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We study the Green's-function equations for a version of the two-orbital Anderson model of a magnetic
impurity, in an approximation scheme that displays the logarithmic anomalies and enables the Kondo
temperature T~ to be calculated as a function of the parameters. The nature of the solutions is explicitly
studied for large Hund's-rule exchange constant J, in which case we obtain the following results: H the
internal exchange is treated in the Hartree-Pock approximation, it has the same eBect as an enormous
applied magnetic Geld, and the logarithmic resonances are removed far from the Fermi level, i.e., T~ -+ ~.
However, if exchange is properly treated in a rotationally invariant manner, the nondiagonal terms cancel
most of the eftect of the Hartree-Pock terms, and the Kondo e8ect is restored. For large J, our model has an
analog in the far simpler s-d exchange model, as we show by a transformation of the Schrieffer-Wolff type.
For small J, however, the complicated and extremely structured solution of equations involving some 24
coupled Green's functions is required, and no substantial simpliGcation appears possible in general. An
exception is the limit where the transfer matrix element V&&=—0, for which we display explicit and exact
solutions.

I. INTRODUCTION

~ 'HE theory of Inagnetic impurities in metals based
on the semiphenomonological s-d exchange

Hamiltonian indicates that most interesting properties,
including the logarithmic anomalies that one has to
associate with the "Kondo e8ect,"are relatively insensi-
tive to the magnitude of the impurity spin, which ap-
pears only through a factor S(S+1) without any way
affecting the results qualitatively. '

This remark is important to remember when one
studies a more detailed microscopic picture of a mag-
netic impurity, such as we have in the Anderson model. '
Any transition-series atom has partly occupied degen-
erate levels, the successive occupation of which leads to
the various member atoms of the transition series. Vari-
ous interactions considered important for electrons in
these orbits in (approximate) order of decreasing en-
ergies, include: the two-body Coulomb repulsion U, the
exchange (Hund's rule) corrections thereto J, crystal-
6eld effects, and spin-orbit coupling. In the case of
a transition atom in a metal, two further parameters,
the transfer matrix element Vl, q connecting the localized
states to the host Bloch states, and the position of the
Fermi level relative to the localized states, must be
added to this list, usua11y somewhere following J in
magnitude. This large number of parameters, and the
exponentially increasing number of states (4 ) associ-
ated with a D-fold degeneracy, leads to bewildering com-
phcations when one attempts to extract the thermody-
namic and transport properties of the model so as to
compare with experiment. In contrast, the s-d Hamil-
tonian which ignores the internal degrees of freedom, is
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almost child's play; for a half-611ed shell (D electrons)
there are a+1 distinct states, associated with the vari-
ous eigenvalues of 5'. Yet in the free atom, this simple
vector model adequately describes the ground multiplet,
with spin-orbit and crystal-6eld eBects as relatively
minor modi6cations. Will this pleasant simplification
persist in the metalP

Starting with one-orbital impurities, we recall that for
this special case a unitary transformation discussed by
Schrieffer and Wolff' established the equivalence (at
low energies, which is what concerns us) of the micro-
scopic model to the s-d exchange model with inclusion of
additional nonmagnetic scattering. Later agreement be-
tween detailed nonperturbative calculations on both
these models, to within the trivial nonmagnetic-scatter-
ing factor, conhrms the essential identity of the two
models and the legitimacy of the simpli6ed model.

For more than one orbital, the essential equivalence
of the microscopic model to the s-d model is no longer
automatic, but depends mostly on the magnitude of the
exchange parameter J. However, the very existence of
a degeneracy can already be used fruitfully in the ex-
perimental interpretation of quasimagnetic atoms, such
as the phase-shift analysis given by Klein and Heeger4
for their data on (nonmagnetic) Ni in Be. To go quan-
titatively beyond this, some kind of solution to the
Schrodinger equation or to the equivalent Green's-
function equations has to be provided, and starting with
Anderson's original paper on the subject, ' it has been
traditional to use the Hartree-Pock approximation
thereto. This approximation has the virtues of being
simple, while providing a complete picture of the im-

purity atom in parameter space. Of numerous recent
work published on this subject, the most ambitious of
which we are aware has been the detailed study by
Coqblin and Blandin. ' Depending upon the relative

~ J. R. SchrieBer and P. A. WolG, Phys. Rev. 149, 491 (1966).
4 A. Klein and A. Heeger, Phys. Rev. j.44, 458 (1966).' B.Coqblin and A. Blandin, Advan. Phys. (to be pubhshed).
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magnitudes of the various parameters, these authors
6nd solutions corresponding to nonmagnetic state, spin
magnetism with quenched orbital magnetism, and ulti-
mately spin and orbital magnetism. The transitions
from one case to the other may be erst or second order
in the quasithermodynamic parameter-spa, ce diagrams.
But it should be pointed out that regardless of the
correctness of their results, which cannot be underesti-
mated owing to the success of the Hartree-Fock scheme
in most atomic-structure calculations, this sort of
scheme misses the essential rotational symmetries of
the problem (in real and spin spaces) and consequently
misses the Kondo anomalies, which are surely primarily
the result of rotational degeneracy. Therefore, the work
of Coqblin and Blandin does not provide any useful
predictions about the "logarithmic fine structure" of
the interacting atom in the metal.

The present paper is intended to bridge the gap be-
tween the detailed quantum-mechanical studies of the
one-orbital problem' —' and the multipara, meter-space
studies of the multiorbital atom. We are essentially con-
cerned with the CBects of Coulomb and Hund's-rule
exchange energies on the very-low-energy electron corre-
lations responsible for the Kondo effect. To achieve this
delicate calculation, we must resort to a model which

might be criticized as somewhat artificial, as we discuss
in the following pages. Our excuse is that we wish to be
able to solve the model, as we might not otherwise have
been able to do. Our reward has been the foBowing
deductions, the validity of which may transcend the
limits of the present model and the (necessarily) limited
accuracy of our solution.

We 6nd that if, as has been customary, one treats
exchange terms by the Hartree-Fock method, the diag-
onal part of the exchange acts essentially as an applied
static magnetic 6eld of enormous magnitude; the Zee-
man splitting correspond in magnitude to atomic ener-

gies, i.e., is of the order of megagauss in magnetic units.
Such 6elds are more than sufBcient to wipe out all

logarithmic singularties associated with the magnetic
impurity. If, on the other hand, the full exchange inter-
action is treated in a rotationally invariant manner,
the tremendous CGects of the diagonal terms are almost
precisely cancelled by the nondiagonal terms.

For arbitrary values of the exchange coupling con-
stant, the problem is still inordinately difBcult to solve.
However, for su6iciently large J,

II. ANOMALOUS RESONANCES AND
ANDERSON HAMILTONIAN

Kim' has previously solved the Anderson model in an
approximation which leads to the appearance of
"anomalous" resonances near the Fermi surface in the
neighborhood of a temperature T~, called the Kondo
temperature. He finds that these resonances are respon-
sible for the well-known. anomalous behavior in the
transport and thermodynamic properties. We will

briefly discuss a related treatment of the problem.
The Anderson Hamiltonian takes the form

where
&=&o+K s+&c..t,
Hs ——P skulk, +g Ersg. ,

Irk dE i k-(&katrina+ dst&kN) q

bital, excepting for changes in certain factors no more
serious than 8{8+1).Within the context of our stated.
model, wc thus demonstrate the necessity of treating
exchange in a rotationally invariant manner. However,
the difhculty of doing this for more general Hamil-
tonians or in more spohisticated Green s function de-
coupling schemes may be a bar to ever understanding
the multiorbital impurity in the same detail as the one-
orbital model. For this reason, in the discussion of Sec.
III we try to estabhsh a connection between the two-
orbital model and the s-d exchange model with S= j.,
the latter being more readily analyzed in many
CRSCS.

The paper is organized in the following Inanner: In
Sec. II the existence of certain poles in the Green func-
tions is related to T~. In Sec.III our model Hamiltonian
is postulated, a proof that it follows from the Anderson
model is given and a correspondence with the s-d model
established. In Sec. IV the exact solution of the Green's-
function equations of motion is given, and the Hartree-
Fock approximation is compared thereto, both in the
special case of an isolated atom (Vks ——0). With Hund's
rule exchange treated in the Hartree-Pock approxima-
tion, the cGects of the band-mixing matrix element Vl,g

are calculated and shown in Sec.V to result (improperly)
in T~ —+~. With Hund's rule treated exactly, the
correct T~ is found in Sec. VI.

(where E is the energy of the magnetic orbitals relative
to the Fermi level), the results simplify greatly and one

recovers resonances in the Green's functions analogous

to those which give the Kondo CEect for a single or-

6 Going beyond the Hartree-Pock approximation of Ref. 2, e.g.,
J.R. SchrieBer and D. C. Mattis, Phys. Rev. j.40, 455 (1966).

7 D. J. Kim, Phys. Rev. 146, 455 (1966).
s L. Dworin, Phys. Rev. 164, 818 (1967); 164, 841 (1967);

Alba Theurnann, sMd. (to be published}.

+Coul ~+At'+lb ~

The 6rst term in IIO is the unperturbed band energy
1n wlHch sag= cggtcgg is tlM number opclRtor for R bRnd
electron of wave vector h, spin s, and energy ~i, mea-
sured from the Fermi surface. The second term in IJO is
the unperturbed energy for a single localized d orbital
in which eq, =d, ~d, is the number operator for an orbital
electron of energy E Rnd spin s. E, which is also mea-
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sured from the Fermi surface, is negative for the cases
of interest. Hk g represents mixture of the band and the
localized d electrons, Vk being the electron transfer
matrix element. Finally, Hg, „I represents the Coulomb
energy U between electrons situated on the localized
d orbital.

We utilize the Green's-function formalism of Zubarev'
in which the retarded Green's function for two operators
A(t) and B(t) is defined by:

(to ek)gtk= Vk((ttdtct&)+Z Vk'{((ck~htck~))
kl

—&(c.tc'~tc~)))|
(to ek&gsk= (c4tckt, )+2 Vk'{((Ck'tAtck4&)

2' kl

(2.8)
+8k k &(ttssct&) —((ctck gtckt, )))

(et+ sk —2E U)gsk—

(( (t)' B(t')»= —'~i(i —t')([A(t)»(t')j &, (23) (ctk)Ct )+Q Vk {((cktckg Ct ))
2' kl

where ( ) denotes the statistical average taken with
respect to a grand canonical ensemble. ((A(t); B(t'))&
may be determined from the differential equation

8
'—((A(t); B(t )&)=([A(t),B(t)j+&3(t-t )

Bt

bk, k —((ttaict))+ ((ctckg tck g))),

U 2

h (co) = Q .-ReA+t'I',
k M —6 (g~nt+ j0+

r=~z(0)! V, ! .

(2.9)

The approach used to decouple these equations is
a so-called "high-density" approximation whose validity
rests on the parameter Uk being sufIIciently small. It is

the opposit limit to that considered by Schrieffer and
Mattis. ' The exact decoupling scheme utlilized here is
the following: a Green's function containing two band
operators is replaced by the expectation value of these

operators multiplied by the resultant Green's function
with the two operators removed. The expectation value
is taken with respect to the noninteracting (Vk=0)
Hamiltonian. As an example,

+«[A(t),&(i)3-; B(~')&& (2.4)

Averages are then calculated from the relation

(B(t)A (/)) = —2 Cot f(ot) Im(&A; B))„+;s+, (2.5)

in which f(to) is the usual Fermi function and

((A; B)&„+,s+ is the Fourier transform of the Green's
function with respect to t—t' and with co replaced by
co+i0+ in order to properly handle the singularity in the
Fourier transform. We will henceforth always display
our equations in terms of Fourier transforms and will
omit the co subscript in the remainder of the paper.

The relevant Green's function in the analy
((Ct; Ct t)). As can be seen from (2.4), Ct t will appe
the right of the semicolon in all Green's functions ar
from the differential equation. For simplicity we
then make the notational simpliication

&(c., ". ~ .,)) 3.,'3..,..f(")(&c.»
Making this decoupling, and solving the resulting set fo
equations, one 6nds

S1S 1S 1 i1-[& )+F(&X»(U+E- )»
((ct)&=—!

ising 2tr t oi E AIk(oi)[U—/(U—+E.—oi)]I—
will (2.11)

1 ((net)+F(ot) —2trK(to)((Ct)))
&( ~«))=—

!
2tr k )co

—B—U
(2 6) where

Starting with ((Ctt)) using (2.4), we find the set of
equations

(--E-~)&(C»= 1i2-+U&&-.,C, &&

(ttgi)
(to—E—U)((n~qCt)) = +p V„

2x'

X {«cktttdt)&+ ((CtCh tcki)) —((Ctcki tCg&)) . (2.7)

Denoting the three Green's functions in brackets by
g]k g2k and g3k we find

' D. ¹ Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Usp. 3, 320 {1960)).

E=E+2k(co) A(U+2E ot)— —

((ct~ckt) (ckt, tch )
f'( )=P v, !

k (u —ek U+2E ot ekI——

1 1
!~( )=Z IV, I f(.,)!

E(d—ek U+ 2E—co—ski

F ! U+2E Q)!
—ln -+t'1' f(co) (2.12)

[to'+ (kT)']"s

and we have replaced ot by to+t'0+ in the last expression
for k(to). The explicit evaluation of the integral is dis-

cussed in Sec. VI.
Rather than review the calculation of the transport

and thermodynamic properties, vre wN limit ourselves
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to a discussion of the anomalous resonances. This will be
sufficient for our needs since we are interested in the
effect of degeneracy on the relevant physical quantities
and, as we have already mentioned, this behavior is
governed by the anomalous resonances.

Taking U large but not infinite, since it enters loga-
rithmically into K(&0)—both for simplicity and for the
reason that it corresponds to the physically most inter-
esting case, we obtain for the denominator of ((dz))

r
/ Zry2Z)

&u
—8—ReA ——ln —il'(1+ f(&o)) . (2.13)

t
~'+(kT)']'~'

The anomalous resonances occur for values of this
expression near zero. Since I' is a small quantity, the
expression will be small when the logarithmic term is of
order of E.This will occur for small a&. (The denominator
is also small for co E. This, however, corresponds to
the unperturbed d orbital and is not important in cal-
culating the anomalous behavior. ) In order to approxi-
mately locate the resonances, we will set the real part
of the expression equal to zero for co along the real axis.
Ignoring co with respect to E, we are led to the equation

zaz+. (k T)2
)
H+.2g

] e
—ss( E[ ( E+U( / r fI

Lie sl @II r—(kTX)k (2 14)

This equation, which defines the Kondo temperature
T~, has no real solutions for kT&kT~. Below T~
a pair of resonances, situated symmetrically about
the Fermi surface and separated by a distance of
A&u=2L(kTx)' —(kT)']'~' occur. A detailed calculation
shows the resonance widths can be less than the distance
between resonances.

Had we included a magnetic 6eld in the original
Hamiltonian (Js -+ 8 mh, m= &1—), (2.14) would be
replaced by

((v 2mh)'—+(kT)'= (kTrr)' (2.15)

The effect of the field is to shift the "center of gravity"
of the resonances w'ith respect to the Fermi surface. A
6eld of sufhcient strength to drive the resonances out of
the region lying within kTz of the Fermi surface will
result in the loss of anomalous behavior by the system.

To complete this section we would like to mention
that a paper by Dworin' has recently appeared, in
which the analysis is carried out to very high order.
Some features, such as the value of Tir Lsee (2.14)], are
qualitatively una6ected by the higher-order corrections,
i.e., remain unchanged within a factor of 2, whereas
other details (specific heat, magnetic susceptibility, and
resistivity) appear to depend on the ultimate order to
which the calculation is carried out. A nonperturbative
extension of Eqs. (2.7)—(2.12) has been solved exactly
by Theumann, ' with results that also appear to have
a self-consistent validity at all temperatures, and which
reduce essentially to the present solution above Tz.
But these more complex equations are, in every case,
very dificult to extend to the multiorbital model in the
manner that we have found it possible to extend the
simpler procedure discussed herein.

III. DERIVATION AND CRITIQUE OF
MODEL HAMILYONIAN

We demonstrate in this section that the model Hamil-
tonian discussed in the Introduction follows under
certain conditions from a direct generalization of the
single-orbital model considered by Anderson. ' The gen-
eralized Anderson model takes the form

where
H =Ho+ Hk~+Hc-i+H. *,

H0 E &knk s+2 ~na, s

(3 1)

k, s R, S

k d—Z I' k, a(&ks &a, s+&a, s &k, s)
k, e,a

Hca i=U Q n,n. ,
a (e'

(3.2)

VkaVka -=Z( Iv(~—H -.) 'Vl ')
GO
—6k k

(3.3)
M —Ck

which holds if ~u) and tu') are different members of a
representation of the symmetry group of the operator
V (co Hs~«k) 'V. For —example, if we assume our system
is isotropic with the exception of V= V(r), then

~
u) and

~u') would correspond to the ordinary spherical har-
monics and the theorem would obviously hold. Our
assumption is then essentially either that our two or-
bitals have the same symmetry, or that Vk, is inde-
pendent of k, a common approximation.

H, = —2J[s& sz+s(n»+n»)(n»+n2z)].

The 6rst term in Ho is the unperturbed band energy
in which ek, =ck, tck, is the number operator for a band
electron of wave vector h, spin s, and energy ek measured
from the Fermi level. The second term in Ho is the un-
perturbed energy for the degenerate d orbitals in which
m, ,=c,,tc, , is the number operator for an orbital
electron in orbital u(u= 1, 2), spin s, and energy Z. The
energy, which is also measured from the Fermi level,
will be negative for the cases of interest. HJ, d represents
the mixing of band and localized electrons, Vk being
the electron transfer matrix element. Hg, „q represents
the Coulomb repulsion U between electrons situated on
the localized d orbitals. H,„represents the intra-atomic
exchange coupling between the localized orbitals. J,
which will always be positive, is the exchange constant,
while Sy and S2 are the spin- —,'operators expressed in
second quantized form for the two d orbitals.

We now make an approximation, which, although
rather restrictive in nature, considerably simpli6es the
Hamiltonian while retaining many of its important
characteristics. We assume that Vk, is independent of
n. What is implied by this approximation may be seen
by noting the identity
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Writing

and introducing the canonical transformation

(3.4)

As+ d2s
C2, = (As —d2s)/~2

v2
(3 5)

our Hamiltonian becomes

H =Ho+Hk a+H. +Ho. 1,
where

(3.6)

HO= Q Eknks+Q Enss, s
k, s a, s

Hoo I U[nltnlk+n2te24+ nit(e2t+e24)

+ea, (e2t+e21)]

Elk 8 Q V2Vk(ckstdls+dlstcks)
k, s

H = I[2($1 $2 +$2 $1 ) 2(nltn14+n2tn21)

+ el' (n24+ 2e2t) +'nit ('e2t+ 2 e24)

2 (dlt tdll td2td24+ dltdlld2t td» t)] s

(3.7)

H„b2 E(e2t+e22) =E, —— (3 9)

a constant. Finally, after a somewhat longer calculation
B, becomes

H. = —I[-,'(elt+ng) —-2'eltna, +sl s2]. (3.10)

The erst group of terms renormalize Irc,,„i and B„b.If
we now represent the spin operators on the second or-
bital by Pauli spin operators, we can write our complete
model Hamiltonian in the form

H= E+Q Enl, +p Vk(ck, tdl, +dl. tck.)+Ueltell

where

sl$2 dig dlt J$2 dlt de eI$2 (elt ell)'
=8+U—~oJS, VK=v2VK, V= U+-2'J, J=-'2J. (3.12)

where 1 and 2 and e refer to the new orbitals.
Notice that in the new' representation the second or-

bital now has no matrix elements connecting it directly
to the band. Furthermore, a state with one particle in
the second orbital is not connected by the Hamiltonian
to states with zero or two particles in that orbital. The
states with even occupancy of the second orbital are not
a6'ected by the dynamic exchange terms in the new rep-
resentation and their study is identical to the one-orbital
model. In the remainder of this section we will specialize
to the nontrivial case, in which the second orbital is
singly occupied, so that n2t+e»= 1.

Proceeding with the calculation, we have for B~,„i

Hcout= Unltnll+ U(elt+ell), (3.8)

an easily interpretable result. Secondly, within our per-
mitted subspace

and
(H~ ol)4+Hka&=0-

(Hg —oo)X+Hkgg =0.
(3.13)

Solving either equation and inserting into the other, we
find a new eigenvalue equation

~Hs —H Hs )S
s- =

H~ OO—(3.14)

in which t stands for an arbitrary linear combination of

p and X, such as the ground state @o itself. For small Vk

the true ground-state energy will not differ much from
the ground state of HA, denoted EA, so we may use the
preceding to construct an eRective Hamiltonian,

+eff +A +Icd +A'd ~

Ki +A

The interactions in this Hamiltonian include a velocity-
dependent s-d antiferromagnetic exchange potential and
a spin-independent scattering potential. In the single-
orbital case, the above coincides exactly with the results
of SchrieQer and Wo16', 'which were derived from slightly

J. H. Van Vleck, Rev. Mod. Phys. 25, 220 {1953).

In the future we will drop the constant and omit
the bars, carets, etc., from the renormalized energies
and the orbital subscripts from the d orbital. With
these changes (3.11) is the model Hamiltonian we will

consider in the paper. It is precisely Anderson's single-
orbital Hamiltonian aggmeeted by ae ietra-atomic ex-
change term lo account for orbital degeneracy

A few comments are now required to place this model
Hamiltonian into suitable context. The principal ap-
proximation is the assumed constancy of V~g, dificult
to justify for the usual orbital symmetries and band
structures, but essential if one wishes to simplify the
equations suSciently to arrive at a formal solution.
Having made this approximation, we 6nd it leads to
certain unexpected advantages. For example, the va-
lency of the impurity, Z, has the values Z=o and
Z=&1 only, so that the excess electrostatic energy is
small in all accessible configurations; this is compatible
with Van Vleck's criterion" of "minimum polarity, "
whereas a nonconstant Vg, q allowing Z= ~2 is not. Our
assumption also enables a correspondence to be drawn
between the microscopic model and the more widely in-
vestigated semiphenomonological s-d exchange model,
as we now do by extending the method of SchrieRer and
Wolff. i

We separate the Hamiltonian of (3.11)into two parts:
the Hamiltonian of the isolated atom IIA and the mixing
termB ~y. The latter connects states of even occupation
of the impurity with states of odd occupation, and vice-
versa, but never even with even or odd with odd. Thus
let +, an eigenfunction of the total EI with eigenvalue

~, be written %=&+X, where p is even in impurity
occupation number and X is odd. Thus,
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diferent considerations. In the case of interest. the exci-
tation spectrum which determines the denominator in
(3.15) becomes rather complicated, except in the limit
of large J and even larger U, compared to the other pa-
rameters, where the low-lying excitations are O(J); thus
the effective s-d coupling constant should be O(V'/J),
and T& Ue ~'~. But, as vre shall see, while roughly
agreeing with these estimates, the actual calculation in-
cludes some numerical factors which it vrould be dificult
to anticipate at this point Lcf. Eq. (6.27)].

IV. EXACT SOLUTION FOR ISOLATED ATOM

While our general objective in this paper is to study
the eBect of the host metal on the isolated atom, it is
imperative for us to first understand the behavior of the
isolated atom. In particular, in order that vre might
better understand the modifications brought about by
the host, we are concerned with the form and interpreta-
tion of the relevant Green's functions for Vi, =o. We
consider two subcases: (a) 5'5' exchange terms only,
and (b) complete S S exchange. Fortunately, both
cases are exactly soluble.

(a) V&=0& 5'S* terms only From (2. .3) and (3.11) we
6nd for the Green's function ((dt)) and the associated
Green's functions the exact set of equations

1-(«) («)
&(d~))=— , -+

2m. x+-',J x—U+ -', JP

1 (1 (n—t) (nt)
((d~))=—

I , +
2+k X—-',J X—U——,'J

(4 4)

These expressions are easily interpreted. The pole at
~=8—-,'J corresponds to adding a particle in the first
orbital parallel to the 6xed particle in the second orbital
in the absence of a particle in m&. The spectral density
1—(nt) reflects that if there is a pa, rticle in nt, then the
pole is given by &a =E+U ~~J.Th—e poles of ((dt)) corre-
spond to a particle antiparallel to that of the second
orbital and thus differ in the sign of J from ((dt)).

(0) Vq ——0, contp/ete 8 S exchange In t.his case we in-
clude the dynamic terms S+ and S . The resulting set of
equations have far more structure than in the previous
case, but fortunately is still exactly soluble. After some
calculation, one finds

may then be obtained by taking appropriate averages of
the tvro solutions. Calculation is greatly simpliled in
this case since the third equation reduced to the first
and the fourth to the second. If vre solve the S'= 2 set,
vre find

x((dt)) = 1/27r+ U((nsdt)) J((s*dk)—),
(x—U)((ddt)) = (n s) /2~ J((s*—ddt)),

x((s*dt)) = (s*)/2~+ U((s'nsdg))

--'J&(«)),
(x—U) ((s*nsdt)) = (s'nt)/2m-', J((.n—st)),
where

(4.1)

(4.2)

X—3J2 X—U——J2

(ns)+6(s'nt)

x—U+2 J'

1 3—3(ns) —6(s*ns)
&«t))=-

87r x+-',J
1-(ns)+6(s*nt) 3(ns)-6(s*nt)

If we solve these equations, vre 6nd without approxi-
mation

1 (1—(ng) —2(s'nt)+2(s*)
«d~))= —

I4' k X+x,J
1—(ns)+2(s'ns) —2(s') (nt)+2(s'ns)

X—2J x—U+-',J
(ns) 2(s'nt )—

+ , (4.3)
X—U—~J

with similar expressions for the other Green's functions.
We can hand a similar expression for ((dq)) merely by

letting S' —+ —S'. In order to obtain a complete solu-
tion to the equations, we need (s*ns), of course, which
can be readily obtained from the Green's function
((s'dt)). From symmetry it is clear that (s')=0. We
therefore have an exact solution to the set of equations.
Rather than discussing the explicit form of ((dt)) given
above, vre note that in the absence of dynamic terms,
S' is a good quantum number, so that vre can
solve our equations for 5*=+-2. Quantities of interest

1 (1—(ns) —2(s'ns)
(&s'dt))=l«s «))=

x+-',J
—1+(nt) 6(s'ns)—(ns)+2(s*ns)

(4.5)
X—3J2 X—U—-'J

2

(ns)+6(s*ns))

x—U+-', J P

1 3(ns) —6(s'ns) (nt)+6(s'ns))
, +

Sm x—U—2J x—U+2J )
1 2(s'ns) —(ns)

((s'ntdt)) =-', ((s nsdg)) =
16m X—U—~~J

6(s'ns)+(ns)

X—U+3J
for the relevant Green's function.

It will be fruitful for us to discuss these results in some
detail. We will begin by examining the poles of the
Green's function. If we let !0), the vacuum state, corre-
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IA&= lv2(d, (S'I0&+dt'I o&) (4.7)

Although in this case the dynamic terms do contribute
to the calculation of the energy, we find that all triplet
states give rise to the same energies, as would be
expected.

The singlet state, represented by the eigenvector

IA) = kv2(ds's'I0& —dt'Io&) (4 g)

gives us our erst new result. The energy is E+ ',U, with-
the corresponding pole ~=E+-',J. For positive J the
triplet state therefore has the lowest energy.

The final state, which is represented by the eigenstate

~P,&
= dstdt~stI0), (4.9)

is in many ways the most interesting. It represents the
situation in which an electron is added to the impurity
level given that an electron is already present in the
level. Although the energy of the state is U+2E, we
remember that a pole of the Green's function represents
the change in energy of the system upon the addition of
an electron, so that this process will give rise to two
poles, one if we are initially in the singlet state and
another if we are in the triplet. For the triplet state we
find a&= U+E+2J and for the singlet ~= U+E ~~J. —

To gain some understanding of the spectral density
we will consider the specific case T —+ 0, U ~~. In this
limit the self-consistency equations are easily solved.
For J)0 we 6nd (ns)=2' and (s*ns)= —,~~. The (s*ns)
= —~ is exactly the result we would obtain if we aver-
aged the operator 5'eg over the three triplet states, omit-
ting the singlet and the state of double occupancy. In
addition the spectral density "coefficients" for the
co=E——,

'J and the ~=E+23J poles each go to 2, while
the coeKcients for the or =E—

~J and the co=E+U—
2J

poles both go to zero. These results are consistent with
the ground state's being the triplet state, the last result
following since only poles corresponding to adding par-
ticles to triplet states can survive.

If, on the other hand, one considers J&0, then one
obtains results based on the singlet state's being the
ground state, the other pair of spectral density coefh-
cients vanish, and (s*ns)=~~ and (ns)=z.

spond to the case in which no electrons are present in the
first orbital, while the spin of the fixed electron in the
second orbital is down, then the triplet-up state, which
corresponds to adding an electron to the impurity level
parallel to the fixed electron, can be represented by the

(4.6)

which is an eigenstate of the Hamiltonian corresponding
to the energy E—

~J and hence gives rise to a pole at
co=E——,'J. For this triplet state and also for the triplet
state with 5&,&'= —j., the dynamic terms do not con-
tribute to the energy and the poles are found at the same
locations as in the preceding example (S' components
only). The remaining triplet may be represented by the
eigenvector

V. INTERACTING CASE FOR DIAGONAI
INTRA-ATOMIC EXCHANGE

Having considered the noninteracting atom in Sec.
IV, we now turn in this section to the problem of the
interacting atom for the case in which only the diagonal
part of the intra-atomic exchange coupling is retained in
the Hamiltonian. In light of our previous comments, we
will set S*=+-,'throughout the discussion. This is the
first case of those that we have considered that is not
exactly soluble. Using (2.4) and (3.11),we are eventually
led to the set of equations

(&a E A—)((dt—))= 1/2n. +U((nsdt)) —
~J((dt)),

(ns)
(co—E—U)((ns(Et)&= +P Vk

2x'

&&((( ~ ))+((d d ".))+((d d ~ ')))—-'J(( d »
((d —e) )((nsc) t))= Vt,((nsdt&),

((0—e),)((dt d& tc«&) = (d& tc«)/2x —Vt f(t),)((dt))

+Vt, ((ddt)& —J((dt(E~ tc«))

(&0+e),—2E—U)((dtdgc«») = (dgc«»/2m.

—v S(")((d»+v.» d»,

(5 1)

A=K, V=K
) co+ e),—2E—U

V.«etc«) V.(&sc«» q
E(~)=Z +

(0—c),+J co+a),—2E—UJ
(5.3)

(I V+I y(~, ) I v, I y(~, )
E'(a)) =P

(
++J + —2E—U)

For J=O these results are identical to those of Sec. II.
From an examination of ((dt)) we see that there exists

a pole in the neighborhood of co= E——,
'J.This pole was

present in the Vi, =O case and gives rise to no new re-
sglts. "&he ~ore interesting questions relate to the effect

where we have factored the higher-order Green's func-
tions in accordance with the prescription preceding
(2.10).These equations reduce to the set (2.7) and (2.8)
for J=0 and to the set (4.1) with S*=-', for V),=0.

Solving for ((dt)) we 6nd

1 [(e~)+P( )jU)
2m- U+ s—~——,

'J
rr' E((v) U

~

~—E—A+-', J— (5.2)
U+ s—ur ——',J

where
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of the exchange terms on the so-called anomalous reso-
nances discussed in Sec. II. Using the approximation

F ( (U+2E (u)—'
z( )=—- »~ —, (5.4)

4((a+J)'+(kT)'

These relationships permit us to express our results in
terms of only three self-consistent averages.

A straightforward calculation leads to a set of
24 Green's functions, six of which we regard as
fundamental:

we are led to the equation

(a)+J)'+(kT)'= (U+2E)

&(dt)), ««dl)), ((s «)),
((s'd )) «s «d )) &(s'n d )).

(6.3)

2'
Xexp — —E -',J U E——,'J = kT~ ' 5.5

rU

giving the location of the anomalous resonances. When
we compare this equation, written in the form

M = J&[(k—TX)' (kT)']—"' (5.6)

with the equation &a= 2nlk&t (kTrc)' (kT—)']'" of Sec.
II, we see that the exchange term behaves as an effective
magnetic 6eld. In general, however, J will be a large
energy of the order of electron volts, which will derive
the resonances out of the region lying with kT of the
Fermi surface. For a J of this magnitude, therefore, the
diagonal exchange terms effectively remove the anoma-
lous resonances from the problem and the effects
attributed to them are no longer present.

In Sec. VI we will 6nd that the inclusion of the off-

diagonal terms in the Hamiltonian return the resonances
to the region of the Fermi surface, so that the qualitative
results of the one-orbital model are regained.

The remaining Green s functions are similar in struc-
ture but contain one band operator C4,.or c~,t (a Green's
function containing two band operators would be fac-
tored). Fortunately, these "band" Green's functions
divide into sets, each member of a set being directly
connected only to other members of the same set. As an
example, consider the Green's function ((s «c~4)). In
deriving the differential equation for this Green s func-
tion we encounter the commutator [cq4,H]. As we have
previously seen, this commutator leads us back to the
band operator c~q plus an orbital operator. The commu-
tator [s,H] leads only to orbital operators while the
commutator Pet, H], although it leads to operators of
the form c», will always lead to a factorizable Green's
function since this new operator must always be com-
bined with the already present ci,q operator. Therefore
band Green's functions with spin-down band operators
never connect to spin-up band Green's functions. This,
together with the fact that several band Green's func-
tions connect only to orbital Green's functions, consid-
erably simplifies the analysis.

Prom the form of the equations one can also show that

VI. INTERACTING ATOM WITH OFF-
DIAGONAL EXCHANGE

Having studied the behavior of the anomalous reso-
nances under the inQuence of the diagonal exchange
terms, we turn to the more general case in which the
off-diagonal exchange terms are retained in the Hamil-
tonian. The presence of these "dynamic" terms con-
siderably complicates the analysis.

Making use of our model Hamiltonian (3.11) we ob-
tain the relations

((s dt))=2((s' dk)), &(s «dt))= 2((s'«dt)). (6.4)

We have seen that these relationships for the corre-
sponding averages follow directly from the spherical
symmetry of the Hamiltonian.

Carrying through the analysis just described, we will

exhibit our equations in terms of the resultant 3X3 set
(by substitution we have removed the (&«dt)) Green's
function since it does not enter into the calculation of
any self-consistent averages).

LC4,„H]= agcy. +Vld. ,

[d„H]=g V&c4„+Ed,+Un, d, Js'dkb, p—
+Js'd45, ,4

—Js+dl8, ,4
—Js d48, p, (6.1)

where
c' (&dl))+c' ((s'dl))+c (&s'«dl)) =b' (6 3)

x—Ag 3J
Cll=lfl+ X4 Cl&= 444 &+ X )I

U U

Ls' H] = —Jdl tdts++ Jdl tdls,

[s+,H] = J(ng n4)s+ 2Jds tdss'. — —

From spherical invariance we have

(dltce) = (d4tcg4),

(s+d4tclt)= (s dttcks) = —2(s4dltc444) (6.2)= 2&s'ds tel,l),
&s «dl tclg) = 2(s-'nldl tc4,t) .

cl3= 3(J+$4), bl= Il+X/2' U,

cll=4J+&Vl) cn X &l =J —2A,——

chal
———U+2J+pa, bl=l4,

J(X—Al) 3J'
CBl 4lP4+ 4 C$2 4'1+

2U 2U

cls=-2X+2J P4, by= Il+ J/4lrU—;

(6.6)
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A=Au +s&u++g&u+t-u,

A= u&u —u&u+ —&u,

and for J=O, V~NO

(eg)+F((o)
I2= I4= Iy= O. (6.11)

With

fu= uE:u +Ph+ au-,
/4= ,'Eu —',E—u+-+Au,

x= X—U —2Ag —L,g,

Although @re wiB not make use of the specific forms
in this paper, the f s may be expressed in terms of

digamma functions:

Au=+

Ku ——P
Ã—6g—2J

I Vul'f(")x;=p
0)—6g—2J

I Vul 'f(uk)
hu ——P

Eu+=Q
co—uu+ 2J

I
V.I'f(")

u M u'u+2 J

(6.8)

A= (1'/~)(- u4 st+ -V'+-0')
+ur( ,'f +-af-++ ',f'+-f'),

6= (1'/~)( 8+—u4'+4')
+uT(uf lf'—f')—

{6.12)6= (1'/~)( —u4
—u4++P)

+'T( 'f +lf-'-f'), -
0"=(1'/~)( u4 +8-' &')-

+uI'(uf uf++—f ).
I Vul'f(")

tu=g
1 co+uu —2Z—U

iP = Re digamma(u+ isa/2ur),

lP = Re dlgammaLu+uP(Gl 2J)/2K] i

P+= Re digammat -u'+ uP(co+ 2J)/2ur j,
Pt'= Re digamma[u'+uP(~ —2&—IJ)/2ur7.

(es) 1 Vu Vu((ou —J')
Iu

2ur 2ur u (o+au 2E Uu—(o(~—u —4J')
(6.13)

6Vu Ju(s'dt tegcut)
X (dttcut)+P

m) {eau—4J') In a similar manner f with a superscript denotes
a Fermi function of approprIate argument:

gn these expressions a f with a superscript is the real
k Gg+ uu —2E U part of the digamma function of the appropriate argu-

rnent. Explicitly,
I2, I4, and Iv are quantities involving self-consistent

averages. They are given by

3VuJ((o —J)
+2 (s dttcut)

j ufo((vu —4Ju)
f'=f(~), f =f(~ 2J)—
f+=f(~+2J) f'=f({I+2& ~)

(6.14)

(s'es)
Iy=

2Ã

JVu((o —J)(dutcuu)

2m&((ou —4J')

2 Vu J(o)—J)(s'dt tescuu)

ura (Mu —4J')

Vs Vu{(a—J)'—Z
& ur((o+ eu 2E U) u u—res(a)u——4J')

VuJ (dttcuu) 2J Vu(s dttegcut)
I4——g +P

& 2m)((eu —4J') ~ m.(o((ou—4Ju)

JVu(&o —J)(s'dutcut)

ur(o((ou —4J')
I V.l'f(")

Au= Q ~ cV(0)
d

I V.I'f()
OP
—6—$6

= )V(0)
«I Vul 'Lf(u) —lj

07 6 $8
(6.15)

ZV(0) ~ «[V, [

2 ~ M —6—'L5

Since @re vrill be interested in locating the zeros of ex-

pressions containing the f s, we will next obtain a more
(69) manageable, although approximate form, for them.

Consider as an example

X (s*dutcuu) .

Equation (7.5) may be seen to reduce to the results

previously obtained for the special cases Vj,=O and J=0
if vie note that for V~=0, JAO.

Iu ——(es)/2ur, I4 0, Iu ——(s*es)/ur, ——(6.10)

A simple method for calculating the integral is to re-

place 8 by T while replacing the Fermi function by its
value at T=0. One can convince oneself of the approxi-
mate correctness of the procedure by constructing a
simple graph of the integrand and by a comparison of
the results obtained for the explicitly calculable limiting
case,



Temporarily looking only at the real part of A2 vre is vrell behaved, resonances occur for values of co for
have which the determinant is small. Calculating the deter-' d4[f(4) —2]r o= minant, we 6nd
R~2= Rex(0) I V, I'

= IV, I X(0) lnD-
X(0) I

V2I2
1n[co2+T']. (6.16)

2U(k'
I
J—+8 +8 ]2 'J-'

+—,',J[16/1—$2—12/3 —6/4]
+2[4'+4a4 s—AA AM— 244]) (6 2o)

vrherc
» combining the A.'s, k's, and l.'s to form the p s

the lnD terms will cancel. Omitting these /arms, vre have

Recap = —
—2,X(0) I V2I 2 in[432+ T2]

ReK2- ————2'$(0) I V2 I
' in[(40 —2J)'+T'],

ReK,+= —lE(0) I V. I
' In[(44+2J) +T']

Rez, 2
——2X(0) I

V2I' ln[(U+2E ra)'+T—']
Combining the A' s, k's, and 1.'s to form the f s, we

obtain

I'
Repl ———

Sx
[(U+28—a))'+ T']4

Xln
H~ 2J)'+T']—"'[(~+2J)'+T']'"E~'+T']

(6.21)

It is useful to reconsider the special cases. For V~=0,
JAO, all the f s go to zero and (6.20) reduces to

(o) E)2 J—(a) —E) ,'—J'——
= (~-&+2J)(~-&-2J) (6 22)

whose zeros are responsible for just those poles corre-
sponding to a single particle's being present in the band-
connected orbital. As stated above, we see that the poles
corresponding to tvro particles being present in the band-
connected orbital, &4=Z+U+ —',J and a&=E+U—2J
have been eliminated from the problem.

For J=O, V~NO vre have

[~2+T2]2
Re/2 ———ln

4pr [((o—2J)'+T']'

I' U
pl ———ln +2Tf(43)

(~2+ T2) li 2
(6.23)

Cll —(X—Al $1)

C13 3(J+f3)q
c22= X—A.l—J—g 2,

&81 4+4'
1 J.

C33= —2U ~

CI2= —(44 2+3J),
c21———,'(J+ 4 3),

(6.19)

[402+T2]2
Re/3 ———ln

4~ [(~—2J)'+T2][(~+2J)'+T']
I' [((v+2J)'+T']'

Re/4= ln-
[(a&—2J)'+ T'][&02+T']'

For convenience we will at this stage permit U to
become very large. Ke must, however, not allow' it to
become in6nite since in addition to its exphcit appear-
ance in our equations, vre have just seen it enter logarith-
mically through pl. Physically, the approximation pre-
cludes thc simultaneous occupation of the two levels of
the band-connected orbital. In the exactly soluble
V~= 0, J/0 problem we considered earlier the large U
approximation results in the "removal" of the poles at
44=E+U+12J and &o=E+U a2J from the physicall—y
allowed subspace. The sum rule for the spectral density
is also violated.

If we let U become large, our c;; cocfIIcients become

i' —24'If+ 262= (X—2A) (g—4 1)

lI' U=
I

40—Z—ReAl ——ln 22P(—(~+f(~)) I

2pr (a&2+ T')'i'
(6.24)

I' U
X co—E—ReA.g

——ln —21'(I+f(40)) I
.

(442+ T2) 1/2 )

This is a case for which the denominator must be
carefully considered. From (6.6)—(6.9) the first factor
in (6.24) may be seen to be cancelled by an identical fac-
tor appearing in the numerator. The second factor is
just the result obtained in the single-orbital case, (2.13).

This concludes our check that the zeros of (6.20)
yield the previously known limiting cases. Vfe now
obtain the new results, for J and V~ both &0.

Ke are most interested in the effect of the exchange
coupling on the anomalous resonances. Restricting our-
selves to the strong-coupling case (P/J((1), we may
omit the P,f; terms in (6.20). In addition to values of 44

corresponding to zeros of (6.22), there exist values of 44

fol' wlllcll (6.20) ls 8111all. Ill order 'to approximately
locate these values, vre proceed as in Sec. II, and set the
real part of (6.20) equal to zero. Ignoring 40 with respect
to E and J, we are led to the equation

Next vre calculate the determinant of the c; s. As
discussed in Sec. II, for regions in which the numerator 442+ (AT) 2 = (kTIr') 2, (6.25)
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where

3 1

kTI, '= exp ——— —8 lnU

Fermi surface, here we find that for J)3VS~E~ the
anomalous resonances are returned to the region of the
Fermi surface. In the large J limit, (6.26) may be written
approximately as

E=E+ReAi.

(13E+-,'J~+
~ ~

ln2J, (6.26)
(E ~J—J

(large U, J limit). (6.27)

Values of ru satisfying (6.25) give the approximate
location of the anomalous resonances. We find that in
terms of the new Kondo temperature, Trr', (6.25) is
identical to (2.14). Hence, in contrast to the results
found in Sec.V for the diagonal exchange coupling where
the anomalous resonances are driven away from the

The exponents 5/11 and 12/11 have no ready explana-
tion, but otherwise this result is not qualitatively differ-
ent from the one-orbital model. We have thus shown
that despite the vast complications which degeneracy
introduces into the mathematics, the physical results
did not change drastically in the appropriate limit.
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Ultrasonic Propagation in RbMnp, . I. Elastic Properties
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The elastic properties of RbMnF~ have been investigated over the temperature range 4.2—300'K with a
continuous-wave transmission technique. The measured values of the three adiabatic elastic constants C11,
C44, and C'= ~ (C» —C») at 300'K in units of 10"erg/cm' are, respectively, 1.174&0.002, 0.3193&0.0008,
and 0.3763~0.0008. The value of the Debye temperature calculated from the low-temperature elastic-
constant data is O&(elastic) =386&1.5'K. For T)&0&, the three elastic constants decrease linearly with
temperature. Attempts at applying the present results to a three-force-constant theory of the cubic perov-
skite structure failed because the secular determinant for the principal oscillation frequencies results in an
unstable solution. It is found that only the longitudinal elastic modes are affected by the onset of long-range
order at the Noel temperature Tz. This is consistent with Pytte and Bennett s recent theory if the dominant
spin-phonon interaction is taken to be the volume magnetostriction. In the antiferromagnetic state, the
elastic constants are found to be sharply dependent on applied magnetic fields. A model is proposed which
explains the magnetic-Beld dependence and temperature dependence of the elastic constants in this region.
The basis of the model is that the coupling of the ultrasonic waves to the antiferromagnetic resonance modes
in the low-frequency limit is determined by the sublattice magnetization orientation, which in turn is mag-
netic-Geld-dependent. This model will be described in more detail in a second paper.

I. INTRODUCTION

HE elastic and magnetoelastic properties of
materials which undergo antiferromagnetic order-

ing transitions have been of considerable interest in
recent years. In sinlge-crystal specimens, interest has
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