vanishes identically when i=/ as a consequence of
Eq. (6). Similarly, at equal time, {={, there is a strong
dependence on the sites / and j. However, this spatial
dependence which leads to correlations between the
spin operators at the respective sites, ¢, /, and 7 is lost
completely as soon as a decoupling of the form given
by (9) is introduced. To look for an improvement over
the RPA, we must somehow take into account the
correlations neglected by the RPA.

The decoupling approximation we propose (for the
S=1 case) is

{SEOSHD); S (E))=3SFD); S (1))
Faa(STSHUSFD); S ()
FyalSESHUSH); S())), (A1)

where a;; and v,; are parameters which are determined
by two conditions described below. This decoupling
reduces to the RPA for the following particular values:
o= 1 B (Sl~Si+>= 0 y i?él

The idea of decoupling the higher-order Green func-
tion with a parameter was first introduced by Gallen,!
who determined the parameter, using a plausible
physical argument. In our case, the first condition we
use is essentially one of self-consistency, while the

o=11%(5:(:’)&"(05#(t)S#(t))
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second condition incorporates the stringent require-
ments of spin kinematics.

The first condition uses the fact that the difference
of the higher-order Green functions

{S(OS+(0); S (OIN—US#OSH@); Si=()))

occurring on the right-hand side of (7) can be evaluated
exactly in the equal time #=¢ limit. We can also
evaluate it, in the same limit, after introducing the
decoupling. If we require, as a consistency condition on
our parameters, that these two evaluations be equal,'?
we obtain the relation

(25128 #+SSit)= (S2)+ 2aa(S=S+)(S?)
—2va{STSH(S?). (12)

(We have made use of the fact that (S;°) and (S;-S;")
are independent of the lattice index ¢ on account of
translational invariance of the lattice.) This provides
one equation connecting the parameters.

The second condition makes use of what has come to
be known in the literature as “Dyson’s kinematical
interaction.” This is the fact that reversing a spin more
than 25 times at any one lattice site gives zero, and it is
embodied in Eq. (6). From Eq. (3) we note that the
correlation function (S;~(¢)S;()S:+(£)S+(¢)), which is
identically zero for ¢=?, can be written as an integral
over the discontinuity of the corresponding Green
function:

—EG—GE,

X _/((Si_5i+Sl+§S€_>>E+ie‘ {STStSH ;8 Eie
= lim 2

efE—1

e—0t, ¢t

On introducing our decoupling into the Green functions on the right-hand side we obtain for i3]

(ST SN Bie— (ST S7)) Bse

efE—1

0= au(S‘S‘L) e]ig'l*_t/
= ail<S—S+><SFSz+)+‘Y,'z<S,'_S1+>(S—S+) .

For (S—S*) and (S;~Si*) not equal to zero, this gives
(13)

Q= —"%il.
Making use of Eq. (5), we can write, for S=%
(Sfo>=%—<S—S+>+<SFSJ+S~;—S.;+>, 1#1.
The correlation function {(S;~S;itS;-Si*) can be ex-
pressed in terms of (S—S*) and (SiSit), and the
parameters, if, as before, we use Eq. (3) with the

decoupling introduced into the Green functions. We
then arrive at the following relation:

(SrES#)=1—(S=SH)—u(S=ST)?—yu(S7Si*)?. (14)

1 H, B, Callen, Phys. Rev. 230, 590 (1963).

dE—f—‘y;'z(Si_Sz"*") hlfé’}'_l/

{SH; SN prie— ((SiF;S F))E—iedE

efE—1

Equations (12), (13), and (14) can be solved along with
Eq. (5) to obtain
=3 HSHHSTSH)

F—(SH+2SNS S~ 2SS

Along with Eq. (13), this determines both parameters
in terms of (5%) and the transverse correlation function

<S ,;—S 1+>.

12 The reason for doing this is that within the Green-function
decoupling technique, the energy of the elementary excitations
(i.e., the location of the pole of the spectral Green function) can
be obtained either by introducing the decoupling into the equal-
time correlation function or directly into the Green function. In
the RPA, for example, these two ways of calculating the energy
lead to different results. So our consistency condition that the two
evaluations be equal amounts to a consistency requirement on

the energy.

15)
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We note that our decoupling technique and method
of obtaining the parameters has taken into account the
correlations that we earlier mentioned were neglected
by the RPA. Indeed, for i=/, the second term of (10)
does identically vanish as required by spin kinematics
[this can be seen immediately from Eqgs. (11) and (13)],
while the correlation between the sites j and [ at equal
time has been explicitly taken into account in the
second condition used to determine the parameters.

The equation of motion (7) can be Fourier-
transformed with respect to the time difference (—?,
giving the Green-function dependence on the energy
variable E. Since the parameters a; and v are not
functions of time, they do not complicate this operation
and we get simply

EGi(E)=(2(S?)/2m)b:;+gHG(E)
—2 Zt JiGii(E)—Gi/(E)) GHaup—yaua), (16)

where p=(S—S*) and p;=(SiS:*). Translational in-
variance allows spatial Fourier transformation,

Gy=— X e eG(k),
k

==

Ty=— ¥ e (),
k

=] -

1

di=—2, e’ Ui | etc,,
k

=

and the inverse transformations
G(k)= Z e—ik.(ri—rj)GL_].,
li—3l

](k) = > ek rimri ] ’

li—3l

etc.

We assume periodic boundary conditions, so the
reciprocal lattice vectors k are summed over the first
Brillouin zone.

We shall restrict J to nearest-neighbor interactions.
That is,

Jij=] lf 1’;—7’;=5,

where § is a lattice vector connecting nearest neighbors,
and

J:j=0 otherwise.

On account of this restriction, a very useful property of
certain spatial Fourier transforms becomes valid. If 4;;
is any function of the lattice separation 7;—r; and 45,
the nearest-neighbor part of 4;;, is independent of the
direction of & and equals A4; (this is the assumption of
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equivalent nearest neighbors), then

S Jijd e 0imr =AY J ek i)
J J

=47 (k).

We exploit this simplifying property, and introducing
the notation, with the assumption that all nearest
neighbors are equivalent,

M= M,
Gwp=a,

Y=Y,

we get the following form for Eq. (16) after spatial
Fourier transformation:

[E—gH— E(k)1G(k,E)=2(S*)/2m, (17)

where
E(k)= (14 2ap—2yu)[J (0)—J (k) ].

The previous calculations relating « and v to p and (S*%)
can be used to rewrite this as

E(k)=((59)/3—w)[J(0)—J (k)]. (18)

In the above equation, u is the nearest-neighbor part of
the transverse correlation function

p=(SiSits™)
=(S&S i)+ (S¥Sits?).

Equation (18) becomes identical with the RPA result
if we set u=0. We thus see that, in our decoupling
approximation, the effective field parameter renormaliz-
ing the free spin wave energies is not simply the
magnetization, as it is in the RPA, but is a function
both of the magnetization and a quantity related to
the short-range order in the system.

3. BASIC EQUATIONS
From Eq. (3) and the fact that for real w and E

1 1
liml: :|=—-21ri6(w—E),
0 w—E+i w—E—i
we obtain

1
(SSiH)=2(S?)— 3 ¢k (rimr}) /gBloH+EW] 1 ,
N x
Using the identity

ot

we get )
(SSit)= (SZ>—A; 2 e i) cothif[gH+E(k)]
k
— (S‘)(S,‘j . (19)

The relative magnetization is given by the expression
o=(5?)/S=2(S?) for spin one-half.
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Putting 2=7 in Eq. (19), we find the relative mag-
netization is given by
11
=y 2 coth3B[gH+E(k)],
k

g

(20)

while the equatlon for the transverse correlatlon func-
tion for i j is

<S;_Sj > 1
=—73 ¢ rimri) cothiB[gH+ E(k)].
T 2N x

(21)

An important quantity in our model is the nearest-
neighbor part of the transverse correlation function, g,

given by

[~

1
=—2‘]\;}E '3 cothiB[gH+E(k)]. (22)

Q

We consider the case of a plane square lattice with a
lattice constant=a and the coordination number z=4.

For this case,

J(k)=J Z‘ ¢~ik0= 1 J(0)[coskia+coskea],
1

where J(0)=2J. The sums over k can be replaced by
integrals, using the familiar prescription

1 Q
ZV % - (ZW)”fdnk’

where # is the number of dimensions and € is the volume
in 7 dimensions of a unit cell. In our case, this becomes

(22)2/ P,

where @=a? and, since k is restricted to the first
Brillouin zone, the integration limits are —w/¢ to
+m/a. With this prescription, and the fact that
Ey=FE._y, Egs. (20), (21), and (22) become

1
—%=
N x

w/a

/ d% cothif[gH+E(k)], (23)
T (Zr)_.[; J
(SSit)
= cosk- (ri—r;)
T 2(27!')_!/ ;/
; X coth3[gH+E(k)Jd?%, (24)
an
d% coskia
T 2(21r)2;[I .a/
XcothiB[¢H+EK)]. (25)
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The last equation incorporates the fact that for any
pair of nearest neighbors,

cosk-d=coskia or cosksa.

In these expressions,

(59

2

Ek)=

[J 0)—J(k)]

g

2J(1—% coskia—% coskza).
1
2T M

If we set 2/=g=1, 8 and H become dimensionless
quantities. 8 now measures inverse temperature in
units of (k3/2J) and H is the external field (in the z
direction) in units of 2J/g.

At this point, we also change the integration variables
to eliminate the lattice spacing, a, and Eqs. (23) and
(25) become

sl

Xcoth} ﬁ( —3% coski—3% COSkz)) , (26)
/ / d%: cosky
o 2(271')2
Xcothi B( 2)) 27)
—u

4. DETERMINATION OF C
If we define a quantity C by
C=0/G—n),
then Egs. (26) and (27) can be combined to give

1
é=2(zw)2//d2k(1—cosk1)

X cothiB(H~+C[1—% cosk;—

% cosks]). (28)
For a spin one-half system, 0<o<1 and 0< |p| <% so
the quantity C is non-negative. The hyperbolic co-
tangent has the property

cotha> [1/x]. (29)
Introducing this into Eq. (28) we obtain
1 1 d?k(1—coski)
Y o
C™ B8 (2n)? H~+C[1—1% coski—% cosks |
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We make use of the fact that

1 / / coskid?k
(2m)? 14+ H/C—% coski—% cosks

—1

1+H/C // &% 1
B (2m)? 14+H/C—1% coski—% cosks

and

1 /’/ ak
(27)? 1+H/C—1 coski—% cosks

-

21 gt ) an
T 14+H/C <1+H/C ’

where K (k) is a complete elliptic integral of the first
kind defined by*?

a2 d¢
K(k)=f —
o 1—F2%sin?e

to rewrite (30) as

(1-9HK()237(1-6),

where &= (14+H/C)™

We wish to evaluate C as a function of the external
field H, in the limit as H becomes small, in various
temperature ranges. In this connection, the following
property of K(£) is useful: For'¢51,

32)

4 17 4
K(g)gln——i——(ln—— 1)&’2+- -
AN

when £2=1—¢£2 With the definition of ¢ given above,
we have that for £<1,

K&~ |In(H/C)|+---
and

(1=-HKO~4H/C)|InEH/C)[+---.  (33)

a. <1

For <1, relation (32) shows that limy..o H/C must
tend to a definite nonzero limit. If it approached zero,
then the fact that lim,,oxInx=0 would make the
left-hand side of relation (32) approach zero, which
would contradict < 1. In this temperature region, then,

lim C=b(8)H, (34)

where b is independent of H but depends on the tem-
perature. This is essentially the region of paramagnetic
response. Further, with such a behavior of C it is clear

18 E. Jahnke and F. Emde, T'ables of Functions (Dover Publica-
tions, Inc., New York, 1943).
4 E. Jahnke and F. Emde, Ref. 13.
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that, in this temperature region, the inequality (32)
reduces to an equality in the limit #=0. This can be
seen directly by substituting the series expansion!®

1 © (_ 1)n—-122n
cothx=—+ 3, —————B,a?"1
(2n)!

X n=1

for the hyperbolic cotangent into Eq. (28) and noting
that, apart from the first term [which leads to (32)7],
the rest of the expansion is a power series in # and C
which tends to zero as H tends to zero.

A numerical solution for limz.oC/H as a function
of B treating relation (32) as an equality leads to the
result that limg.oC/H gets larger as 8 gets closer to
unity. This suggests intuitively that limg.,C is going
to zero more and more slowly compared to H as (3 gets
closer to the value 1. '

b. =1
We have seen that for 8<1, the replacement of the

hyperbolic cotangent in Eq. (28) by its first term in a
series expansion is justified in the H — 0 limit since

3B[HA+C(1—% coski—3 cosks) K1 for all kC{—m,7}

and the higher-order terms in the expansion will make
small contributions compared to 1—g on the right-hand
side of the inequality (32).

At =1, however, 1—3 vanishes and we need at
least the next term in the coth expansion. We now use
the inequality

cothx<1/x+%x.

Substitution in Eq. (28) yields

@/mA-HKE=(1-H)
+(8*/12)HC+(5/48)°C*.  (35)

In the limit H — 0, this becomes an equality for reasons
similar to those given previously. We have also estab-
lished that for 351, K (£) can be replaced to a very good
approximation by 3|In(H/C)|. At B=1 and H ap-
proaching zero, relation (35) then becomes

H| H| 5
—|In—|=—=C?2, (36)
Cl Cl 48
Solving Eq. (36), we obtain
32\}
Jim C=H*[1nH]*(——) . 37)
H—0 1571"

Since |InH| varies much more slowly than H in the
region H— 0, we may regard Eq. (37) as the{power
law relation for 8=1:

lim C« Ht,

H—0

(38)

15 H, B. Dwight, Tables of Integrals and Other M athematical Data
(The Macmillan Company, New York, 1963).
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c. >1

For §>1, the relation (35) already shows that
limg .o C becomes independent of H. In fact, for small
but positive 8—1 we have

In summary, the behavior of limg_C as a function
of H in various temperature ranges is the following:

(39)

gn%)C=const><H, B<1
=(constX |InH |)XH}, B=1
=independent of H g>1.

Since C is the effective field parameter in our theory,
a shift from a linear to a power-law behavior signifies a
change at =1 in the response of the spin system to an
infinitesimal external field. In the next section, we show
that the static susceptibility diverges at 3=1.

5. DIVERGENCE OF STATIC SUSCEPTIBILITY

We proceed to analyze the static zero-field suscepti-
bility X given by
g

lim X=lim—
H—0 H—0 H

as we approach 8=1 from the high-temperature side.

Equation (26) for the magnetization may now be
utilized to obtain

xH (21r)2/ /

Xcothif[H+C(1—% coski—% cosks)].
Substitution of Egs. (29) and (31) into Eq. (40) yields

(40)

1 4
—>—(1-5K(§). (41)
X B

For 8<1, (41) becomes an equality in the limit H—0
(for reasons pointed out earlier) and comparing with
relation (32) we get

(42)

lim X=
H—0

21-6)
This shows that the zero-field static susceptibility
diverges at 8.=1, with a power-law behavior

X~ (ﬁc_ﬁ)_‘y )

where the exponent y=1. Since we are measuring tem-
peratures in units of 2J, the critical temperature turns
out to be T';=2J/kp. This value is exactly that obtained
in molecular field theory for the particular lattice we
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are considering. While we do not insist that these values
of v and T, are necessarily those which a more correct
theory would give, our theory does predict critical
behavior similar to that found by Stanley and Kaplan
for S>3 from their analysis of the exact high-
temperature series expansions for the susceptibility.
At B=p., we can evaluate how X diverges as a function
of . Equation (35) combined with Eq. (41) gives

X=(24/5)H-8,
so that limp .o X goes to infinity as the % inverse power
of H at the critical temperature 8,.
6. ABSENCE OF SPONTANEOUS
MAGNETIZATION

We now demonstrate the absence of spontaneous
magnetization in our model by showing that limg_ooe=0
for all finite temperatures.

For <1, we have shown that

ag

lim C=1Ilim =0,

H—0 H—0 %__ I
Since u is bounded, this can happen only if limz_.oo=0.
For g>1, we found limy.oC#0. From Eq. (26) and
the property of the hyperbolic cotangent that we have
used earlier, cothx> | 1/x|, we obtain

1> 2 /‘/ d*k
a—BC(27r)2_ 14+H/C—% coski—2 cosky

Using Eq. (31), this becomes

1 2 1 1

2t

o w8C \14+-H/C/1+H/C
In the limit of small H, this reduces to

C const
c<—X

71 |mH|’

(43)

since limy.oC7#0. This expression can be compared
with the corresponding result of Wagner and Mermin?
who found, rigorously, that for a two-dimensional
lattice

const 1

X :
Tt " |InH|}

Our result is quite consistent with that of Mermin and
Wagner and is, in fact, somewhat stronger as far as the
upper bound on the spontaneous magnetization is
concerned.
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7. ANALYSIS OF LOW-TEMPERATURE PHASE

In the low-temperature, T<T,, phase, limg.ou has
the value
Y
This can be obtained either by explicit calculation from
Eq. (27) or from the fact that to satisfy both

lim C>#0

H—-0
and

lime=0,
H—0

(SiSi)

"

We have eliminated the lattice spacing by a trans-
formation which replaces k by ke. We have also used
the fact that the spatial separation 7;—7; can be written
as Niaé,+Nea é,, where ¢, and ¢, are unit vectors in
the x and y directions. Ny and N, are integers so that
k- (ri—7;) =k1N1a+k:Noa. We calculate the right-hand
side of Eq. (44) in two limits.

First, if H is finite and N; and/or NV, tends to infinity,
the right-hand side is zero. This can be made mathe-
matically precise but intuitively follows from the
observation that as long as H is finite, the denominator
integral is finite, and the oscillation of the cos(k1V1
+ ko) factor in the numerator integral, for Ny and/or
N, large, makes this integral zero.

The other limit is that in which N; and N, are finite
and H tends to zero. To analyze this case, we first
replace cos(k1N1+k%2N3) in the numerator integral by
coskiNy coskaVy. We may do this since

/ [ dk1dkse sinki N1 sinks Ny f(k1,k2)=0,

where f(ki,ks) is any even function of k1 and ke A
further manipulation gives

(S8 T
v o@’

where
N(H)= / / dk1dko[ coskiN coskeN2— cosky ]

Xcoth3p[H+ E(k)]
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we must have

limp=%.
H—»o“ 2

Since this is the maximum value that u can have, the
transverse (x and y) components of the nearest-neighbor
spins appear to become perfectly correlated at low tem-
peratures as the external field (in the z direction) is
turned off. To investigate further, we look at the ratio
of u to the correlation function of arbitrarily separated
sites, (SiS;1). Using Egs. (24) and (25), we find

/ / d% cos(k1N1+k2N2) cothif[H+ E(k) ] / / / d?k cosk; cothiB[H+ E(k)]. (44)

and D(H) is the denominator integral in Eq. (44). It is
shown in Appendix B that

%‘}EIOSZ(H)< ® ,

and since

2_13) D(H)= o

we get, for finite N1 and NV,

im
H—0

(Si=S;%)
L=,
U

These results show that the transverse correlation func-
tion (S;S;*) goes to zero as the separation |i—j| be-
comes infinite, as long as the external field is finite, but,
if the ex’ernal field is turned off, (S;~S;*) has its maxi-
mum value for all finite separations.

The fact that the limits |[i—j| — « and H—0 are
not commutative implies an important difference be-
tween the low-temperature phase in the present system,
as compared to the condensed phase of the usual three-
dimensional ferromagnet. In the latter case, the long-
range correlation existing between spins at widely (even
infinitely) separated lattice sites is unaffected by the
order in which the above limits are taken. To get a more
detailed idea of the spatial dependence underlying the
limiting results

finite H, lim (S05;9)=0,  (45)
Ti—rj —»0
finite [ri—7;|, lim (S57%)=13, (46)

we approximately analyze the behavior of (S:=S;*) for
large separation. The expression we must evaluate is
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again
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(SSit)y=- / / dkidkoe® 10imrdlal cothdB[H+C(1—% coski—2 cosks) ] /

We will assume that for very large separation the
integrals will be dominated by the small momenta
behavior of the integrands so that we may approximate
the first Brillouin zone by a circle and expand the
integrands to get approximately

3 ‘_Sf+>z[1+4;/CK(1+;I/C) I |

T4 gikr cosb b J0
/ / m/CHR
where r=(1/a)|7;—r;| and 4 is a number on the order

of unity whose precise value is unimportant. The
integral representation of the Bessel function,!®

1
Jo(x) — 2__/3'51 cosydy ,

s

allows us to perform the 6§ integration and we get, after
a change of integration variable,

1 1 —1 prdr y Jo(x)dx
ol
1+a/c \1+8/C/] |y rH/CHa2

which may be rewritten as

SrSie l:l—f—H/CK(l—l—;I/C)]—-l

X{Ko(rv/(H/C)—D(ryv/(H/C)} ,
where K(2) is the modified Bessel function defined by!?

(47)

© xS o(x)dx
o= [0
o 2%a?
and
Dervajcy= [ T
(e = —_—
war V2 H /CHx?

We showed previously that for some fixed, small field
H the transverse correlation is zero for infinite separa-

16 Handbook of Mathematical Functions, edited by Milton
Abramovitz and I. A. Stegun (Dover Publications, Inc., New

York 1965).
G N. Watson, Theory of Bessel Functions (Cambridge

University Press, New York, 1958).

/ / dkidks coth3B[H~+C(1—% coski—3% cosks)] .

tion. As the separation decreases, the correlation in-
creases, becoming equal to % for nearest-neighbor
distances, in our approximation, and very close to that
value over some finite range. The somewhat complicated
expression in (47) shows how this correlation begins to
grow as we decrease the separation distance from in-
finity. There is the coefficient

LA+H/C)K(1+H/C) T,

which plays no role in the spatial dependence. The 7
dependence lies in the two terms within the bracket,
Ko(rv/(H/C)) and D(r,rn/(H/C)). So long as

H/CLr?A?,

a condition easily ‘met by the small field we are con-
sidering (and may be taken as what we mean by small
field in the present context), D(r,+/(H/C)) is an
oscillating term tending to zero as #r— « and essen-
tially independent of H. More important is the term
Ko(ra/(H/C)) which, as we decrease 7 from infinity will
begin to increase like

eV HIO [ya /(H/C).

Therefore, except for the field-independent oscillating
term, the growth of the correlation as # decreases from
infinity, for fixed field, is of exponential form with the
characteristic parameter being

H/C)2|ri—r;] .

This approximate derivation provides some insight
into the difference between the condensed phase of
three-dimensional ferromagnets which possess long-
range order, in the sense that correlations between spins
are of truly infinite range, and our two-dimensional
system which possesses what may be called quasi-
off-diagonal long-range order (QODLRO). QODLRO
may occur in those systems'® where the correlation
range (on which the notion of ordering is based) is
related to the external field A in such a way that one
obtains different results [as exemplified by Egs. (45)
and (46)] depending on whether one takes the separa-
tion between the spins to tend to infinity or the external
field to tend to zero, first. The three-dimensional
Heisenberg ferromagnet, for example, which one as-

18 A generalized model of a Bose system with similar properties
is discussed by M. D. Girardeau, J. Math. Phys. 6, 1083 (1965).
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sumes possesses conventional long-range order at suffici-
ently low temperatures is characterized by the following
properties!?:

Let IV be the total number of spins and H the external
field. Then, for T<T,, N— o, H—0:

(1) If NH — constant, then
C lim (SeS)0.

|ri—rj]—o0

(2) If NH—> o, then
| lil’Ill <Si—Sj+> =0.
ri—rj|—0
In both cases,
lim

| ri—rjl—0

(S:557)50.

These facts show that, in three-dimensions, if the
external field H is of O(1/N) [or of O(r—9), r being a
length and d the dimensionality of the system], the
correlation functions, both longitudinal and transverse,
become essentially independent of H and also of NV at
sufficiently low temperatures. In an analogous fashion,
if our two-dimensional system was conventionally
ordered, a field H of O(1/7?) would display the inde-
pendence of the spin correlation range (in our particular
model, the range of the transverse correlation function
(S7S;t)) on 7 in the limit of large 7. To check this we
substitute H~1/7* in expression (47) for the transverse
correlation function to obtain

1
SeSity~——r, r=|n—n
|Inz|

for large 7. This shows explicitly that long-range order
of the conventional kind is not present in our theory. A
field of strength 1/N is not sufficient to produce order
over the entire sample. However, the correlation func-
tion drops off very slowly with distance when this field
is present, and it is not surprising that we find essentially
perfect correlation at all finite distances when we take H
to be strictly zero.

We cannot make a similar statement about the range
of the longitudinal correlation function {(S:2S;?) since
we are not able to calculate it unambiguously in our
simple decoupling approximation scheme. Our approxi-
mation involves decoupling the first higher-order Green
function. However, {S%S;%) contains (S;S:*S;~S;+) and
to determine this correlation function unambiguously
we would have to go to the next higher-order Green
function. We expect, nevertheless, on physical grounds
that for an external field H of O(1/N) it would display
the same behavior as the transverse correlation function.

Though the low-temperature phase in our model has
the appealing features of possessing neither spontaneous
magnetization (which would contradict the rigorous

18 S, P. Heims, Phys. Rev, Letters 14, 850 (1965).
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results of Mermin and Wagner) nor long-range order of
the conventional type, it nevertheless suffers from one
shortcoming. The magnitude of the QODLRO as given
by Eq. (46), viz.,

]r.-——rj ] finite, %}n% (Si—Sj+> =3

is larger than an upper limit set by a rigorous in-
equality?® derived from spin kinematics. According to
this inequality (derived in Appendix C)

(S8 Nev< ¥
TN —-1)]

for a system of IV spins of magnitude S=%, where the
notation ( )., denotes the average value of the correla-
tion function (Si=S;*) for i j over the N-spin system.
For N>2, the magnitude of limgy.o (S S;t) clearly
violates (48).

In view of the fact that every Green-function approxi-
mation scheme undoubtedly violates some exact con-
straints, it is not surprising that some such violation
occurs in our approximation. However, as we presently
show, neither the divergence of the static susceptibility
nor the absence of spontaneous magnetization in our
theory are crucially dependent on the magnitude of
(SiS;+) at finite separation in strictly zero field in the
low-temperature region. We can then regard the viola-
tion as pointing more to the approximate character of
the theory, rather than invalidating the main results
derived from it. We emphasize that the nature of the
low-temperature order as embodied in Eq. (47) is not
inconsistent with inequality (53). The same sort of
QODLRO with a smaller magnitude for the correlation
would be completely satisfactory with respect to any
rigorous test we can devise.

The absence of spontaneous magnetization is basically
related to the large fluctuations associated with the
long-wavelength modes, and is quite independent of the
precise magnitude of the spin correlations at finite
distances. An understanding of the divergence of X is
obtained by analyzing the behavior of the effective field
parameter C in our theory as we approach the critical
point from above. Referring to the section on the
determination of C we have the following results:

i § (48)

T>T,: lim—0,
H—0 C
lim C=0;
H—0

T=T,: lim C~H?},
H—0

The change in the behavior of C from a linear to an
approximate power-law behavior with an infinite slope

20 Dr, V. Korenman (private communication).
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at H=0 as we approach T=T, from the high-tempera-
ture side is responsible for the divergence of X. That
u=3 for T<T, at H=0 is not crucial here. It is only
for T<T, when limg.oC0 that limg.ou becomes
equal to § in our approximate theory. The X divergence
does not depend on the value that limg.ou and
limp .o (SiSi*) acquire at lower temperatures.

The behavior of the effective field parameter and the
role it plays in the divergence of the susceptibility also
clarifies the difference between our decoupling and the
RPA. In the RPA, the effective field parameter is the
magnetization ¢ and if we carry out an analysis similar
to the one used for determining C, we arrive at the
following result: For all 7>0,

H
lim —#£0.

H—0 o

This implies that for all nonzero temperatures the re-
sponse of the RPA effective field parameter to the ex-
ternal field is linear. In other words, the two-dimensional
lattice remains paramagnetic in the RPA, so the
susceptibility cannot diverge at any finite temperature.

8. SPECIFIC HEAT AT LOW TEMPERATURES

Recently, Miedema et al. have reported some
measurements?® on the heat capacity at low temperatures
of (spin one-half) ferromagnetic Cu(C.H;NHj;),Cls and
Cu(CH;3;NH;),Cl,. These compounds have crystal
structures which can perhaps be regarded, from a mag-
netic point of view, as being two dimensional since the
interactions between the magnetic copper atoms within
a layer are much stronger than the interactions between
copper atoms in different layers. For both compounds,
a plot of the specific heat versus temperature reveals
two transition temperatures. At temperatures below
4°K, the results are described by a dominant linear
dependence of the specific heat on temperature.
Miedema et al. identify the higher of the transition
temperatures with the predictions of Stanley and
Kaplan, while they attribute the lower one to possible
anisotropy or departure from two dimensionality, either
of which could conceivably lead to ferromagnetic order-
ing of the usual kind. As pointed out in Ref. 9, a
dominant linear dependence on temperature of the
specific heat strongly supports the idea of a two-
dimensional ferromagnet. However, in an elementary
spin-wave treatment of the problem, one needs an
anisotropic interaction to achieve a linear dependence
of the specific heat on temperature and anisotropy leads,
of course, to ferromagnetic ordering. In our treatment,
as we shall presently show, we obtain, at sufficiently
low temperatures, a linear dependence of the specific
heat on temperature, even for the completely isotropic
Heisenberg model without, of course, ferromagnetic or-
dering of the conventional kind. Thus, there is no need
to assume anisotropy to explain the low-temperature
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portion of the heat-capacity curve, since we can explain
this result even for the completely isotropic Heisenberg
interaction. Of course, the presence of two transition
temperatures in the experiments of Ref. 9 may, in fact,
indicate the presence of anisotropy which leads to
ferromagnetic ordering at a lower temperature. What
we point out, however, is that the linear behavior of the
specific heat is not a sufficient condition that ferro-
magnetic ordering, caused by anisotropy, or departure
from two-dimensionality exist, for even the completely
isotropic interaction gives the same result at sufficiently
low temperatures.
To calculate the specific heat, we need the internal
energy per spin, which is given by
()  gH 1
Us——=——(T S&)—— L X J(E-8)(S,S,).
N N N s 4

By standard techniques of Green-function analysis,?!
this can be written in the form

1
U= -igH‘Z](0)+(gH+7](O)); 2/: /Tff(w)dw
1
+—> /wrff(w)dw
2N 1

“3EZ (= [rnlelda, (49)
f g
where 1
Tr(w)=—2 e =r(kw)
N &
and

_G(k,w—f—ie) —G(kw—ie)

T(k,w) = lg(}p eﬂw__ 1

Combining Eq. (49) with Egs. (17), (18), (20), and
(28) we obtain
=1gH—(S")[3gH+37(0)]
+C[37(0)—17(0)(5)—3/(0)u]—rJ(0).
The specific heat at constant field, Cy, is given by

Cuy=(dU/d8T)g. In particular, for H=0, we have from
Eq. (50), on remembering that

(50)

e . 1
2210(.5) 0 and E{nmu(T<Tu) 7

a
Cu—oT)=—3J(0)— lim C. (51)
oT H—0

C(T) at low temperatures, 7<KT, is calculated in
Appendix B using techniques appropriate to a low-
temperature expansion in powers of (7/7.). Referring
to Eq. (B6), we then have for the specific heat

Cu=aT+bT*+-- -,

2 See, e.g., S. V. Tyablikov, Methods in the Quantum Theory of
Magnetzsm (Plenum Press, Inc., New York, 1967).
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a dominant linear dependence on temperature with

$(2) kp? Ep?
a=— — erg/(°K)2=0. 13——— erg/(°K)?
4 J J
and
3¢(3) ks? kg
b=——— erg/(°K)3=0.04— erg/(°K)3.
327 J? J?

9. CONCLUSION

Our theory is not exact, and if a phase transition does
exist in the two-dimensional Heisenberg ferromagnet a
detailed and correct description of the low-temperature
phase will have to await more elaborate approximations.
However, simple as it is, our model does represent a first
step toward providing some insight into phase transi-
tions which, unlike those in three-dimensional systems,
do not arise from a broken symmetry.

An alternative description!-?? of the two-dimensional
spin system, which would fulfill the requirements of a
divergent susceptibility and no spontaneous magnetiza-
tion, has been proposed along the following lines: As
long as X~ (So-S,) diverges, the susceptibility will also
diverge and, therefore, a (So-S,) function which behaves
like = with A<2 at large distances will be sufficient to
guarantee a divergent susceptibility. Dyson?* went on
to actually make an heuristic derivation of this asymp-
totic behavior, thereby obtaining an explicit expression
for \. While it is attractive to speculate that this kind
of power-law dependence for the correlation function
sets in at low temperatures, our theory suggests a
different form for the correlation in the system which is
consistent with a divergent susceptibility and no
spontaneous magnetization. This is the fact that the
two-dimensional lattice may possess quasi-off-diagonal
long-range order of the kind we have analyzed earlier,
and which is suggested by our theory. QODLRO would
mean that there is much larger correlation in the spin
system than is allowed for in the suggestion of Ref. 22,
where the correlations would die down rather rapidly as
the spin sites are separated. In view of the fact that the
two-dimensional Heisenberg spin system is on the edge
of being spontaneously magnetized (the upper limit for
(S%), 1/(InH)} goes very slowly to zero, and for
H~1/N, the upper limit is only about % for a finite
system), it is not unreasonable to suppose that the cor-
relations between the spins are rather large at low tem-
peratures. QODLRO may then reflect the fact that the
low-temperature phase possesses a large total spin,
which serves to minimize the exchange energy, and zero
(S#) rather than a large total spin and finite or maxi-
mum (S?) which is forbidden by the large fluctuations
associated with a low dimensionality.

The shortcoming of our calculation lies in the fact
that the transverse correlation (S.55;%)4(S#S¥) is

2 F. J. Dyson, lecture given at the Brandeis Summer Institute
for Theoretical Physics, 1966 (unpublished).
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larger than an upper limit set by spin kinematics. How-
ever, as we have pointed out previously, every calcula-
tion made on the basis of a Green-function approxima-
tion scheme will undoubtedly violate some exact con-
straints. What has to be considered is whether the
violations invalidate the principal results derived in the
particular approximation scheme or whether they point
only to the approximate character of the theory while
leaving its main conclusions substantially unaltered.
As we have analyzed earlier, neither of the two principal
results of our theory, the divergence of the static
susceptibility or the absence of spontaneous magnetiza-
tion, are crucially linked to the precise value that the
transverse correlation function attains in the low-
temperature phase as the external magnetic field is
completely switched off. We can thus justifiably regard
the violation of the inequality as being a shortcoming,
which a better approximation should eliminate, but not
a drastic enough one to invalidate our results concerning
the existence of the transition and the qualitative nature
of the low-temperature phase.
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APPENDIX A
We wish to show that 91(H), given by

e

X{coskiN1 coskalNs— cosky | coth3f[ H+ E(k) ]}

is bounded for N1 and/or N, finite as H tends to zero.
The only possible reason for a divergence of lim . ¢JU(H)
would be a divergence of this integral due to the be-
havior of the integrand for k; and k; near zero. The
analysis is simplified if we first utilize obvious sym-
metries to write

N(H)=2 / / dksdks
0 0

X [coskiVy coskalVa— coskiVy coskeN1— coski— cosks |

X cothiB[H+EK)].

For fixed N1 and N, the integrand behaves ultimately
according to the obvious small &1, & expansions so that
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we get

E)Z(H)‘—"//d/hdsz(kl;k?:H)’
0Jo

where for &y, k2— 0, and H— 0

2 (3—3N2— 3NN (k2 +k2?)
I(/ﬁ,kz,H)N—
B  [HAiC(:*+ke?)]

Clearly for H going to zero and C finite (we are in the
low-temperature phase), there is no divergence problem
of any sort at the zero limits so that

lim SUH) < e,
H—-0

APPENDIX B

To evaluate C as a function of temperature for 7T
we use techniques appropriate to an expansion in powers
of T/T.. Rewriting Eq. (28) as

1 1 d?(1—cosk,)
Z‘*E 2#)2//eﬂlH+0e(k)1_ ?
making use of the identity

1
e*—1

(B1)

—nT

n=1

and the following integral representation!? of the Bessel
function of pure imaginary argument

I.(x) @ —a cosy d
n(X)= €% % cosmy ay,
@) g
we obtain

with

o= 3" eBEA e (nx) T

n=1

- éle‘ﬁH”[e‘””h(nx)][e_""lo(%x)] (B3)

and x=pC/2. In the above we have made use of the
fact (see Eq. 28) that

e(k)=1—% coski—% cosks.

B is in the dimensionless units defined earlier. We put
7=1/8 (7 is now the temperature in our units) so that
low temperatures means 7—0 and C/r is a large
quantity (we remember that limg.oC5£0 at low tem-
peratures). The following asymptotic expansions's are
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then convenient:

{ 1 9
e =Io(x)= 14—+ + ,
Qrx)\" ' 8z 128x?
3 15 (B4
e*I(x)= (1———
(2wx)? 8x 1282

Equation (B2) is a coupled equation for C and the most
convenient solution is obtained by substituting (B4)
in (B3) and then solving iteratively for C to any desired
power in 7. In the limit H— 0, the solution correct

through O(+%) is
@) Q)

lim C=2——72——73
H—0 T 2

(BS)
where {(p) is the Riemann zeta function defined by
w0 1
(=% —.
n=1pP

Using the fact that the critical temperature T,=2J/kg
and that 8 (and 7) is being measured in units of k5/2J,
we can rewrite (B5) as

S@yTN )y TN?
limC=2——|—) ———) -+ for T<KT.. (B6)
H-0 = \T, 2r \T,
APPENDIX C

To derive the inequality mentioned in (53), consider

a (sub) system of N spins of magnitude S=% and
compute, in any state, the quantity
N
( Z~:1 S)%=(Stt?)
=5 (ST T (5757)
% ()
FE T (S5, (€D
177

Since S’ <FNGN+1), S#=4, (S#)°=% for S=3, and
2 2 ASaS)= Z (S#(Stot™—S)),

[
Eqg. (C1) can be reexpressed as
INGN+1)>$N— 1N+ ((Sit?)?)
+N(N_ 1) ((Si_Sj+))av ] (CZ)

where the notation ( ).y denotes the average value of
(SiS;+) over the N(V—1) pair of spins in the system.
Since ((St04%)?)=>0, we then have the inequality

((Si“Sj+>)av_<_ (C3)

av-1)
It is obvious that a similar inequality holds for

((Sl S]>) avy ViZ.

((S:-8;))av< ad
( j av.._4( __1)



