
PH VS ICAI REVIEW VOX UME 178, &(UMBER 10 FEBRUARY 1969

Kondo Resistivity tIue to a Pair of Interacting Imyurities
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The Kondo-type resistivity due to the scattering of conduction electrons by a pair of interacting magnetic
impurities of spin —, dissolved in a nonmagnetic host is calculated as a function of the distance E between the
impurities and their coupling 5'. The Kondo Hamiltonian is used, and the scattering amplitudes are calcu-
lated up to third order in energy. For small 8'/kpT and large E, the resistivity of the pair reduces to twice
the Kondo resistivity of one isolated impurity; for large W/heT and small R, the pair acts practically as one
single spin, and gives a Kondo resistivity —corresponding to spin of l, or (depending on the sign of 5'1, no
spin-dependent resistivity at all~orresponding to a spin of 0. For intermediate S', one verifies (taking
for g the Rudermann-Kittel-Yosida indirect interaction) that the anomalous Kondo resistivity of two
correlated impurities increases less rapidly (for decreasing temperature) than the resistivity of two isolated
noninteracting impurities; this is in agreement with experiments. Therefore, it is suggested that this simple
procedure may be useful to describe the resistivity of dilute alloys of CuMn type, when the concentration is
not sufFiciently small to neglect the correlations between the impurities.

I. INTRODUCTION

XCEPT in the case of extreme dilution one shouM,

~ not, in principle, avoid taking into account thc
correlations between impurities when describing the
Kondo resistivity of dilute alloys like CNMn. Within

the hypothesis of isolated impurities, the scattering of
conduction electrons already is a very dificult problem,

Thc sltuatloIl bcconms worse lf onc wlshcs to take into
account multiple scatterings by coupled impurities. As

a very rough attempt in that direction, we present here

a calculation of the resistivity due to scattering of con-

duction electrons by one pair of interacting impurities

within the following assumptions, whose limit of validity
will be discussed: We perform the calculation of the
scattcI'lng amplitudes ln pcl turbation thcoI'y up to
third order; we adopt the s-d exchange model of the
Kondo' Hamiltonian and suppose a weB-behaved spin

for each impurity which, for the sake of simplicity, we

take to be —,'; we assume the conduction electrons to be
free and the two spins Sr and Ss coupled by an interac-

tion W which we will discuss. Our purpose is to obtain

information about how the anomalous Kondo behavior

lnT is modi6ed when correlations between impurities

cannot be neglected. Experimentally, ' indeed, the ab-

solute slope of the lnT term decreases when the impurity
concentration lncrcascs l.e. When the coI'I'elatlons be-

come more and more important. It is also interesting to
see how this pair resistivity changes from a small-

couphng regime (the two impurities very far apart high

temperature) to the large-coupling one (impurities erst
neighbors, low temperature). The erst case is accounted.

for without any trouble by perturbation theory. As for

the second case, one can use the physical analogy be-

tween the problem of one impurity in the presence of an

I J. Kondo, Progr. Theoret. Phys. (Kyoto) 82, 37 (f964).
2 See for example review papers: M. D. Daybell and %'. A.

Steyert, Rev. Mod. Phys. 40, 380 (1968); G. J. van den Berg, I.om

Temperature Physics (Plenum Press, Inc. , New York, 1965), p.
955.

external magnetic 6eld H, and the present problem of
two impurities with no external 6cld, but where each
impurity "feels" the field of the other one. For one im-
purity in an external Geld B, More and Suhl' have
shown that perturbation theory is valid not only for
II&&k~T above the Kondo temperature T~, but also
for II»k~T below T~, above a certain critical 6eld H~.
By analogy, we hope here to reach, by means of pertur-
bation theory, a I'easonable conclusion in the large-
coupling case lV&&k~T, as well as in the small-coupling
one 8'(& k~T. Actually, the magnctoresistivity problem
and the present one, though analogous, exhibit some
characteristic diGerences. In particular, we have shown
elsewhere' that the InT behavior of the resistivity of one
impurity in the presence of an external held H switches
to a InP when one goes from the regime B(gk~T to
H»k~T, because the spin is frozen in the strong field
B and can no longer Qip with respect to the conduction
electron; the spread of the Fermi surface then is no
longer in k~T but in II.Here, too, for a large coupling
t/t'&&k~T, each spin is frozen with respect to the other
(and the pair then forms a singlet or a triplet, depending
on the sign of W), but the pair, as a whole, can still flip
with respect to the conduction electron like one single
scatterer. Therefore, one expects that, at variance with
the magnetoresistivity, a lnT behavior still remains in
the large coupling case, if the pair is in a triplet state
(ii(= jSr+Ss( =2S). One 6nds, of course, no spin-
dependent resistivity at all, if the pair is in a singlet
state (~I~ =0). Between the two above extreme cases
(W))AT or((knT), we obtain a formula for the resistiv-
ity of the pair where the distance E appears in oscillat-
ing functions of E. describing the interferences between
the two scatterings on each impurity, and W/kaT ap-
pears in Boltzmann exponentials describing the state
of the pair. For each value of R and W/kIsT, one can

' R. More and H. Suhl, Phys. Rev. Letters, 20, 500 (1968).
4 M. T. Seal-Monod and R. A. Weiner, Phys. Rev. 170, 552

(1968).
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then know the coeKcient of the Rondo contribution
lnT. In an example given at the end, it is shown that, for
physical cases, the absolute slope of the lnT is decreased
by the presence of interactions, which is the behavior
observed experimentally.

As far as the hypotheses of the present calculation are
concerned, we note the following:

(1) The s-tE exchange model with two well-defined
spins is a basic assumption which has been discussed ex-
tcDslvcly 1D thc lltcx'Rtul e fox' thc onc-lIDpullty pI'oblcm.
We choose it here only for the sake of simplicity, in order
to get a simple explicit formula, keeping in mind that
one should, in principle, treat the problem starting from
the Anderson Hamiltonian, although the calculations
would then be more dificult to handle in an explicit way.

(2) The interaction W physically represents the in-
dlx'cct Interaction bctwccD thc lmpurltles via thc con-
duction electrons. Therefore, in principle, we should not
have to take it for granted by introducing it from the
beginning, but we should get it as well as the scattering
amplitudes, self-consistently, from the perturbative
series. This would be the rigorous way of studying the
problem. It is not simple. To make the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction appear in
the resistivity in such a way, would imply examining
higher orders than the third one in the perturbative
series, and self-consistency would probably imply sum-

ming the whole series. Work is in progress in that direc-
tion. ID the present paper, we will speak in terms of a
general W (which may as well be any force coupling the
two spins) and only at the end give a brief quantitative
discussion of the result one obtains when one replaces
H/' by the CBective RKKV interaction.

II. CALCULATION OF THE RESISTIVITY
OF THE PAIR

Wc Dow CRlculatc thc relaxation time entering iD thc
calculation of the resistivity within the above hypothe-
sis. The second-order perturbation calculation of this
problem has been studied in detail in "pre-Kondo"
papers' and we start here in exactly the same framework.

The unperturbed Hamiltonian contains the kinetic
energy of the free conduction electrons and the coupling
bctwccn thc two impurities:

H, =p/2~ —WS, S,.
' M. A. Rudermann and C. Kittel, Phys. Rev. , 96, 99 (1954};

T. Kasuya, Progr. Theoret. Phys. (Kyoto), 16, 45 (1956); K.
Yosida, Phys. Rev. , 106, 893 (1957); ere will henceforth refer to
the indirect Rudermann-Kittel-Kasuya-Yosida interaction as the
RKKY interaction.

6A. D. Srailsford and A. %'. Overhauser, J. Phys. Chem.
Solids 15, 140 (1960); ibid. , 21, 127 (19Q); T. Van Peski-Tin-
bergen and A. J. Deklmr, Physica 29, 917 (1963};M. T. Seal,
Thesis, University of Paris, 1963 (unpublishedl; J. Phys. Chem.
Solids 2S, 543 (1964); M. T. Seal and J. Priedel, Phys. Rev. 135,
A466 i1964).

The eigenvalues of Bo are

Eo= k'k'/2m+ Wr

Wr= s WLs —I(I+1)3,
(2)

I=St+Sr,
i
I i

=0 or 1.
(3)

which~ for convenience) wc wDtc Rs follows:

Hi= 1/E(V(r)+ V(r—R)
—(J(r)+J(r—R))s (Si+S,)

—(J(r)—J(*—R)&s. (Si—Ss)} (5)

The s (St+Sr) part will leave the total spin of the pair
unchanged, whereas the part s (Si—Ss) will allow tran-
sition from

(
I

(
=0 to ( I (

= 1 and vice versa. As there is
no external magnetic held present, the relaxation times

7+ and v for spin-up and -down electrons are equal. For
the same reason, the thermal average of the s component
M of I is zero, but one will need the Boitzmann proba-
bilities for the pair to be in a singlet (~ I

~

=0) or a triplet
(~I~ = 1) state given, respectively, by

pirl Q ps 1/t 1+3 exp(W/keT) jt,

p~n i=pi=exp(W/AT)/L1+3 exp(W/AT)j, (6)

ps+ 3pi= 1.

The spatial matrix elements of Hy between two plane
waves of wave vectors k and k' lead to the Fourier trans-
forms of V(r) and J(r), for which we adopt the same
simpli6cation used by Kondo, ' assuming

V(k—k')~const. = V,
J(k—k') const. =J.

It then remains to take the matrix elements of the
Fourier transforxn of B~ which is

Hi (1+e'&" a'&' )(V———Js (Sr+Sr))
—(1—e"" "')» (Si—Ss). (g)

Reading from right to left {witli fis, equal to the s com-
ponent of s, having the values ~-', ; and 3f=0, &1), the
spin matrix elements (tie', I',M'~Hi~en, I,m) involved in
the relaxation times, with selection rules taken into

The first impurity St is supposed to be located at the
origin and. the second one Ss at the distance R. The con-
duction electron s is located at r. The perturbation
within the s-d exchange model contains two spin-inde-
pendent parts (one on each impurity) and two spin-
dependent ones; for Ã lattice sites in the metal host

Hi= 1/E(V(r)+ V(r R)—
—2J(r)s Sr—2J'(r —R)s Ss), (4)
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account, are the following:
(m, ,0,0 fHi fm, 0,0)= (1+e'&'R) V,

(m, 1,0 f
Hi

f m, 0,0)= —(1 —e'& R)'Jm

(m%1, 1, &1f Hi f
m, 0,0)=a (1—e'& R)J/K2,

(m, 1,M fHi fm, 1,M)=a(1+e'&' )(V—JmM),

(m, 0,0 f
Hi fm, 1,0)= —(1—e'p'R) Jm,

(m&1, 1, &1fHi fm, 1,0)= —(1+e'&'R)J/K2,

(m&1, 1) OfH&fm, l) &1)=—(1+e'p' )J/K2,

(m&1, 0, 0 fHi fm, 1,%1)=%(1—e'&'R) J/K2,

&=0

e= 8'
&=0

&=0

&=0

q is the difference between the wave vectors before and after the transition, and e is the amount of energy absorbed

by the conduction electron in each process: It will appear in differences between the energies of the initial and inter-
mediate states of the set {conduction electron+pair}, and in the modification of the transport equations. The
calculation of the relaxation time r+= r = r is straightforward, and may be performed as it has been elsewhere, '
taking into account the remark we emphasized in Sec. II.A of Ref. 4. One finds

1 kmQ 1
(1—cos8) sin8d8 —dQR

2mb'Ã2 0 4m

1 1
aV'+3bpp ,'J' -+'J'ap—i+ 'J-'bpi -+Z, (10)

1 fk(1 e W—&»T) —— 1 fk(1 eW—I»T)—

~=V'V(pp pi)Z — + {2a—ai}
ck p +W pk p —W

q q

+~J'Pp Q {2b+bi}— {2b—b, }
pk —pp+ W &k f (1 e w1»T)—

+4J'pi 2 {2b+bi}—
~k—~q

—8' k

-{2b—bi}
f (1 ewl»T)

q fp fp
+gJ'pi Q — {2a—ai}— — {2g+g,}, (11)

p+W Ek E —W— tk 6q

where Q is the total volume of the metal, (1/4s. )J'dQR designates an average over all the possible orientations for

R, and m is the mass of the electron.

g= (1+e'x'R)(1/e 'x'R)= 2+(e~& R+e—~& R)

b=(1—ei"' )(1—e
—'x ")=2—(ei& R+e 'ir'R)

K=k' —k, fk'f fkf, fKf =2& sjnpi8,

(12)

(13)

where 8 is the scattering angle between k and k', and the scatterings can be considered as quasi-elastic. (The error

is of order W/pz, where pz is the Fermi energy, and can be neglected. )

ai ——ne 'p'R+c. c., bi= pe 'p +cc.
~—2 (elk' ~ R+.elk

~ R) P —2 (elk' ~ R elk
~ R)

The conductivity is then given by
g2 8

k'r dok.
86k

The resistivity p=e' can be calculated explicitly, for any value of W/AT, only in the case J((V. Let us

separate:
1 Z

(1—cos8) sin8d8 — dQR—=gp+gi,
4~

(16)
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where Zo contains terms in a and b, and Z& contains terms in aj. and b j, According to formulas already used in Ref.
(4), which we summarize in Appendix A, one finds

Z, = ,'J' V-(p, p, )—a(3s/2& p)( ,'J—(—W—/keT)+ ', J+(-W/keT) }
+—,'J'pob[1 —fq(1—e ~'"e )] '(2+in~keT/2e~~ ——',J (W/keT) ——,'J(0)}
+ ~~ J'Pib[1 —fq(1 —eir~~&")] '(2+in

~
keT/2eF

~

—
2 J+(W/keT) —

~J(0)}
+23J'p, a(4+2 ln~keT/2ep~ 2J+—(W/keT) 2J —(W/keT) J(0—)}, (17)

where z is the number of conduction electrons per atom.

1r 1
(1—cos8) sin8d8 — dQaa=-4+16/(2kR)4[2(2kR) sin(2kR) —((2kR}'—2) cos(2kR) —2],

6 4m.

(18)

(1—cos8) sin8d8 —dQ&b=4 —16/(2kR)'[2(2kR) sin(2kR) —({2kR}2—2) cos(2kR) —2],
0 4x

Bf 3s
«~Zo=gJ' bpip 4+2 ln

86g 26F

kgT Wq
+2I~

~
+api 4+2 ln

2ep keT)

(Wy+I,i i+I,(0)
2ep keTi

(19)

The functions I~ and I2 are also reviewed in Appendix A.

pi is given by (6).

p=
~S'/k~T

(20)

Zi= 'J'V(p—o pi)(A—+ A)cx—+,'J'po/[—1 fq(1 —e'"—)](—A++A )p

+~~JSPi/[1 fj,(1 e~—' er)]—( A++A —)P+~~J' Pi(A++—A —2Ao)u, (21)
7r 1

(1—cos8) sin8d8 — dQRn=
9 4m

8 sinks

1
(1—cos8) sin8d8 — dQRP= 0

0 4x

Bf 16 sin'(k~R) 3e W~~
de~Zi= 4J'pi —Ii(0)—Ii

Beg (kpR)' 2p keTJ

and then the resistivity is given by

3v tn vo 1 9Js ( k&T
p= —— ai V'+2J'a~Pi+6J'Pl++ 2bpP1p~ 1.568+in +I~~

~

—Ii(0) (

2eF e'A E 2 ~F 2ep kkeT) )

(22)

(23)

1—cos(2k') ( W ~y--
+-',a,p, 1.5 8+in +p I,

I

—I,(0) ) +4p,
(
I,(0) I,

~ ) (24)
2i 4 kaT3 ) (2k pR)' ( keTi ]

aF and bF are the value of u and b for k=kF, and vo is two Kondo resistivities on isolated impurities. An
the atomic volume of the metal. indeed, (24) leads, then, to

IIL QUALITATIVE DISCUSSION

Let us first examine some special cases:

(a) W/k&T —+ 0, R ~~; i.e., practically noninteract-
ing impurities, very far apart from each other. One ex-
pects the resistivity of this pair to reduce to the sum of

3' m 2
P= vo—

2eF g2Pg, g
3Jz k+T

&«V'+-.'J' 1+ 1.568+in ~ . (23)
6F 2F
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Let us recall that the usual Kondo resistivity on one finds

spin 8 is
3x ns vo 1 9J's

p= ———apV'+ap ', J'+-
2ep e'637 2 6p

3' m 1
px,„e,= eo—V'+ J'S(S+1)

2eg e It E~
'keT ) 4 1—cos(2k pR)

X 1.568 ln x', e
2ep I 3 (2kpR)'

W 4 1—cos(2k pR) )
+i 2+in i'gap ——

4e p 3 (2k pR)'

3Js keT )—
1+ 1.568+in

6p , 2ep

Here S=-', , so S(S+1)=~.
{b) W/AT —+0, R finite; i.e., two imPu~ities at a

distance R from each other, uncorrelated. One gets
from (24)

3' m 80 1
p= ——apU'+ ,'J'ap+ -',J'-

2t p e'h E 2

Thus (28) has a purely Kondo-like temperature de-
pendence, through ln

~
keT/2e p ~, but with a coefficient

different from the Kondo resistivity (25) by a ratio
—,', ap+-', L1—cos(2k pR)]/(2k pR)'.

9J's keT ) (e) W/keT ~ —~, R —&0: One has two interacting
+ — 1568+»

I (26) spins with a total spin 0 (antiferromagnetic coupling);
then no spin-dependent resistivity at all is expected:

/This is the formula we should have found instead of

(24) if we had not introduced W in (1).]Whereas oscil-

lating interference terms appear in second order through

a~, there is no interference in the third-order contribu-
tion. This is quite understandable: cf. the fact that, in

optics, two incoherent sources of light cannot give rise

to any interference; here, the coherence which existed
between the scattered parts of the conduction-electron

plane wave on the two spins in second order vanishes in
third order if there is no coupling between the two spins,
because, after the intermediate processes on each spin,
there is no more coherence between the two outgoing
waves.

(c) W/kBT ~+~, R ~ 0; i.e., the two spins come
into contact (of course, in a metal this extreme case
cannot happen, 8;„is equal to the 6rst neighbor dis-

tance), and they are ferromagnetically coupled, so they
form a triplet of total spin I= 1 and a spin-independent

potential equal to 2V. So a Kondo resistivity due to a
spin of 1 is expected. And indeed (24) gives

3x' tps 'vo

p=
2ep e'h S

3' kgT
&( (2V)'+2J' 1+ 1.568+in . (2'/)

26p'

[J'I(I+1)= 2J' for I= 1].

(d) W/keT) 10, R finite; i.e., two strongly ferro-
magnetically coupled spins but separated by the dis-

tance E.. At variance with the magnetoresistivity prob-
lem' for H/AT) 10, according to the discussion in the
Introduction and in agreement with the preceding case,
the resistivity is still temperature dependent; writing
1n~W/2keT~ =ln[W/4ep~ —ln~keT/2ep[, one expects
a contribution IntkeT/2ep~ to remain. One, in fact,

3x' 5$ vp

p= —4V'.
2ep e2h g

(29)

(f) W/keT( —10, R finite; two strongly antiferro-
magnetically coupled spins at distance R give no tem-
perature-dependent resistivity

3x' ts vp

P= ——,'cp V'
2ep e9s X

(30)

We can conclude here from (24) that

(1) the coefficient lI, of ln
~
keT/2ep ~, which is

9J's
'( 2 6pp 1u+ 2app1 )

26@
(31)

In the general case, let us compare (24) with what is
known experimentally. ' The experimental situation is
the following: when the impurity concentration in-
creases, i.e., when the correlations between impurities
can no longer be neglected, one observes a maximum in
the complete p—T curve. This maximum corresponds to
some spin "ordering" (see, for example, the fourth and
fifth of Ref. 6 or last section of Ref. 4). Below the maxi-
mum, the resistivity is better described in terms. of an
average molecular 6eld. %'e are interested here in the
part of this curve above the maximum. Above the maxi-
mum, experimentally,

(4) The coefficient of in~ keT/2ep~, constant for ex-
treme dilution, then becomes temperature dependent:-
the straight line obtained by plotting p versus lnT be-
comes curved.

(2) This coefficient remains negative, as it was for
extreme dilution, but its absolute value decreases, ' the
"slope" of lnT becomes less steep.
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is indeed temperature dep-endent through pl(T) and)2(T),
except for extreme dilution, i.e., for very weak coupling
RIld R lR1'ge d1stance between lmpulltles (W/kIIT ~ 0
R-+~), where

Let us write the pair resistivity (24) as

3x' fg
pysir= {R+AR}&

2~y e'k S (35)

(32)

which is the coefficient of lnT in the Kondo resistivity
for isolated impurities t cf. (25)].

(2) X is indeed negafne because J is negative and the
bracket in (31) is positive: Pl and 12 are positive for all
values of W/k»T; and us and br take on positive values
very close to 4, whatever the value of E.

(3) Moreover„ the absolute value of X is smaller than
the absolute value of )

2brpr-p+ 2@2pl-&1 (33)

IV. NUMERICAL EXAMPI E

The interesting point is now to examine the tempera-
ture variation of resistivity (24) and, more speci6cally,
the coeNcient X of the 1QT contribution. This implies
the use of an explicit 8'. %hen H/ is due to the indirect
exchange via the conduction electrons, which leads to
the RKKV interaction, keeping in mind the last re-
mark of the 1Qtl.oductloQ, one shouM ln pIlQclple use in
(4) not the bare J and V but some J' and V' "dressed"
by the polarization contained in (1) in W. In the absence
of any information on J' and V', we present here a nu-
merical result with the bare J and V, simply to give an
example of what the pair resistivity looks like. It has
been shownr that if J is used in the resistivity, (2l+ 1)J
should replace J in the RED interaction to take into
account the orbital degeneracy /:

(21+1)2~2 2

We have veri6ed that (33) is true for all values, positive
or negative of W/kcT, and for R up to sixth neighbor
distance. So the absolute value of X decreases from its
value X„.

Therefore, the expansion (24) seems in good qualita-
tive agreement with the experimental observation. In
Sec. IV we will examine (24) quantitatively.

where we separate the second-order contribution E and
the third-order contribution 5R:

R= 22a2 V2+ ss Jsa2 pl+ 3J'pill, (36)

9J'»
p k T W

—2'f,p»l 1.56s+in +I, 1,(0)
~

2es ( 2es IIT i
k»T f W~

+22o~pr 1568+» —+211l
~

—2211(0)
22~ lk»Ti

1—cos(2k 2R) 8'
+4PI I,(0)—I, . (3y)

(2ksR)2 k»T

The contribution E. has been studied elsewhere. ' On
Fig. 1 we have only plotted AR versus T (on semilog
plot) for six different distances R„between the two spins
of the pair'. e= 1 corresponds to first neighbors, curve
A; n = 2 corresponds to second neighbors, curve 8; etc;
m=6 corresponds to sixth neighbors, curve Ii. The cor-
responding values of the interaction 8' are

8'= —113.4'K,
+ 51'K,
—28'K,

3.5 Ky

+ 14.25'K,

+ 2.25'K,

for R„=g&
E2

Ee
E4
E5
R6 ~

(3g)

Therefore, curves A, C, and D correspond to antiferro-
magnetic pairs and 8, E, and I" to ferromagnetic ones.
For T(&~ W~, curves A, C, and D correspond to the
resistivities of singlets of spin 0 studied in III (f), so
DR=0 Pcf. Kq. (30)$; whereas curves 8, E, and F
correspond to triplets acting as isolated spins I= I, as
was explained in III (d). For these last cases the corre-
spoQdlng low-temperature straight lines depend on the
distances E. ; their slopes

(2ksR„) cos(2ksR )—sin(2ksR )
(34)

( )'

E„is the distance between the two spins of the pair in
position of nth neighbors. Typically (in Cu-Mn, for
example), J —0.3 CV, (21+1)J —1.5 eV, es 7.1 eV,
s= 1. As we are merely trying to present a simple nu-
merical example, we neglect the temperature depen-
dence of the RKKV interaction, which shouM be taken
into account in a self-consistent study.

' See, for example, A. Blandin, J. Appl. Phys. 39, 1285 (1968).

9J'» 4 1—cos(2ksR„))
2 2gg+

(2k,R„)2 i
are actually very close to the asymptotic value &(9J2»/
2ez) (as even 2k2R2 is already much bigger than 1)
the three lines appear parallel on the 6gure. The straight
line on the right-hand side of the figure is the Kondo
resistivity of two isolated impurities given by Fq. (25);
it represents the common limit of all the curves g to p
when T))

~
W~. In between, all these curves present R,

maximum at a temperature T equal to the corresponding
coupling (38) T=W.
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FIG. 1.Third-order contribution b,R
to the pair resistivity (35), in units of
(eV)' versus lnT('K). The six curves
A—Ii represent the contribution of six
pairs at increasing distances: A corre-
sponds to the resistivity of a pair of
two erst neighbor impurities, 8 to the
second neighbors, ~ ~ ~ Ii to sixth
neighbors. The straight line, envelope
of these curves, at high temperature,
is just the usual Kondo lnT term for
two independent spins, uncorrelated.
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The behavior of these curves is quite encouraging, and
indicates that it might be worth while to re6ne this
approach in order to describe the resistivity of a real
dilute alloy, when correlations become important. One
must, of course, keep in mind that to the temperature
dependence of hR must be added the temperature de-

pendence of R, the second-order term, which has not
been included in Fig. 1. The description of a real dilute
alloy by a power expansion in C (the atomic impurity
concentration) up to C' involves:

(1) a generalization of the above calculation to an
arbitrary spin S;

(2) an average of the contributions of all possible
pairs, taken so that each pair contributes only if it is
isolated from other impurities. The erst part could be
done easily, and may also include an external magnetic
field; the second is more dificult to do rigorously.
Finally, the problem of self-consistency, pointed out in
the introduction, is more important but much more
difBcult.
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3s kggT
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APPENDIX A

I«&I —kI
I

Beni ( kkeTi i 1—fj,(1—e ~1» )

W I2(W/heT)
1p~3~+8' 12kBT

2k' T Sh(W/2k' T)

For I*I &2

We review here some formulas studied in Ref. 4,
which are useful in the present calculation:

I&(x)~ 0 432+0—091.x', .

Im(x)~ —0.432+0.030x'.
(A6)
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where "sint
dt,

tg

si.(u) =—
For lxl& l0

3.27
I (. ) 1 lrxl—

~ cost
dt)

x2

(A7)
ci(u) =
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APPENDIX B

We want to calculate the sum
One will need
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