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The Kondo-type resistivity due to the scattering of conduction electrons by a pair of interacting magnetic
impurities of spin § dissolved in a nonmagnetic host is calculated as a function of the distance R between the
impurities and their coupling W. The Kondo Hamiltonian is used, and the scattering amplitudes are calcu-
lated up to third order in energy. For small W /ksT and large R, the resistivity of the pair reduces to twice
the Kondo resistivity of one isolated impurity ; for large W/kpT and small R, the pair acts practically as one
single spin, and gives a Kondo resistivity—corresponding to spin of 1, or (depending on the sign of W), no
spin-dependent resistivity at all—corresponding to a spin of 0. For intermediate W, one verifies (taking
for W the Rudermann-Kittel-Yosida indirect interaction) that the anomalous Kondo resistivity of two
correlated impurities increases less rapidly (for decreasing temperature) than the resistivity of two isolated
noninteracting impurities; this is in agreement with experiments. Therefore, it is suggested that this simple
procedure may be useful to describe the resistivity of dilute alloys of CuMn type, when the concentration is
not sufficiently small to neglect the correlations between the impurities.

1. INTRODUCTION

XCEPT in the case of extreme dilution one should
not, in principle, avoid taking into account the
correlations between impurities when describing the
Kondo resistivity of dilute alloys like C«Mn. Within
the hypothesis of isolated impurities, the scattering of
conduction electrons already is a very difficult problem.
The situation becomes worse if one wishes to take into
account multiple scatterings by coupled impurities. As
a very rough attempt in that direction, we present here
a calculation of the resistivity due to scattering of con-
duction electrons by one pair of interacting impurities
within the following assumptions, whose limit of validity
will be discussed: We perform the calculation of the
scattering amplitudes in perturbation theory up to
third order; we adopt the s-@ exchange model of the
Kondo! Hamiltonian and suppose a well-behaved spin
for each impurity which, for the sake of simplicity, we
take to be % ; we assume the conduction electrons to be
free and the two spins S; and S; coupled by an interac-
tion W which we will discuss. Our purpose is to obtain
information about how the anomalous Kondo behavior
InT is modified when correlations between impurities
cannot be neglected. Experimentally,® indeed, the ab-
solute slope of the InT" term decreases when the impurity
concentration increases, i.e., when the correlations be-
come more and more important. It is also interesting to
see how this pair resistivity changes from a small-
coupling regime (the two impurities very far apart, high
temperature) to the large-coupling one (impurities first
neighbors, low temperature). The first case is accounted
for without any trouble by perturbation theory. As for
the second case, one can use the physical analogy be-
tween the problem of one impurity in the presence of an

1 7. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).

2 gee for e;(ample review papers: M. Daybell and W. A.
Steyert, Rev. Mod. Phys. 40, 380 (1968); G. J. van den Berg, Low
Temperature Physics (Plenum Press, Inc., New York, 1965), p.

3.

95
178

external magnetic field A, and the present problem of
two impurities with no external field, but where each
impurity “feels” the field of the other one. For one im-
purity in an external field H, More and Suhl® have
shown that perturbation theory is valid not only for
H<&kpT above the Kondo temperature Tk, but also
for F>>kpT below Tk, above a certain critical field Hg.
By analogy, we hope here to reach, by means of pertur-
bation theory, a reasonable conclusion in the large-
coupling case W>>kgT, as well as in the small-coupling
one W<<kpT'. Actually, the magnetoresistivity problem
and the present one, though analogous, exhibit some
characteristic differences. In particular, we have shown
elsewhere? that the InT behavior of the resistivity of one
impurity in the presence of an external field H switches
to a InH when one goes from the regime H<kgT to
H>FkpT, because the spin is frozen in the strong field
H and can no longer flip with respect to the conduction
electron; the spread of the Fermi surface then is no
longer in k3T but in H. Here, too, for a large coupling
W>>kpT, each spin is frozen with respect to the other
(and the pair then forms a singlet or a triplet, depending
on the sign of W), but the pair, as a whole, can still flip
with respect to the conduction electron like one single
scatterer. Therefore, one expects that, at variance with
the magnetoresistivity, a InT behavior still remains in
the large coupling case, if the pair is in a triplet state
(|I]=|81+8S:|=2S5). One finds, of course, no spin-
dependent resistivity at all, if the pair is in a singlet
state (|I| =0). Between the two above extreme cases
(W>>kpT or<<ksT), we obtain a formula for the resistiv-
ity of the pair where the distance R appears in oscillat-
ing functions of R describing the interferences between
the two scatterings on each impurity, and W/ksT ap-
pears in Boltzmann exponentials describing the state
of the pair. For each value of R and W/kgT, one can

3R. More and H. Suhl, Phys. Rev. Letters, 20, 500 (1968).
4+ M. T. Beal-Monod and R. A. Weiner, Phys. Rev. 170, 552

(1968).
874



178

then know the coefficient of the Kondo contribution
InT. In an example given at the end, it is shown that, for
physical cases, the absolute slope of the InT is decreased
by the presence of interactions, which is the behavior
observed experimentally.

As far as the hypotheses of the present calculation are
concerned, we note the following:

(1) The s-d exchange model with two well-defined
spins is a basic assumption which has been discussed ex-
tensively in the literature for the one-impurity problem.
We choose it here only for the sake of simplicity, in order
to get a simple explicit formula, keeping in mind that
one should, in principle, treat the problem starting from
the Anderson Hamiltonian, although the calculations
would then be more difficult to handle in an explicit way.

(2) The interaction W physically represents the in-
direct interaction® between the impurities via the con-
duction electrons. Therefore, in principle, we should not
have to take it for granted by introducing it from the
beginning, but we should get it as well as the scattering
amplitudes, self-consistently, from the perturbative
series. This would be the rigorous way of studying the
problem. It is not simple. To make the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction appear in
the resistivity in such a way, would imply examining
higher orders than the third one in the perturbative
series, and self-consistency would probably imply sum-
ming the whole series. Work is in progress in that direc-
tion. In the present paper, we will speak in terms of a
general W (which may as well be any force coupling the
two spins) and only at the end give a brief quantitative
discussion of the result one obtains when one replaces
W by the effective RKKY interaction.

II. CALCULATION OF THE RESISTIVITY
OF THE PAIR

We now calculate the relaxation time entering in the
calculation of the resistivity within the above hypothe-
sis. The second-order perturbation calculation of this
problem has been studied in detail in “pre-Kondo”
papers® and we start here in exactly the same framework.

The unperturbed Hamiltonian contains the kinetic
energy of the free conduction electrons and the coupling
between the two impurities:

Ho=p2/2'm——WSySz. (1)

§ M. A. Rudermann and C. Kittel, Phys. Rev., 96, 99 (1954);
T. Kasuya, Progr. Theoret. Phys. (Kyoto), 16, 45 (1956); K.
Yosida, Phys. Rev., 106, 893 (1957); we will henceforth refer to
the indirect Rudermann-Kittel-Kasuya-Yosida interaction as the
RKKY interaction.

8 A. D. Brailsford and A. W. Overhauser, J. Phys. Chem,
Solids 15, 140 (1960); #bid., 21, 127 (1961); T. Van Peski-Tin-~
bergen and A. J. Dekker, Physica, 29, 917 (1963); M. T. Beal,
Thesis, University of Paris, 1963 (unpublished); J. Phys. Chem.
Solids 25, 543 (1964); M. T. Beal and J. Friedel, Phys. Rev. 135,
A466 (1964).
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The eigenvalues of H, are

Eo=128/2m4-Wr, @)
Wr=3W[3—II+1)],
with
I=8,+8,, ©)
[I|]=0o0r1.

The first impurity S; is supposed to be located at the
origin and the second one S; at the distance R. The con-
duction electron s is located at r. The perturbation
within the s-d exchange model contains two spin-inde-
pendent parts (one on each impurity) and two spin-
dependent ones; for IV lattice sites in the metal host

H=1/N{V(©)+V(x—R)
—2J()s-S1—27(x—R)s- Sy}, (4)

which, for convenience, we write as follows:

Hi=1/N{V(@)+V(E—R)
—{J(@)+J@—R)}s- (Sr+S)
—{J@)—J@—R)}s- (S:1—S)}. (5)

The s (S14S;) part will leave the total spin of the pair
unchanged, whereas the part s- (S;—S,) will allow tran-
sition from |I|=0 to |I| =1 and vice versa. As there is
no external magnetic field present, the relaxation times
74 and 7_ for spin-up and -down electrons are equal. For
the same reason, the thermal average of the z component
M of 1is zero, but one will need the Boltzmann proba-
bilities for the pair to be in a singlet (|I| =0) or a triplet
(]I} =1) state given, respectively, by

Pin—o=po=1/[14+3 exp(W/ksT)],
pin—1=p1=exp(W/ksT)/[1+3 exp(W/ksT)], (6)
pot3pr=1.
The spatial matrix elements of H; between two plane
waves of wave vectors k and k’ lead to the Fourier trans-
forms of V(r) and J(r), for which we adopt the same
simplification used by Kondo,! assuming
V(k—k')~const.=V,

J (k—k")~const.=J. 2

It then remains to take the matrix elements of the
Fourier transform of Hy which is

Hy= (1466 ) (Y — Js- (S1+55)}
—(1— i) B) J5. (S,—S,).  (8)

Reading from right to left (with m, equal to the z com-
ponent of s, having the values &=%; and M =0, +=1), the
spin matrix elements {(m/,I’,M'|H|m,I,m) involved in
the relaxation times, with selection rules taken into
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account, are the following:

(m,0,0| Hy|m,0,0)= (14eR)V, e=0
(m, 1,0 H1|m,0,0)= — (1—e®t'R) Im, e=W
(mF1, 1, =1 H1|m,0,0)=+ (1—eR) T /V2, e=W
(m A M |Hi|mA,M )=+ (14eaR)(V—TmM), =0 ©
(m,0,0| H1|m,1,0)=—(1—etR) Jm, e=—W
(mF1, 1, =1|H1|m,1,0)=— (1+4eR) T /V2, e=0
(m=£1, 1, 0|H1|m,1, +1)=—(14eR)J/V2, =0
(mTF1,0,0H|m, 1,F1)=TF(1—etR)J/N2, e=—W.

q is the difference between the wave vectors before and after the transition, and e is the amount of energy absorbed
by the conduction electron in each process: It will appear in differences between the energies of the initial and inter-
mediate states of the set {conduction electron4-pair}, and in the modification of the transport equations.® The
calculation of the relaxation time 7,=7_=r is straightforward, and may be performed as it has been elsewhere,*
taking into account the remark we emphasized in Sec. II1.A of Ref. 4. One finds

1 kmQ [~ 1
—= / (1—cosb) sinfdf— / dQr
0 4w

T 27hiN?
XI:aV2+3bpolJ2 ! 3% py 2% ! vz |, (10)
= fu(—ewinsr) T N

_fq fq

S
32V (po px)g P {2a—a1}
—fq f‘l ] 1
4 z[——— 2b+b1) — 26—
“hE ek-—eq—f—W{ 4 ek—eq{ 1}_1—fk(1—e‘W“°BT)

~fa 1 1
+:i—13plz[—f—~{2b+bl}— " s

4 Lex—eq— W €x— € J1— fu(1—eWiksT)

2/q

—fq fq
ex—eq+W  ex—e—W

+37%p, ; [{ }{Za—al}— [ }{Za-f-al}:l , (11)

€x— €

where Q is the total volume of the metal, (1/47) /' dQr designates an average over all the possible orientations for
R, and m is the mass of the electron.

a= (1+eiK~R) (1+e—iK~R) = 2+ (eiK-R+e—iK~R) , (12)
b= (1__eiK-R)(1__e—iK-R)= 2— (eiK‘R—Fe_iK'R) ,
K=k'—k, |k'|~|k|, |K|=2ksinio, (13)

where 6 is the scattering angle between k and k’, and the scatterings can be considered as quasi-elastic. (The error
is of order W /ey, where er is the Fermi energy, and can be neglected.)

a=ae~WR4cc., b=Be 4 R4cc., (19)
a=2(eW R ), f= 2o RgtE),
The conductivity is then given by
e? aof
g=— fksr——dek . (15)
3nim Jex

The resistivity p=0"1 can be calculated explicitly, for any value of W /kgT, only in the case JKV. Let us
separate:

T 1 z _
/ (1—cos#) sinfd6— /dﬂn——=Z0+Z1, (16)
0 4 N
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where Z, contains terms in ¢ and b, and Z; contains terms in ¢; and ;. According to formulas already used in Ref.
(4), which we summarize in Appendix A, one finds

Zo=372V (po—p1)d(32/2ex){ — 3T~ (W /kpT)+3J+(W /ksT)}
+373pb[1— fu(1—e W /*8T) Y 2+In| kpT/2ex| — 3T~ (W /ksT)—3J (0)}
+372pib[1— fu(1—e" /EsT) Y 2+ In| ks T/ 2¢r | — 3T H(W /ksT) — 37 (0)}
+373p1a{4+2 In|kpT/2ep| —3T(W /ksT)— 3T~ (W /ksT)—J(0)}, (17)

where z is the number of conduction electrons per atom.

T 1
= / (1—cosh) sinOdBZ /dQRa= 4416/ (2kR)4[2(2kR) sin(2kR)— ({2kR}*—2) cos(2kR)—2],
[’} T

(18)
4 1
= / (1—cost) sin0d04— / dQrb=4—16/(2kR)*[2(2%kR) sin(2kR)— ({2kR}?—2) cos(2kR)—2],
0 T
3z w kT w
/———dekZO—% [bplu{4+2 In|— -I—212< >]+ap1l4+2 In|— +Il<k—>+11(0)}]. (19)
aek 2€F 2€F kBT 26F BT
The functions I; and I, are also reviewed in Appendix A.
W/ksT

w= eWikBT 1 (20)

$11s given by (6).

Zy=37°V (po—p2) (A*— A7)a+37%p0/[1~ full— W I5T) (— A*++47)B
+3731/[1— fu(1— e *8T) | (— AT+ A7)B+3T3— pr(AT+A=—24%a, (21)

™ 1 8 sinkR
= / (1—cosh) sinfd6— / dQra=
0 4a kR

. . (22)
-=/ (1—cosf) sin8d6— /dﬂnﬁ=0
0 4

af _ 16 sin?(krR) 3z w
/ ——deZn=3T pr——— [ 1(0)—1 1< )} : (23)
aék (k FR)z 2141 kBT
and then the resistivity is given by
w
+12(k—)—11(0))
€F BT

+1( (kI;VT) II(O))]+ PII—(Z%S:%M(II(O)—IIQ%)) ]] 24

dp and b are the value of @ and b for k=Fkp; and vois two Kondo resistivities on isolated impurities. And,

9J3 ksT

1
= T L GeV e AT 6Tt
g Zepe%NZ[F 3/ 0rpur 01

[ bFPw.(l 568+1In |—

€F

ksT
+ ZGFPI[I 568—Hn )

F

the atomic volume of the metal. indeed, (24) leads, then, to
III. QUALITATIVE DISCUSSION 3r m 2
Let us first examine some special cases: P =5€—F on N

(a) W/kpT — 0, R— 0 ;i.e., practically noninteract-

ing impurities, very far apart from each other. One ex- X[V2+% 72 { 1_,_?12(1_ 568-L1n k

T
it
pects the resistivity of this pair to reduce to the sum of er 7 ' )]] - (29
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Let us recall that the usual Kondo resistivity on one
spin S is

3r m 1
PXondo™ ——vo—l:V2+J25(S+ 1)
€EF BZh
3Jz kBT
X {1+——(1.568-Hn — )}] .
€Er ZGF

Here S=1%, so S(S+1)=%.

(b) W/kgT — 0, R finite; i.e., two impurities at a
distance R from each other, uncorrelated. One gets
from (24)

3r m 1)01
= —[aFV2+%J2aF+g-J2
2ep 21 N 2
9J% ksT
+———<1.568+1n e ):’ . (26)
€F €F

[This is the formula we should have found instead of
(24) if we had not introduced W in (1).] Whereas oscil-
lating interference terms appear in second order through
ar, there is no interference in the third-order contribu-
tion. This is quite understandable: cf. the fact that, in
optics, two incoherent sources of light cannot give rise
to any interference; here, the coherence which existed
between the scattered parts of the conduction-electron
plane wave on the two spins in second order vanishes in
third order if there is no coupling between the two spins,
because, after the intermediate processes on each spin,
there is no more coherence between the two outgoing
waves.

(c) W/kgT — 4+, R— 0; i.e., the two spins come
into contact (of course, in a metal this extreme case
cannot happen, Ruix is equal to the first neighbor dis-
tance), and they are ferromagnetically coupled, so they
form a triplet of total spin /=1 and a spin-independent
potential equal to 2V. So a Kondo resistivity due to a
spin of 1 is expected. And indeed (24) gives

37!")%7)0

ZEF e2h N

ksT

) e

(d) W/kgT>10, R finite; ie., two strongly ferro-
magnetically coupled spins but separated by the dis-
tance R. At variance with the magnetoresistivity prob-
lem* for H/kT > 10, according to the discussion in the
Introduction and in agreement with the preceding case,
the resistivity is still temperature dependent; writing
In|W/2ksT|=1In|W/4ep| —In|ksT/2er|, one expects
a contribution In|ks7/2ep| to remain. One, in fact,

3Jz
X I:(ZV)2—I- 2J2 { 1+——<1.568+ln

€r 2ep

[JA(I+1)=272 for I=1].
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finds

3r m v 1 9J3z
p=——— —[a-FV2+aF%J2+—
ZGF e N 2 €F

4 1—cos(2krR)
o
3 (2krR)

ksT

2er

Yoot oo

Thus (28) has a purely Kondo-like temperature de-
pendence, through In|ksT/2¢r|, but with a coefficient
different from the Kondo resistivity (25) by a ratio
ﬁa_p"{—%[l - COS(ZkFR)]/(Zk FR)2

(e) W/kgT — — o, R— 0: One has two interacting
spins with a total spin O (antiferromagnetic coupling);
then no spin-dependent resistivity at all is expected:

X {(1.568+In

w

46F

+(2+In

(29)

(f) W/kgT<—10, R finite; two strongly antiferro-
magnetically coupled spins at distance R give no tem-
perature-dependent resistivity

37!‘ m Vg

(30)

In the general case, let us compare (24) with what is
known experimentally.? The experimental situation is
the following: when the impurity concentration in-
creases, i.e., when the correlations between impurities
can no longer be neglected, one observes a maximum in
the complete p— T curve. This maximum corresponds to
some spin “ordering” (see, for example, the fourth and
fifth of Ref. 6 or last section of Ref. 4). Below the maxi-
mum, the resistivity is better described in terms of an
average molecular field. We are interested here in the
part of this curve above the maximum. Above the maxi-
mum, experimentally,

(4) The coefficient of In|%pT/2¢r|, constant for ex-
treme dilution, then becomes lemperature-dependent:
the straight line obtained by plotting p versus In7" be-
comes curved.

(2) This coefficient remains #egative, as it was for
extreme dilution, but its absolute value decreases; the
“slope” of InT" becomes less steep.

We can conclude here from (24) that
(1) the coefficient A of In|%57"/2¢r|, which is

9J33

A=——(3brpiu-t+3arp:} (31)
2ep
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is indeed lemperature-dependent through p1(T") and u(7),
except for extreme dilution, i.e., for very weak coupling
and a large distance between impurities (W/kpT — 0,
R —»), where

A Ao=9T%/2¢p, (32)

which is the coefficient of In7" in the Kondo resistivity
for isolated impurities [cf. (25)].

(2) M\ is indeed megative because J is negative and the
bracket in (31) is positive: p1 and p are positive for all
values of W/kpT'; and Gy and by take on positive values
very close to 4, whatever the value of R.

(3) Moreover, the absolute value of \ is smaller than
the absolute value of A.:

3brpiutiarp<1. (33)

We have verified that (33) is true for all values, positive
or negative of W/kgT, and for R up to sixth neighbor
distance. So the absolute value of N decreases from its
value \.

Therefore, the expansion (24) seems in good qualita-
tive agreement with the experimental observation. In
Sec. IV we will examine (24) quantitatively.

IV. NUMERICAL EXAMPLE

The interesting point is now to examine the tempera-
ture variation of resistivity (24) and, more specifically,
the coefficient N of the InT contribution. This implies
the use of an explicit W. When W is due to the indirect
exchange via the conduction electrons, which leads to
the RKKY interaction,® keeping in mind the last re-
mark of the introduction, one should in principle use in
(4) not the bare J and V but some J’ and V’ “dressed”
by the polarization contained in (1) in . In the absence
of any information on J’ and V’, we present here a nu-
merical result with the bare J and V, simply to give an
example of what the pair resistivity looks like. It has
been shown? that if J is used in the resistivity, (204+1)J
should replace J in the RKKY interaction to take into
account the orbital degeneracy /:

(214-1)2,%2

W=—$r—r

3
% (2krR,) cos(2kpR,)—sin(2krR.,)
(2krR,)* '

(34)

R, is the distance between the two spins of the pair in
position of nth neighbors. Typically (in Cu-Mn, for
example), J~—0.3 eV, (2I4-1)J~—1.5€eV, ep~T7.1eV,
z=1. As we are merely trying to present a simple nu-
merical example, we neglect the temperature depen-
dence of the RKKY interaction, which should be taken
into account in a self-consistent study.

7 See, for example, A. Blandin, J. Appl. Phys. 39, 1285 (1968).
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Let us write the pair resistivity (24) as
3r m vy
Ppair= 2o E{R‘i‘AR} ) (35)

where we separate the second-order contribution R and
the third-order contribution AR:

R=3asV*+37%arpr-37 s, (36)
9J3z( _ kT w

AR= {%b,,pw(l.568+ln — +Iz(k—~)—11(0))
. e 5T

ksT
%dp?1[1568+ln "2—

+%11(1V~)—111(0)]
€F kpT 2

+4p1—1—:(32(::j:—-—;§§2[11(0)~11(£;>]}. 37)

The contribution R has been studied elsewhere.® On
Fig. 1 we have only plotted AR versus 7' (on semilog
plot) for six different distances R, between the two spins
of the pair: #=1 corresponds to first neighbors, curve
A; n=2 corresponds to second neighbors, curve B; etc;
n=06 corresponds to sixth neighbors, curve F. The cor-
responding values of the interaction W are

W=-—1134°K, for R,=R;
+ 51°K, R
- 28°K, R3
— 35K, R, (38)
+ 14.25°K, Ry
+ 225K, Rs.

Therefore, curves 4, C, and D correspond to antiferro-
magnetic pairs and B, E, and F to ferromagnetic ones.
For TK|W|, curves 4, C, and D correspond to the
resistivities of singlets of spin 0 studied in III (f), so
AR=0 [cf. Eq. (30)]; whereas curves B, E, and F
correspond to triplets acting as isolated spins I=1, as
was explained in ITI (d). For these last cases the corre-
sponding low-temperature straight lines depend on the
distances R,; their slopes

9J3z<
1~

12QF

4 1—cos(2krR,)
3 (2kFR,)? )

€F
are actually very close to the asymptotic value £(9.73/
2¢r) (as even 2krR: is already much bigger than 1), so
the three lines appear parallel on the figure. The straight
line on the right-hand side of the figure is the Kondo
resistivity of two isolated impurities given by Eq. (25);
it represents the common limit of all the curves 4 to F
when T2>|W|. In between, all these curves present a
maximum at a temperature 7" equal to the corresponding
coupling (38) T=W.
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Fi16. 1. Third-order contribution AR
L to the pair resistivity (35), in units of
- (eV)? versus InT'(°K). The six curves
~ A-F represent the contribution of six
3 pairs at increasing distances: A corre-
= sponds to the resistivity of a pair of
< two first neighbor impurities, B to the
< second neighbors, ---, F to sixth
neighbors. The straight line, envelope
osl of these curves, at high temperature,
is just the usual Kondo InT" term for
two independent spins, uncorrelated.
°
.01 a 1 10 100 1000
T (°K)
The behavior of these curves is quite encouraging, and 1 —Jq
indicates that it might be worth while to refine this szq: W
approach in order to describe the resistivity of a real €
dilute alloy, when correlations become important. One 3z ksT w
must, of course, keep in mind that to the temperature =—-—[1+% In|—/|—3J *(““):l , (A1)
2¢r 2ep ksT

dependence of AR must be added the temperature de-
pendence of R, the second-order term, which has not
been included in Fig. 1. The description of a real dilute
alloy by a power expansion in C (the atomic impurity
concentration) up to C? involves:

(1) a generalization of the above calculation to an
arbitrary spin S;

(2) an average of the contributions of all possible
pairs, taken so that each pair contributes only if it is
isolated from other impurities. The first part could be
done easily, and may also include an external magnetic
field; the second is more difficult to do rigorously.
Finally, the problem of self-consistency, pointed out in
the introduction, is more important but much more

difficult.
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APPENDIX A

We review here some formulas studied in Ref. 4,
which are useful in the present calculation:

/ k3(—?—{>dek(—%.l(0))=%kp311(0), (A2)

€k

[ (i) ). o0

/ ka(—;;%)dekl_ fk(l_l_e*wrksr)

w et WI2BT

=k 8

" 2kaT SH(W/2k5T)
L —
0a) 2 1= fu(1— =W IksT)

=/ ka(_gi)dek(_%ﬁ(gf) ) 1— fk(l—le*W/'wT)

, (A9

_gppreemin__ BO/ED) (A5)
2k5T Sh(W /2k5T)
For |x| <2
I1(x)~—0.43240.091x?
1(%) +0.0914?, (A6)

Io(%)>2—0.432+0.03042.
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For |x|>]0 where )
* siné
. si(u)=—[| —dt,
Il(x)zln[%x| _, u I
%2
(A7) . ® cost
3.27 ci(u)y=— [ —dt, (B6)
X ci(u)>~0.577+Inu, for u—0
The functions I;(x) and Is(x) are drawn in Ref. 4 for si(u)~—3r+u.
all values of . Upon integrating (B3) by parts one is left with
APPENDIX B —v 1l *  df(q)
=—= | &@——dq. (B7)
We want to calculate the sum . 7> R Jo 9q
One will need
1 q)e’ R d 91 [—dfdf
At=— 7t (B1) B=/—{Adk=+—0— —— —dkdg g(q). (B8)
N ¢ e—¢ ok m* R ok g
% gin-R With writing in the neighborhood of the Fermi level
=— [ d*f(q) ) (B2)
8w €&x— € ¢*—k? @*—K? e
g—Kk= o = ) (B9)
. g+x  2kp kr
where v, is the atomic volume. The angular integrals 4pd
give eq—ex=2kTV, (B10)
) s SO
gl b rasin@®iQ) (B3) eo—e=2ETVFW,
R/, K2— g ’ Vo (T )
B~——1— cos(krR)+% cos(krR)si(2krR)
2R 4
= =1p2 =02 1 1 =
Z}:e:relex e W=3k+£W and ¢=¢?/2 in units m=17 1 sin(ksR)i(2k pR)+3 sink R 1

Let us first study

- [ 2

K2—x2

(B4)

which is given by tables of integrals.?

g(qQ)=—3%m cos(kR)—% cos(kR)
X{st{ R(k+)}+si{R(g—x)}}
+3 sin(kR){ci{ R(k+9)} —ci{ R(g—x)}}, (BS)

8 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series
and Products (Academic Press Inc., New York, 1965).

ksT w
X {0.577+1n<2k1«~R )+Il(_)} } ’
2er kT

o 3z 1

7R 2erp krR )

The function I;(W/kgT) is studied in Ref. 4 and
reviewed in this appendix. One notes that for very
large R~~ep/krkpT the divergent term in (B11)
In(2kpREpT/2¢r) vanishes, which is physically reason-
able, as impurities that are very far apart can no longer
act as a whole to give a Kondo divergence, but act
separately as isolated impurities, each giving rise to
a Kondo divergent contribution.



