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Correlations at the Critical Point of the Ising Model
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An analysis is made of the fluctuations in a finite part of an infinite, d-dimensional ferromagnetic Ising
lattice at and near the critical point. This leads to a formal proof that 2d/(8+1) and 2dP/(y'+2P) are lower
bounds on the exponent characterizing the asymptotic decrease with distance of the two-body correlation
function at the critical point, where P, o, and p' are exponents representing the asymptotic forms of the
coexistence curve, critical isotherm, and isothermal susceptibility.

In the context of general critical transitions, we
have previously discussed4 the first inequality, using
physical rather than algebraic arguments. Some con-
sequences of the theorem were discussed, particularly
the fact that the Ornstein-Zernike theory of the correla-
tion function is not in general consistent with "classical"
thermodynamic behavior. Some of the results in Ref. 4
can be readily extended with the use of the second in-
equality above.

We confine ourselves in this paper to presenting a
formal proof of the relations (1) and (2) for the ferro-
magnetic Ising model. The class of lattices under con-
sideration is defined in Sec. II, where we list several
known results concerning these lattices and introduce
a convenient cell division. In Sec. III we establish four
lemmas central to our proof, which itself is given in

Sec. IV. The lemmas are statements dealing with the
properties of a 6nite part of an in6nite lattice, and, are
essentially the following: The fluctuation in magnetiza-
tion (1) is given by a double sum of the correlation func-

tion and (2) is bounded above by the isothermal
susceptibility. (3) The mean square magnetization does
not decrease as the magnetic field increases at 6xed
temperature, nor as the temperature decreases at 6xed
magnetic R,eld. (4) The double sum of the translationally
invariant correlation function is essentially reducible
to a single sum. These lemrnas are valid for finite regions
"infinitely far" from any surface of the lattice, some care
being required in the proof to eliminate surface effects.
The problem of extending our results to a wider class
of cooperative systems is briefly discussed in Sec. V.

I. INTRODUCTION

MONG statistical systems which exhibit critical
phenomena, the Ising model of ferromagnetism

is one of the most studied, and yet, with the exception
of the two-dimensional model, little exact information
is available concerning its asymptotic properties at the
transition. In higher dimensions, numerical analyses
of series expansions have provided much approximate
information, but all that is known exactly is that the
exponents characterizing the various asymptotic prop-
erties must be subject to certain inequalities, which

have been proved by general thermodynamic argu-
ments. Some general properties of the spin-correlation
functions have been proved by Griffiths' for a wide

class of ferromagnetic Ising models in any number of
dimensions.

In this paper, we make use of GrifBths's theorems
and an analysis of the fluctuations in magnetization in
a finite part of an infinite lattice to derive some new

exact information. We prove the following limitations
on the exponent a Ldefined in Eq. (18)),characterizing
the asymptotic decrease with distance of the two-body
correlation function at the critical point for a ferro-
magnetic Ising lattice in d dimensions:

n & 2d/(8+1),

m & 2dP/(y'+2P),

where we have used the usual notation for the thermo-
dynamic exponents, defined below in Eqs. (14)—(16).
These two relations are, in principle, independent, but
they become the same if 5—1=&'/P, as would result
from the "homogeneity assumption. '" In two dimen-

sions, where it is known' at least in the case of inter-
actions restricted to near neighbors, that ii = 4i and P =s',

(1) and (2) lead to B~& 15 and p'&~ 7/4, results already
known from the thermodynamic inequalities and the
fact that the specific heat diverges logarithmically.

II. PRELIMINARIES

A. De5nitions and Notation

We consider a finite Ising lattice Q~ in d dimensions,
with a spin variable a;= &1 associated with each lattice
site i, where i= 1, 2, . . . 3/I. A configuration is an as-
signment of a spin value to each site, there being 2~
configurations in all. The position of the ith site is
specified by the vector r;, with r;;=r;—r, and r,;

*Now at Department of Physics, Temple University, Phila-
delphia, Pa.

See, for example, M. E. Fisher, Rept. Progr. Phys. 30, Part II,
615 (1967), where other references are given.
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=
~
r,„~.The Hamiltonian for the system is

M M
X=—g J a"o"—H Q a"

where IJ is the magnetic field, and the pair-interaction
energies J;; are non-negative and possess the transla-
tional symmetry of the lattice; they must also satisfy
some further conditions referred to below. The ensemble
average of an operator x is

(x)= Tr(xe ~"r)/Tr(o ~"r), (4)

where k is the Boltzmann constant, T is the tempera-
ture, and the trace is over all configurations. %e wiB
use the word "bulk" to denote the limit of the ensemble
average as 3E tends to in6nity, and will be interested
specifically in the bulk magnetization, m=m (t,H), the
bulk correlation functions, ' g(r,;,t,H) and C(r,;,t,H),
and the bulk isothermal susceptibility X(l,H), where the
reduced temperature t= (T T,)/T, —is defined in units
of the critical temperature T,. These bulk (thermo-
dynamic) functions are defined as follows:

m=rn(l, H) = lim (rrr,),
where

where (8) can be written as'

C(r r, l,H) =g(r, ;,t,H) —[m, (t H)]',
and where we have introduced the notation

Care is to be taken in obtaining the value of these bulk
functions in the case of zero magnetic field; in what
follows we always mean that the limit II—+ +0 is to
be taken after the limit M -+ ao of the ensemble average.

Ke are concerned here with the thermodynamic
behavior of a system possessing a critical point, , and
primarily in the immediate neighborhood of that point,
1=0, H =0. %e therefore introduce a set of exponents
to characterize the asymptotic form of the various
functions. Thus we write for the asymptotic form~ of the
spontaneous magnetization

m(l, O)-(—&)o, «0, H ~+0, (14)

X(OH) H-" '&" t=o H)0. (1I)

Finally, we ignore any anisotropy in the bulk correla-
tion function for large spatial separations, and char-
acterize its critical-point behavior by

c(r...o,o)-r,,—..
Although we have t.aken a simple power-law descrip-
tion for these asymptotic properties, this restriction is
not, essential in any of the arguments presented in this
paper. Thus, should such a description prove inadequate
the results presented here could be restated to include
other functional forms.

B. GrifBths's Theorems

the critical isotherm

e(0,H)-H»', ~=0, H&o, (15)

the isothermal susceptibility' at zero field, H-++0,
x(l,o)-r-, l&o

-(—r)-r', &&0

Finally,
x=x-(x).

X(l,H)= lim X~(t,H),

A number of useful properties of the correlation
functions have been proved by Gri5ths' for Q~. In
particular,

where X~(t,H) is the isothermal susceptibility for the
Qnite system, i.e.,

X~ (l,H) =kT(8(rrr)/(AH) r.
Using (3) and 'tile definitions 'tllls becomes

X~(l,H) =M ' Q Q (o;&r;)

(12)

(13)

Furthermore, the bulk limits of (o;o;) and (a;rr;)
Lgiven by (7) and. (8)] exist, provided that the sites
i and j are eventually (as M ~ ~) infinitely far from
the surface of Q~. Gri6iths also proved that the value
of the bulk correlation function g(r;;,t,H) at given r;;

' In the definition of the bulk correlation functions, Eqs. (7}
and (8), the sites i and j are restricted to being in6nitely far from
the surface of Q~ as M tends to in6nity. This requirement is
discussed later in this section.

This result is only valid if m exists, in which case (see Ref. 2)
m, =lim~ „(0.;) for any site i in6nitely far, in the limit, from the
surface of the lattice. The existence of m requires suitable restric-
tions on the interactions J,; which have been discussed by R. S.
GriSths, J. Math. Phys. 5, 1215 (1964). In particular any 6nite
range interaction satis6es these conditions.

'I Ke use the symbol to mean "asymptotically equal to" in
the usual sense, i.e., f(x)~g(x) means that the limit as g —+ go
of the ratio f(x)/g(x) is a finite number. In Eqs. (14)-(17), xo
is zero, whereas in (18}it is infinity.

s The form (17) results immediately if x is taken as (Bm/8H)z
where ra has involved the limit M ~ ~ LEq. (Slg, rather than
as de6ned in Eq. (11). These de6nitions are equivalent if the
operations lim(M —+ ~) and 8/BH commute. That this is so in
the one phase region for thc Ising model with 6nite range of inter-
action has been proved by C. N. Pang and T. D. I ee, Phys. Rev.
87, 404 (1952); 87, 410 (1952).
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is monotonically nondecreasing in H for fixed t and
monotonically nonincreasing in t for fixed H; i.e.,

From (6) and (13) the fluctuation for the whole system
is given by

g(rg, t,H) &~ g(r~g, t, H+h) &~ g(r~g, t r, —H+h),
r, h~& 0. (21)

M(m')=M 'Q Q (o,o;)=Xi'(t,H),
i

(2&)

The requirement that the sites be infinitely far from
the surface is an important one and reQects itself in
the proof of our lemmas in that we focus attention only
on interior cells (cells eventually infinitely far from the
surface). It is in this sense that we mentioned eliminat-

ing "surface eGects" in the introduction.

where X~(1,H) is the isothermal susceptibility for Qir.
The fluctuation of magnetization in an irlterior cell 0.'

(containing E sites) embedded in an injieite lattice
is the bulk limit of (26), which we denote by XN(t, H):

X~(t,H)= lim N(m '), (28)

C. CeQ Division

We divide our system Q~ of 3f sites into a set of
i =M/X identically shaped cells, each cell labelled by
an index n (with n=1, 2, , i) and containing X
sites. We choose the shape of Q~ and the cells to be
"hypercubes", of side length M'~" and X'I", respec-
tively. This choice is appropriate for a lattice structure
which is itself "hypercubic", with unit lattice spacing.
This restriction to a particular type of lattice structure
and cell division is for convenience only and does not
affect the generality of our results.

We identify a surface "shell" whose thickness l~ is
such tha. t

but

llm 1~= 00
M~oo

lim (l~/M'~") =0.

(22)

(23)

N

es=E'Qo;,
i+a

(24)

where the summation is over all S sites contained in
the cell n The magne. tization operator for Qia Ldefined

by (6)j is thus

m=i-' g m. .
a 1

(25)

D. Fluctuations in a Cell

We see from (24) that the fluctuation of magnetiza-
tion in any given cell in Q~ is given by

E(nz ')=E—' g p (0,0;).
i+a jQa

For example, we could choose l~=M'~'~. We de6ne an
interior cell as a cell none of whose sites lies within the
surface shell. The first condition ensures that any pair
of sites within any particular interior cell satisfies
GriKths's criterion for the existence of the limiting
bulk correlation function as M ~ ~. The second con-
dition ensures that the cells in the shell constitute only
a negligible fraction of the total number of cells for
large M. We will require both of these properties in
the arguments below.

We define a magnetization operator ns for cell n by

where
g (t,H) =x(t,H),

P(t,H) =lim~ „X~(t,H) .

While the theorem is often assumed there appears to be
no rigorous proof in the literature 9 We do not make
this assumption for the purposes of the present paper,
although its use wouM simplify some of the arguments
and would permit their extension to some of the other
inequalities discussed in Ref. 4.

IG. STATEMENT AND PROOF OF LEMMAS
CONCERNING FLUCTUATIONS

Any two sites in an interior cell n' satisfy GriKths's
criterion, so we may make use of (8) when taking the
limit as M-+ ~ of the finite sum in (26). With (28),

9 See, e.g., remarks by M. E. Fisher, in Lectures in Theoretical
Physics, VIIC, edited by W. E. Brittin (University of Colorado
Press, Boulder, 1965)p. 72.The validity of the fluctuation theorem
for the Ising model may be implied in some recent work by I.
I ebowitz and O. Penrose (J. Lebowitz, private communication).

with S6xed and finite. We have introduced the prime in
(28) to denote that n' labels an interior cell. It is
immediately seen in the next section that X~(t,H) is
independent of which interior cell 0.' is taken.

We are considering here two quantities which, al-
though somewhat similar, refer to quite distinct physical
situations. The function X~(t,H) [Eq. (27) with M=Xj
represents the fluctuation of the magnetization of a
finite system of E spins, Q&. On the other hand, X~(t,H)
represents the Quctuation of magnetization for a similar
set of E spins when they form part of an infinite lattice.
These functions diGer in two respects. Surface sects
are included only in X&(t,H). (These may be expected
to become unimportant for large enough E.) More

significant is the fact that the eGects of correlations from
distant regions of an in6nite lattice are included only
in X~(f,H) and these are not expected to beunimportant
near enough to the critical point. For large enough E
and far enough from the critical point, the functions
might be expected to become equal.

This is essentially a statement of the "Quctuation
theorem" which in the present notation would be the
assertion
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this gives

Lemma 1:
N

X~(f,H)=X 'Q-Q C(r;;,t,H).
i+a' jga'

(29)

p N N

xsr(t, H) &~
—X-' g p (o,o;), (34)

where v' is the number of interior cells. Furthermore

This lemma is thus a simple corollary of GriKths's
proof of the existence of the bulk. correlation function.

We observe that an equation corresponding to (29)
cannot be deduced for cells which remain near the sur-
face as M —+ ~, since the limiting correlation function
for sites within such cells is not, in general, C(r„,t,H).
Due to the translational invariance of the bulk cor-
relation function and the identical structure of the cells,
the fluctuation in an interior cell is in fact independent
of the cell considered. That is, X~(f,H) is independent
of rs', and is, in particular, the limit (as M~ ~) of
the minimum value of the fiuctuations over the set of
interior cells. By a similar argument (see Ref. 6), it
follows that in the limit as 3f~ ~ the mean magnetiza-
tion for any interior cell is just m(f, H). We make use
of this fact and Eq. (9) to rewrite (29) as an expression
for the mean square magnetization, namely,

lim E(m~ ')=Xsr(t,H)+X(m(f, H))'

'Q Q g(r,
—
,t,H), "

i 7

(30)

a result which will prove useful later.
We now prove that the fluctuation in an interior cell

is bounded above, i.e.,

where n* denotes any particular interior cell for which
the double sum in brackets in (33) achieves its minimum
value over the set of interior cells. Taking the limit'
of (34) as M —+ ~, keeping Ã fixed and finite, and
noting that the sum for a cell n* becomes equal to that
for any interior cell o.', we obtain

x(f,H)&X- p g C(r...f,H).
i+a' jga~

(35)

Lemma 3:

With (29), this proves the lemma (31).
Our use of Lemma 2 will involve taking advantage of

the fact that it applies in particular for values of t or
H which are E-dependent and would vanish as X—+ ~.
The lemma provides us with an upper bound on the
fluctuations even when they are becoming anomalously
large.

We now observe that the monotonic properties of the
correlation function g(r,;,f,H), as expressed by (21),
ensure that the mean square magnetization of a finite
part of an in6nite system does not decrease as II
increases at Axed t, nor as t decreases at fixed H. That is,
upon inserting (21) into (30) we find"

Lemma Z:
X~(t,H) &~ x(t,H)

Xs (f,H)+ÃLm(f, H) j'&~ Xsr(t —r, H+Is)
(31) +Egin(t r, H+Is) j'—(36)

v v N N

+~ 'ZZLZ & (o'o')] (32)
ap'-p i+a jap

We obtain an inequality from (32) by dropping the
second term on the right-hand side and restricting the
sum over n in the 6rst term to include only interior
cells. Since from (20) (o,o;) &~0, this operation can only
reduce the value of the right-hand side of (32), so that

v' N

x (f,H)& -'ZP'-' Z Z (.' )j, (33)
aI i+a' jQa'

for all t, II, and X.
The expression (27) giving the fluctuation in Qsr can

be related to the fluctuations in the individual cells
Lgiven by (26)] by splitting the sum in (27) into two
parts: The first part contains those terms for which i
and j are in the same cell, while the second part con-
tains those terms for which i and j are in different
cells. Thus

v N

x (f,H)=~(m')= 'Et& ' 2 Z (' )3
i+a jQa

for all X and for any v,h~&0.
Qur last lemma is concerned with the reduction of the

double sum of the translationally invariant bulk cor-

' Even when x(t,H) does not exist as a Qnite number (for
example, at the critical point), (35) is still true, since the right-
hand side is necessarliy 6nite for Gnite E.Thus (31) applies for all
values of t, II and E. It is perhaps worth pointing out in connec-
tion with (31) that the quantity Xz(t,B) can itself be thought of
as a kind of isothermal susceptibility. Thus, consider applying in
addition to the homogeneous magnetic Geld H a spatially varying
field which is zero everywhere except in some interior cell 0.,
wherein the 6eld is constant and equal to h. Then the "inhomo-
geneous isothermal susceptibility" for the cell is kT(8(m )/Bh)&, p
=N(sr '), so that from Eq. (28), Xnr(t, B) is the limit of this
susceptibility as h tends to zero and M tends to in6nity. Hence the
ordinary isothermal susceptibility is an upper bound for the
inhomogeneous isothermal susceptibility.

» In Ref. 4, t Eq. (5)j, a property A, of a distribution at some
temperature T and symmetric at m=O was dined as follows:
If the mean square deviation of m (in a cell) from its mean value
m is a' when m=O, its value at en= co. is given by A,0'. Qn the
grounds that the distribution of m is insensitive to changes of m
small compared with the "noise level" ~, it was claimed that A,
remains near unity for e&(1. It was stated that for a two-8-func-
tion distribution corresponding to two-phase equilibrium
A, = 1—e', and for a Gaussian distribution A, =1.From Lemma 3
above, it follows that indeed for the Ising Model A, ~) 1—e' for
all temperatures.
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relation function which occurs in (29), and is written
ln tw'o parts.

INsssQ 48:

(5 &)
(1—()" g C(ro;,I,H) & iV I P g C(r;;,I,H)

(2 K)
& Q C(r„;I,H), (37)

where the subscript 0 denotes a particular site at. the
center of the hypercube containing the sites included,
in the sum, and where $ is any number (which could
depend on X) such that 0~& $~& 1.

where again 0 labels the site at the center of the hyper-
cubc of sUn1IQRtlon.

The results (39) and (40) establish (37), which we
now examine in the limit as P —+ ~. Since {37) is
true for any value of $ satisfying 0&~ )&~1, including an
E-dependent $, we can choose ( to be a function of E
such that $~0 but (PÃ)-+ ~ as 1V' —+ ~. For
example, we could choose $"=E ', with 0(II&1.
Taking the limit as X~ ~ of (37) then immediately
yields (38), since the upper and lower bounds both
equal the single sum so long as it converges.

IV. PROOF OF CORRELATION-FUNCTION
DIEqm, LmES

Iemma 4b:

lim X—' Q Q C(r;;,I,H) =Q C(ro;,I,H) (38)

It is now an easy matter to make use of the above
Iemmas to establish our theorem. We combine (29)
and (3'/) to obtain upper and lower bou~d~ on the
Quctuations in an interior cell:

so long as the sums converge.
Since it follows from (8) and (20) that C(r,;,I,H) ~&0,

adding a region of summation to the double sum can
only lncx'cRsc its valUc %'hllc subtxRctlng R x'cglon can
only d,ecrease it. Thus, to obtain Rn upper bound on
the double sum we choose, for each particular site i in
thc SUm, to extend thc x'eglon of summation ovcl g
beyond the original sites to include all those (2~Ã)
sites in the hypcrcube of side length 2g'~" centered,
about i. Since C(r;;,I,H) is translationally invariant,
this sum ovcI' g is now independent of the sltc $, so
that, the sum over i gives merely a factor E. Thus we
obtRln

(2 N)
Ig Q C(r;;,I-,H) &~Q C(ro, ,I,H), (39)

"This reduction of the double sum of a translationally invariant
function to a single sum, as given by (38), is of course very reason-
able and is often made without proof in the literature. The proof
given here can be extended easily to include translationally in-
variant functions which are bounded, but whose sign is not
restricted to being positive, so long as the sum is absolutely
convergent, or indeed so long as the sum of such a function minus
a constant is absolutely convergent.

where the site 0 is at the center of a hypercube of
2~Ã sites. Similarly, to obtain a lower bound we 6rst
discard. terms in the sum for which the sites i do not
lic within a centrally located hypercubc of reduced side
length (1—$)Ã"~, where $ is any number (possibly
X-dependent) satisfying 0~&&&~1. Then, for any site i
in this reduced hypexcube, we choose a hypercube of
length &1P" centered ~bout i (all of whose sites lie

within the original summation), to which we restrict
the sum over j. Again, because of the translational
invariance of C(r;,,t,H), this sum over j is independent
of so thRt performing thc sum ovcx' I this tlmc glvcs a
factor (1—

&)"X.Therefore

(k ~)
(1—t)" Z C(ro, I,H) && 'ZZC(r';I, H), (40)

(5 &)
(1—5)" Z C(re,I») ~&X~(I,H)

(2 X)
~&Q C(rg;, I,H). (41)

We consider the value of X~(f,H) at the critical point
/=0, H=O, where the sums appearing in (41) would
tend, to infinity as E—+ ~. This divergence is due to
the asymptotic spatial dependence of C(r,;,0,0), which
we take to be given by (18); only for e)d would the
correlation function decrease SUKciently rapidly for the
SUms to convcrgc. Slncc wc Rx'c lntcrcste(I ln obtRlnlng
the asymptotic E dependence of X~(0,0) from (41),
we choose $ to be a number between zero and unity
wlllcll ls lÃd8pe1kksI of E. Thcll, as can bc sccll by
replacing the sums in (41) by their corresponding inte-
grals, we find that for large enough X (the precise value
depen(Iing on the detailed form of the correlation func-
tion) there exist upper and lower bounds for X~(0,0),
both plopox'tlonRl to S( )I

~ Thus thclc ls R flllltc
positive number A, independent of S, such that

Xg(0,0)~&AXI"—"&I~.

Wc liow combine LcmlYlas 2 alld 3 Linequahties (31)
and (36)j and note tllat III(0 0) =0 to obtain an upper
bound on X~(0,0):

Xg(0,0) &&X~(—v, h)+Egin( r, h)$'—
~&x(—r, h)+Nfl( r, h)g' (43)—

ln thc Qomaln v'~k «» 0. At thc CI'ltlcRl point ltsclf
{r=O, h=O) the inequality (43), while valid gives no
information about X~(0,0) since X( r, h) becomes-
inhnite. Moving away from the critical point along a
path in any direction in the domain r,h ~& 0, m increases
from zero while X decreases from its infinite value at the
critical point, say, like m &. For the extreme paths



corresponding to the critical isotherm and the coexist-
ence curve X decreases as m increases as m &' '& and
m ~'It', respectively, as can be seen from the definitions
(11)—(14). If we evaluate (43) at a point'3 on the path
where m is proportional to X—'I(~+&&, the two terms on
the right are both proportional to the same power,
q/(2+q) of E. Writing this power as (d—tl)/d, i.e.,
defining 8=2d/(2+q) the inequality (43) with (42)
shows that e&~R. For the critical isotherm and the
coexistence curve 8 takes the values 2d/(8+1) and
2dP/(y'+2P), which are thus lower bounds on the index
I proving our results (1) and (2).

V. DISCUSSION

We have now completed the proof that for a ferro-
magnetic Ising lattice the rate of decrease with distance
of the correlation function at the critical point is
subject to certain restrictions embodied in relations
(1) and (2). Before concluding we discuss brieRy the
possibility of rigorously proving this theorem for more
general cooperative systems. "

We first note that our considerations for the Ising
model say nothing of the conditions that may be
necessary for the existence of a critical point. They
merely result in the statement that if such a singularity
exists, it must conform to the restrictions imposed by
the theorem. Grifhths's theorems and the lemmas
happen to be true for any thermodynamic state, whether
or not it is near the critical point. This lack of specific

"It should be noted that the thermodynamic state correspond-
ing to this point is in the one-phase region. Its distance from the
critical point vrould, of course, vanish in the limit N-+ co, but
rye deal here vrith large yet 6nite values of E.

"Several inequalities, including (1), have been obtained re-
cently by T. R. Choy and F. H. Rees (unpublished report) for
the gas-liquid system, on the assumption that a certain series
expansion for the cell-pair correlation function is bounded in each
term and is convergent.

reference to the critical region is a source of difhculty
in attempts to generalize to a wider class of systems,
since then the conditions used in the proof are certainly
not all true for all thermodynamic states. Indeed some
are not even precisely true in the critical region. At
the same time they are by no means eecessary conditions
for the validity of the theorem either, although we have
seen that they are su%.cient. In fact the conditions can
be relaxed considerably. For example, the positivity
property of the correlation function, which was a very
useful condition in our proof for the Ising model, is
clearly far from a necessary one. Negative excursions
of C(r) have little effect so long as they do not over-
whelm the positive contributions to the various summa-
tions involved in the analysis.

What use crucial to our proof are two assertions con-
cerning the Ructuations in a finite part (containing X
sites or atoms) of an inRnite system:

(I) Thc Ructuatlons llavc all uppei bolllld wlllcll Is
a multiple Ii times the isothermal susceptibility:

X~(t,B)~&Fx(t,H).

For the Ising lattice, F= 1, but it is sufhcient for the
proof of the theorem that F does not increase without
limit as E—+ ~, for states very near the critical point.
At the critical point itself, of course, the condition is
obviously satisfied.

(ii) Along appropriate thermodynamic paths (in-
creasing III at constant or decreasing temperature)
the mean square magnetization has a lower bound which
is a multiple f of its value when the mean magnetiza-
'tloll ls zero. Fol' 'tllc IslIlg lattice f= 1 hilt lt ls sufllclcll't
that f does not vanish as AT —+ ~.
Eminently reasonable as these assertions are, we have
not succeeded in rigorously proving them for critical
transitions in general.


