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We have examined the spin-wave eigenfrequencies and eigenfunctions for a model ferromagnetic 61m, in
the presence of both exchange and magnetic dipole interactions. A detailed computer study of spin waves in
R thirty-layer 61m is presented for the case where the exchange and dipole interactions are of comparable
strength. We discuss in detail both surface and "bulk" modes for this case. Also, the symmetry properties
of the eigenvectors are discussed, along with a method for converting certain two-dimensional dipole sums
to a rapHHy converging form.

I. DITRODUCTION
' 'N this paper, we present a detailed theoretical study
~ ~ of the magnetic excitations of a thin, uniform ferro-
magnetic 61m. The purpose of the work is to examine
in detail the CGect of dipolar interactions between
the spins on the spin-wave eigenfunctions and
eigenfrequencies.

There have been a number of other studies of the
effect of free surfaces on the properties of magnetic
materials in the spin-wave regime. ' ' Glass and Klein'
have computed the temperature dependence of the
magnetization of thin 61ms by noting that in this
instance one must replace the integration over the
wave-vector component perpendicular to the surface
by a discreet sum. Corciovei~ has also examined this
problem for a simple cubic lattice with (100) surfaces
and nearest-neighbor exchange interactions. In his
calculation, an anisotropy 6eld was introduced, and he
included the fact that a spin in the surface layer
interacts with fewer spins than a spin in the interior.

Recently%allis, Maradudin, Ipatova and Klochikhin'
pointed out the existence of surface spin waves asso-
ciated with a (100) free surface of a semi-infinite simple
cubic lattice, in the presence of nearest and next-
nearest neighbor exchange interactions. In the presence
of exchange interactions only, it appears that such
modes will be present whenever bonds non-normal to
the surface are broken in forming the surface. 4 In the
work of Corciovei, ' the surface modes do not appear,
because he did not include the next-nearest neighbor
exchange.

For the model employed in Ref. 3, it has been
possible to 6nd analytical expressions for the surface
contribution to the magnon speci6c heat, as well as the
variation of the mean sublattice deviation with tem-
perature, and distance from the surface. 4
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i1961).

In Refs. 1—4, the dipolar interactions between spins
have been ignored, except for the introduction of an
CGcctive anisotropy 6eld in one case. The anisotropy
Geld enters this theory in the same manner as an
externally apphed magnetic deld.

Damon and Kshbach' have demonstrated that in the
limit of long wavelengths, surface magnons exist in the
presence of dipolar interactions between the spins.
Their approach is a macroscopic one, which considers
the demagnetizing 6eld generated by the spin motion.
Exchange interactions are not included, so the results
are valid for very long wavelengths, where thc domi-
nant contribution to the spin-wave energy comes from
thc Zccnlan encl gy) and thc Dlacloscoplc dcmagnctlzlng
6elds.

In this paper, we consider a ferromagnetic 61m, with
each atomic layer saturated. We derive the equations of
motion in the presence of both exchange and dipolar
interactions. In the presence of the surfaces, the
translational invariance in the two directions parallel
to the surface is not destroyed. The eigenvectors thus
have the Bloch form for these spatial directions. The
eigenfrequencies and eigenvectors associated with a
given wave vector parallel to the surface can be found
by solving a 2K&2M eigenvalue problem, where X is
the number of layers in the fi1m.

In Sec. II, the equations of motion are placed in the
form convenient for the present calculations. The
symmetry properties of the eigenvectors arc discussed
and compared to the analogous problem in lattice
dynamics. 6 In Sec. III, a transformation is applied. to
the dipolar sums encountered in Sec. II, so rapidly
converging series are obtained for these quantities.
In Secs. IV and V, we discuss results of numerical
calculations for a film of 30 atomic layers. Both surface
and "bulk" modes are examined, with emphasis placed
on those features of the eigenfunctions that illustrate the
general points made in Sec. II.

The computations described below have been carried
out for the situation in which the dipolar interactions
are comparable in strength with the exchange inter-
actions, in order to emphasize the quaHtative effect of
the dipolar coupling on the cigenfunctions and eigen-
frequencies. In metallic ferromagnets, where the Curie
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temperature may be several hundred degrees Kelvin,
the exchange interactions are very large compared to
the dipolar interactions. However, in insulating com-
pounds {such as KuS) the Curie temperature is quite
low, and the dipole moment associated with the mag-
netic ion is large, so that these two interactions are
comparable in strength.

changes in the exchange constants near the surface in
this work, it is a straightforward matter to include these
changes in our programs, if this proves of interest.

We next consider the equations of motion for the
operators Sx(l) and Si (I). With /i= 1, one has

/8x(l) = CSx(l),Xj

II. GENERAL CONSIDERATIONS

We consider an array of spins 5 arranged on a simple
cubic lattice with lattice constant a. The crystal is
supposed to be a thin film constructed of Ã atomic
layers of spins, semi-infinite in two directions, and with
two free (100) surfaces. The magnetization is directed
parallel to the film surface, parallel to a principle axis
of the crystal. We choose a coordinate system with the
magnetization parallel to the s axis, and the surfaces of
the film parallel to the x-s plane. The y axis is thus
perpendicular to the surfaces. Also, we ignore the effect
of finite temperatures on the spin-wave spectrum by
supposing the 61m is at temperature T=O, with the
magnetization M equal to the saturation value M, .

The Hamiltonian for the model film is taken in the
form

X=Xz+XEx+Xn,

where Xg describes the interaction of the spins with an
externally applied field H, XEx and XLI are the dipolar
and exchange terms. Explicitly, one has

i8Y (I)= CSY (1),X].
It is a straightforward manner to compute the com-
mutators from the Hamiltonian given above. We then
hnearize the equations of motion by invoking the spin-
wave approximation, valid for small deviations of
the spins from the equilibrium alignment parallel to
the s axis. The linearization is carried out by discarding
terms quadratic in the small quantities Sx(1) and
Sr(1), and also replacing Sz(1) by the c number plus S
wherever it appears. It is convenient to write the
position vector I in the form i=a(/x, /r, /z), where
t~, Iy /z are integers. It will also be useful to introduce
quantities D,;(lx/r/z) defined by

D;;{/x/r/z) = 8"—3- -—

(/x'+/Y'+/z')'" -(/x'+/Y'+/2)

The linearized equations of motion may then be written
in the form

8x(l) =P I'x Y(1—I')SY(l')+g I'xx(l —I')Sx(l') (1a)

XEx= ——,
' Q' J(I—I')S(1) S(I')

, S{i) S {I')
Xn=g'pa' g'

iv
( I—Il(3

CII—I') S(1)jC{i—I') S(1')j

fl—I'/'

The prime indicates that the case I= I' is excluded from
the sums.

In each sum, the position vectors I range over the
sites of the slab described above. In this work, we
neglect surface anisotropy fields, since it has been found
that in high quality metallic films the surface spins
behave as if they are unpinned. ' Also, we ignore changes
in the exchange constants near the him surfaces. At
this moment, we know of no experimental information
relating to this question. A crude argument suggests
that for 5-state ions, changes in exchange constants near
the surface may be small. s Actually, while we have
neglected anisotropy fields in the surface, as well as

7 P. K. Wigen, C. F. Kooi, and M. R. Shanabarger, J. Appl
Phys. BS, 3302 {1964).

D. L. Mills, Phys. Rev. Letters 20, 18 {1968).

~r (I)=Z I'Yx{I—I')Sx{i')+Z I'»(I—I')Sr {I'), (1b)

where the quantities I";,(I—I') are given by

I'xY(l—I') =gpaI1 (1)bii

+gpaMBDrr(/x —/x', ir —/r', /z —Iz')
—SJ(1—I')

I'xx(1—I') =gpaMBDxr(/x —/x, )
I'rx(1 —I') = —gpa&(1)/'ii —gpaMBDxx(/x —/x' )

+Sf(1—I')

Frr= —gpBMBDXY(/x /x', ~ ) . —

The quantity B(l) that appears in the definition of
the F's is an eGective field that acts on the spin l.
H(l) includes both exchange and dipolar contributions.
Explicitly, one has

—Ma Z' Dzz(/x /x' ) . —

In these equations, we have introduced ihe saturation
magnetization per unit volume Ma= (gpaS)/a'. In
order to obtain the equations of motion in the form of
Eqs. (1), it is necessary to recognize that for the film
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geometry employed here,

(/z /z—') (/r /r—') (/z /z—') (/x —/x') =—0,

since inhomogeneous terms proportional to these
quantities appear in the equations of motion, In a
geometry in which these sums are nonvanishing, one
must question the stability of the ferromagnetic ground
state.

We shall look for solutions of Eqs. (1) which vary
harmonically in time. Since translational invariance is
present with respect to translations parallel to the slab
surfaces, the solutions will satisfy the Sloch condi-
tions with respect to translations in these two directions.
Thus, we seek solutions of the form

S»,r (I)= exp/i Q/ i'm»/x —iyz/z)—S»,r (/r) .
Inscl"tlllg 'tllls fol'Ill 111to Eqs. (1) gIvcs R sct of 2$X2$
equations fol 'tllc cocKC1cnts Sx(/r), Sr(/r) slid 'tile

frequency Q. One has

/QS»(/r) =2 Vxr(4»4z, /r /r')Sr—(/r')

+Q yx»(PxPz, ' /r —/r')Sx(/r') (2a)

/QSr(/r) =Q yrx(yxyz, /r /r')Sx—(/r')

+E vrr(4»4z, /r—/r')Sr(/r'), (2b)

@&here

yo(gxgz, /r —/r')= Q' I'g(l —I')
&x'&z'

)(~sgx(&x-&x') ~+z(iz-Lz')

In the de6nition of y;;(Px Qz'/r —/r'), one must note
that when l~ ——/y', the term with /x' ——lg, lg' ——3g must
be excluded.

Eqs. (2) de/Ine a 2XX2$ eigenvalue problem. For a
given value of gx and gz, upon solving the eigenvalue
problem one obtains the frequencies of all spin-wave
modes which are characterized by wave-vector corn-

ponents (g»/a), and (Pz/a) parallel to the surface.
Also, the eigenfunctions may be found. The purpose of
this paper is to present the results of such calculations.
Before discussing thc details of our computations, it is
useful to examine the synimetry- properties of the

equations.
For our geometry, it is easy to see that yxr($»gz,

/r —/r ) R11d 7rx(fxpz' /r —/p' ) Rl'c evc11 fuIlc't1011s of
px, pz and (/r —/r'). Furthermore, these two quantities
are real. On the other hand, both yxx(4»4z' , /r —/r')
and err(gxqbz, /r —/»') are even functions of pz, but
are odd functions of both gx and (/r —/r'). Also, note
that yx& and yi ~ are pure imaginary. These statements
may be verified by direct examination of the definitions
of the quantities, noting that the sums on /x' and lg'

run from+~ to —~.

Let us next consider the symmetry operations that
leave the slab invariant. There are three operations that
have useful consequences for our purposes.

First, consider a re6ection in a plane placed parallel
to the x-2' plane at the midpoint of the 61m. Under such
a reflection, the 2' components and x components of the
spin vectors change sign. Also, the external magnetic
6eld H changes sign. Consequently, this re6ection is not
a good symmetry oper ation since both B and MB
change sign. However, when this reflection is combined
with a time reversal, H and mfa are restored to their
original direction. Thus, the product of the time reversal
combined with the reAection is a good synimetry opera-
tion. Given an eigenvector {Sx(/r),Sr(/r)} of frequency
0„ the symmetry operation applied to the eigenvector
yields a new eigenmode of frequency —0 and amplitude
{Sx'(/r),Sr'(/r)}, where Sx'(/r) = Sx(—/r), and Sr'(/r)
= —Sr(—/r). By direct insertion of {Sx',Sr'} into the
equations of motion, and then employing the properties
of the y; s described above, one may indeed verify that
this object is an eigenvector of frequency —Q. Thus,
given an eigenvector {S»,Sr} of frequency Q, we have a
prescription for constructing an eigenvector of the
same @x and Qz that is associated with frequency —Q.
Thus, for a given px and @g, this implies half of the
eigenfrequencies of the 2E&2X matrix will be positive,
and half negative. Thus, there are only S distinct values
of the excitation energy ~Q~ for a given Q» and Pz. This
observation provides a check on the computer program,
since correct diagonalization of the property con-
structed matrix must produce eigenvalues and eigcn-
vectors related in the above manner.

Additional relations between eigenvectors and eigen-
frequencies may be obtained from the remaining reQec-
tions, combined with time reversal. For example,
reflection in the y-2' plane combined with time reversal
is a good symmetry operation. From this fact, , one
deduces that given an eigenvector {Sx(/r),Sr(/r)}
of frequency Q and wave vector {$x,$z}, the vector
{Sx'(/r), S»'(/r) } with Sx'(/r) = —Sx (/r), Sx'(/r)
=+Sr(/r) is an eigenvector associated with wave
vcctol' {—Qx, Qz) RIld frequency —Q. FlnRlly, rcflcct1on
in the x-y plane, without time reversal, shows that
{Sx'(/r),Sr'(/r) } with Sx'(/r} = —Sx(/r), Sr'(/r)
= —Sr(/r) is an eigenvector of frequency +Q and wave
vector {p», —Qz}. These rules were also employed to
check the numerical calculations.

It is interesting to note that there is no syxninetry
operation which may be invoked to prove that for
general Px and Pz, the functions Sx(/r) and Sr (/r) may
be chosen to have well-dehncd parity. For the special
case gx=gz ——0, the 6rst two arguments allow this to
be demonstrated. For then applying a reQection in the
x-s plane, followed by one in the y-s plane, one 6nds
that given an eigenvector SI——{Sx(/r),S»(/r)} of fre-
quency +Q, and wave vector Qx=pz=0, the vector
Sq= {Sx(—/r), Sr(—/r)} is also an eigenvector of fre-
quency +Q and wave vector Qx=jz=0. Then the
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linear combinations (3~+S2) and (3~—S2) are both
eigenvectors of frequency Q. One eigenvector has even
parity, and one has odd parity. It is clear that for general
px and @z, the proof breaks down. ~

The behavior in the last section contrasts with the
corresponding problem in lattice dynamics. For crystal-
line 6lms with reQection symmetry, one may see that the
analogous eigenfunctions (Ux(lr), Ur(lr), Uzgr)} can
be constructed from components U;(lr) with well-

de6ned parity. "The difference between our magnetic
problem Rnd thc theory of lattice dynRmlcs lies ln thc
pseudovector character of the spin operators, combined
with their behavior under time reversal.

Finally, in the absence of dipolar interactions for any
Px and ps, one may also show the eigenvectors can be
chosen with well-dcfjned parity.

We conclude this section by writing the equations of
motion in a slightly diGerent form. Introduce quantities
d;;(Pxess. 1r—ly') related to the y's by

yxx @xmas, 1r—1r') =~dxx(Pxess, 1r—1r')

pry (Agz; 1y 1y') =zdr—r (Pxess; ly —ly')

vxr(4xbz, 1y 1r') =dxy—(4x4z, 1y 1r')—

vrx(gas, 1r—1r') =&rx(4xgz, 1r—1r').

From our earlier remarks, one sees the d; s are real
numbers. Also, let Sx(1y) =gx(1y), and Sy(1y)
= —igy(1y). Then the equations become

QSx(ly) =Q dxr (yxPs, 1r Ir')Sy (ly)—

may see that

where u is an E&($ antisymmetric matrix, 5~ and 52
are symmetric with 5~&52.

It is physically reasonable that we are led to
diagonalize a non-Hermitian matrix, in the presence of
dipolar interactions. It is well knownu that f
number of geometries, the ferromagnetic state of
dipolar coupled spin arrays is unstable. This manifests
itself in the appearance of complex spin-wave fre-
quencies, which occur in complex conJugatc pails. If
1 were Hermitian, then the frequencies would neces-
sarily be purely real. From the work of Cohen and
Keller, "it is known that for some geometries, complex
magnon frequencies must emerge, if the ferromagnetic
gI'ound state ls RssuIQcd. To allow for this possibilIty,
clearly one must encounter a non-Hermitian matrix in
the eigenvalue problem. It is readily seen that d
becomes symmetric in the absence of dipolar coupling.

Our computer program computed both the real and
imaginary parts of the eigenfrequencies. However, for
the range of parameters and geometry explored in this
work, the spin-wave frequencies were found to be real.

Before discussing the results, we will in Sec. III
rearrange the dipole sums into rapidly converging
series, employing a method used by Tong and Mara-
dudin. ' In their present form, the dipole sums converge
slowly, in an oscillatory fashion.

+Z dxx(gas, &r—&r')Sx(lr) (3a)

QSy(&r) =P Ax(gxgs, ' 4—1y')Sx(lr')

+P dyy(yxys, ly 1r')Sy(/—y') (3b).

Equations (3) provide a convenient form for the equa-
tions, because the prob]em is reduced to one of diagonal-
izing a real matrix. One may write Eqs. (3) in a con-
vient matrix form by introducing a column vector

HL MPOLE SUMS

In the previous section, we encountered certain dipole
sums which appear in the elements of the matrix d.
Since these sums converge very slowly in an oscillatory
manner, direct and accurate computation of the sums
is exceedingly costly in computer time. In this section,
we convert the dipole sums to series that converge
very rapidly by a method also employed in Rcf. 6.

The sums we are concerned with have the form

Sx(1)

Sx(Ã)
Sr(1)

Sr(E)
Then Eq. (3) has the form

&x, lz

—P~ z&Ax/xz&4z/z

&x&z (1xs+)rS+1 R)8/2

3
(1x'+4'+4')'"

The prime on the summation indicates that when
/y =0, the term /g ——Ig ——0 is to be excluded.

with 8 reaL We can express the dipole sums in terms of the
It should be noted that 1 is rot a symmetric matrix;

returning to the symmetry properties of the y„, one &s4x &x&s4 z &z

g(4x4z; 1r)= Z'—
/z/z (1x2j1r2+Is2)5/2

9 Actually, for @z/0, the proof works so long as @g=0.
'0 R. Fuchs and K. L. Khevper, Phys. Rev. 140, A20'j6 (f965). ~~ M. H. Cohen and F. Eever, Phys. Rev. 99, 1j.35 (1955).



For example,

Dxx((/x4z, /r) =—82 ai
+2 +/r' &(gx4s', /r).

()'4z' ()4x'

The remaining dipole sums may be expressed in terms
of S in a similar manner.

It will be convenient to 6rst consider the case
/y /0, then next examine the sum for /y ——0 separately.

(i) Case /r~O

%e begin with the identity

From Eq. (4), we may obtain rapidly converging
expressions for the dipole sums. %e Gnd

( +-'4 )'
Dxx(gas, /r)= —4 P

7~ (4x4s)

&«xpL —2I/r I v-(4' s)j (/a)
(~m+-', y, )2

Dr r(gxgz, 4)= —4s P
"~ 'Ynm(@x@z)

Xexpl:—2I/r lv-(4x4 z)j (&b)

Dzz(4x4 z, /r) = —4~ P v (yxys)

Thus, 8 may be written

3(yes; /. )=—
3

+00
d/P/'e ~"{ Q s ""e'"}lz~

+(o

y { P & Lx&tzip-x)x}

4x'/2
&(4xgs;4)=—

0

g] ]],/2~-t, ly'2

y s—o/o ((~~+k4x)R-(~~its) ') (5)

The integral may be evaluated in closed form;

dg gl/2g-aug —5/z

1+2(a//)'"rs '"
expL —2(&/')'"j.

2a &a

~(4x(t z, 4-)= Z 11+2&V. (4'x4'z) j
xexpL —2l/rlv- (4x(/z) j (o)

7..(yxyz) =Dz~+ lux)'+(~m+8 z)'3'"

Eq. (4) converges extremely rapidly.
Even for $x=gs ——0, the term with m=1, m=O is
proportional to exp( —2s l/rl). Thus, even for small

values of /y, excellent convergence is obtained by
summing the order of ten terms.

»This identity is encountered in evaluating lattice sums by
K~ald's method. For example, see the discussion by J.M. Ziman,
in Theory of Solids (Cambxidge University Press, I ondon,
1964), Chap. 2.

%e next employ the identity"

+- ~&/& +-
s-"&'s"&4'&= Q exp —-(sw+-', y))' . (4)

)/~00 P/2

&«ml —2I/rlv-(4x(/z) j, Pc)
Dxr((tpxys, /r) =+/4s- sgn(/p) g (xn+Qx)

Xeel.—21/rim.

(&xmas)

j (7d)

For small values of Px and Ps, the dominant term in
these sums is the term with n=m=0. The expression
obtained for the D;; retaining only this term is the
result one would And if the sum over /x and lg is
replaced by an integration over the two dimensional
plane.

(/i) Case /r =—0

The procedure employed above cannot be used in
this case, since the integral in Eq. 5 diverges. Instead,
vie proceed in the following vray. De6ne

)X2

gxgxez) = Z' g&~xfxg&&z@z

) ( (/x'+/z')'/2

)g2
&s(Px(/s) = 2'-- ~s&xgx&svzpz

(x(s (/x'+/s)'/2
One then has

D (4 e.,O)=-» (e (t.)+g.(e ~.),
Drr(4x4 s,O) =+gx(jx,gs)+Is((/x, ys),
D-(e,e.,O)= ».(e,e.)-+g (y,y.).

Consider Ix(gx,gz). The summation excludes the term
with both /x and /s=O. For /zNO, the factor of /x' in
the numerator means elk terms with /x ——0 give vanish-
ing contributions to the sum. Thus

+~ + /x'
&x(&xmas)= Z Z' & &x(//x&& &z(/)z

«&x—"(/x'+/s')'"

Employing an identity used in the earlier discussion,

Ix(pxess) g g /x, (x~x,'(s(z
3+s' &z~ )x~

+00 +00

d/ P/2s —&(&xW)z') —4 Pi P /ys()xyx
0 lg~ Q~Q(}

dI ~-fix&&-(1/t) (gn+$yz) &

0
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We have applied Eq. (4) to the sum on lz.
Then we write

gx(pxQz) = —
p Q Q cos(l»4»)lx

lX 1 n=ce d~x

d]~
—t&X~~—(&/t) (m n+)QZ)

The integral may be evaluated at this point:

oo (g i/2

dte p'e "dt=2l — Ei[2(ab)'t'j

where E1 is the modified Bessel function of order unity.
Then,

gx (pxpz) = —(g/&) 2 Q lx cos (i»ax)
iX=1 n

X
dlx

l
vrip+-,'pz

l

-Ei(2l
l

I+-,'yzl)

Using

Ep(x) = (2/x)Ei(x)+Ep(x)

combined with Ei'(x)= —z[Ep(x)+Ep(x)j, we find

~x(4»4z)=(~6/3) Z & lirit+le leos«»0»)
lX 1n

y[( n+-,'y, )E,(2l l
e+-', y l)

+ (&/lx)Ei(2lx l ~it+pl» l )] (»)

We have employed the forms in Eq. (7) to compute the
dipole sums for the case ly= 0. Since for large values of

x, E„(x) (e */gx), the series in Eqs. (8) are rapidly
convergent.

It is also useful to explicitly exhibit the limit of Sx
and Sz as Px, Pz ~0. One has

lim lim gx(4»pz)= lim lim Sz(pxpz),
4x~o jz~o 4X~o pz~o

with
4x' 32m' ~

&x(O,O) = + Q Q I'Ep(2z. le).
3 l=l n=l

We have employed the results of Eqs. (7)—(9) to
compute the elements of d.

A similar treatment applied to Sz gives

Sz(4»4'z)=(~6/3) 2 & l~m+p4»l cos(lz4z)
lz 1n

X( l&N+ p4»lEp(2lzlirit+pc»l)

+ (1/lz)Ei(2lz l iris'+-,'Px
l )) . (Sb)

IV. BULK EIGENMODES

By employing the technique of transforming the
dipole sums described in Sec. III, we have solved on a
computer the eigenvalue problem described in Sec. II
for films ranging from 10—50 atomic layers in thickness.
In this section, we discuss some of the results for bulk
modes in a film of 30 atomic layers. The qualitative
behavior of the eigenfrequencies and eigenvectors is
similar to the results exhibited in the present section,
for the range of thickness investigated.

For the numerical computations, we have chosen
units so that gpgH=1. The results in this section
assumed that in these units, the product of the spin S
and the nearest-neighbor exchange SJ1——1, with the
next-nearest neighbor exchange Jp= —',(Ji). We have
chosen the parameter 4xgp~M8 as a measure of the
strength of the dipolar interactions.

We first discuss the modes with Px=gz=O. These
are the modes excited by a microwave field incident
normally on the film.

First, consider the lowest frequency mode with
Px=gz=O. This mode in the film corresponds to the
uniform precession mode in infinitely extended crystals.
In a macroscopic disc, with the magnetization parallel
to the surface, the frequency of the mode is given by
Kittel's relation" ftpip= gpe[H(H+krMe) Jt'. When
the mode is excited, in the macroscopic theory the
spin deviation is uniform throughout the sample, with
the ratio of the spin deviation S» (parallel to the
surface) and Sx (normal to the surface) given by
[(H+4~m, )/H ji&P.

Ke have found the frequency of this mode lies quite
close to the macroscopic value, for the range of thick-
nesses and parameters investigated. For example, when

4xgp~M8= 2.5 and II= 1.0, Kittel's relation gives
1.8708 for the frequency. For the thirty-layer film, with
the exchange interactions assuming the values stated
above, we find 1.8725 for the frequency of the lowest
mode.

The eigenvectors are plotted in Fig. 1 for various
values of krM8, in a thirty-layer film. It is interesting
to note that even though no surface pinning fields have
been explicitly included in the calculations, the spin
deviation is significantly larger in the middle of the
film than near the surfaces, when 4xM8 is large. From
Fig. 1, one sees that when 4xgp~MB ——5.0, the spin
deviation in the center of the film is about 6% larger
than near the surfaces. This comes about because even
in the absence of surface pinning fields, the dipolar
field seen by a spin near the surface is significantly
diGerent than that seen by an interior spin. For example,
in the effective field H(1) introduced in Sec. II, the
quantity —Ms+'i Dzz(l —I') occurs. For a spin in
the interior of a infinite sample, this quantity equals
-,'(4»Me). For a spin in the surface layer, this eifective

» See C. KitteI, Introductioe to Solid State Physics (J. Wiley 8z
Sons, Inc., New York, 1956), 2nd ed. , p. 412.
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Pro. I. The spin-wave eigenfunctions for the lowest eigenmode
with @x=@g=0.The eigenfunctions are plotted for various values
of 4n-M8, with B=1.0, SJ~——1.0 and SJ2——0.5.
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pro. 2. The component of spin deviation Sx parag. el to the
f r the three modes closest ln frequency to the lowes

fre uencv mode when px=pg=0. 0. The curves are plotted for
47f3f 8=2,5, with the remaining parameters the same as in Fig. 1.

field is about 4% larger than this value. This change
th effective 6eld has a slight pinning efFect on the

surface spins. There are also other dipolar 6eld terms
in the matrix d which differ for a surface spin, compared
to a spin in the middle of the 6lm.

Since there is curvature in the wave functions of the
lowest mode, there will be a contribution to the excita-
tion energy from the exchange interactions, in contrast
to the case in the infinitely extended medium. Ke have
f d the magnitude of the exchange contribution by

de forcomparing thc frequency of the lowest eigenmo e or
the case with SJ~——1=2SJ2 with the frequency com-
puted with SJ~——SJ~=O. When 4xgp~M8 ——2.5, the
change in frequency is 60=0.0638 for the thirty-layer
film. Thus the frequency of the mode suffers a 3%
upward shift from the exchange interactions, when the
paI'aIQctcI's assume the value glvcn above. Thus, lt
seems that the close agreement between the frequency
of the lowest mode of the film and the macroscopic
Kittel relation is somewhat fortuitous. There is a
decrease in the dipolar contribution to the energy of the
mode which for the parameters we examined is offset
by a positive exchange contribution.

In Fig. 2, we have plotted the x component of the
spin deviation for the three modes with @x——@z——

closest in frequency to the "uniform" mode, for the
case 4n.gp~Mq=2. 5. It can be seen from inspection
that the eigenvectors have a well-de6ned parity with
respect to reflections through the midpoint of the film,

as required for Px=g& ——0 by the symmetry arguments
described earlier. The wave functions are quite similar
in form to the functions cost (7r/S)eyj, where N=O,
1, 2 ~ .. In the long-wavelength limit, and in the
absence of surface pinning 6elds, the continuum
theory'4 yields wave functions of the form cosL (s /Ã) ey],
where n is an integer. From Fig. 2, one sees that there
are deviations from this simple ideal form. For example,
it is clear that the slope (BSx18y) is finite at both ends
of the 61m. This is presumably a consequence of the
cfFective pinning fields that result from the influence
of the surfaces on the dipolar fields, as wc discussed in
the previous paragraph. If the eigenfunctions were
strictly given by cosL(s/1V)myj, then for I= l, 2,
th t t 1 transverse moment associated with excitatione oa

ofof a spin wave vanishes identically. For the mode o
frequency 0=2.0292 in Fig. 2, we find the transverse
moInent associated with the mode is 6nite but small,
with a value of =2% of that of the "uniform" mode.

In Fig. 3, we have plotted the x component of spin
deviation for the four lowest modes with Px—-0.1n,
pg ——0.0, and with 4xgp~M8 ——2.5 in our units. The most
striking feature of these results is the strong asymmetry
of the eigenfunction with respect to reQection through
the midpoint of the 61m. Recall the discussion of Sec. II,
where we pointed out that for @x&0,the eigenfunctions
do not have well-de6ned parity in the presence of dipolar
coupling between the spins. The deviation from simp e

'4 C. Kittel, Phys. Rev. 110, 1.295 (1958).
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We have inspected the modes of higher frequency and
found that they have an appearance qualitatively
similar to phase shifted cosine waves of the form
cos$(z/X)ey —y(m) 7.
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FIG. 3. The x component of spin deviation associated with the
four lowest eigenmodes with @x=0.4- and hz=0.0, where B,
47rM8, SJ& and SJ2 have the values employed in I ig. 2.
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Fxo. 4. The surface mode and the lowest frequency bulk mode,
as a function of p~ for 4n-31=0 and 4m&=2.5. The curves are
plotted for the case H= 1, SJ~——j. and SJ»——0.5.

behavior is especially apparent in the two lowest
frequency modes. The two highest frequency modes of
Fig. 3 have the appearance of cosine waves, with the
argument phase shifted so the maxima do not occur at
the 61m surfaces. It should be noted, however, that the
maxima are not of uniform height, so representation of
even the highest frequency mode illustrated in Fig. 3
by a simple cosine is a considerable oversimplification.

It will be recalled from Sec. I that the study of
surface spin waves, the analog of the Rayleigh waves
of elasticity theory, has been of interest. In particular,
Wallis et al.3 have examined the dispersion relation of
these modes for the Heisenberg model, in the absence of
dipolar coupling. For a simple cubic lattice of spins, with
a free (100) surface, these authors found a surface
spin-wave branch exists, provided next-nearest neighbor
interactions are included.

We have encountered similar modes in our study.
When a well-deQned surface mode exists, we found the
frequency of the mode clearly split oG below the fre-
quencies associated with the remaining modes with the
same value of the wave vector (px,pz) parallel to the
surface. Also, examination of the eigenvector showed
the associated spin deviation localized near the 61m
surfaces. Some of our results are presented in Figs. 4—6.

In Fig. 4, the dashed lines show the frequency of the
surface mode, compared to that of the lowest "bulk"
mode for various values of Pz, with hz=0, V=1,
SJ~——1, J2——(-', )J~, and the dipole strength parameter
4mgp~M8 ——0. With 4rgp~MB ——0, we have the case
considered in Ref. 3, except we have a finite slab of 30
atomic layers, while Wallis and co-workers considered
the semi-inIj. nite geometry. Actually, there are two
surface modes for a given value of (Px,Pz) in the slab,
with a slight splitting between them that vanishes as
the slab thickness increases. For 30 atomic layers, this
splitting is very small, so we show only a single branch
in the 6gure. Also shown in Fig. 4 we have the lowest
"bulk" branch and the surface branch for the case
krgp~M8 ——2.5. Even for this rather large value of the
dipole strength parameter, one notices that the splitting
between the two modes is aGected little by the dipolar
interactions. (In Fig. 4, the frequencies have been
normalized so that the maximum bulk frequency is
unity, for both values of Ms). To see this more clearly,
in Fig. 5, we plot the frequency of the surface and the
lowest bulk mode, and the surface mode at gz ——z. as a
function of the coupling parameter krgp~M8, for the
same value of J~ and J~ as we used in Fig. 4. We 6nd
that the principal eGect of the dipolar coupling is to
"stiGen" all of the modes of low frequency. The relative
position of the surface mode and the bulk manifold is
not greatly aGected.

We have also explored the properties of the surface
modes when the exchange is very small, to see if modes
exist in the presence of dipolar interactions only. With
SJ~=SJ2=0, we found no surface modes, for the values
of H and gp&M8 employed, however, for very small
values of the J's, surface waves make their appearance.
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We have illustrated this point in Fig. 6 by plotting Sx
as a function of position in the Qm for the lowest
eigenmode associated with Pz ——0, P» =z. for
4ngp@M8= 2.5, gp@H=1, Rnd vallous values of Jy,
always taking Jm ——(-',)Ji. It can be seen that when
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Fxo. 6. The component of spin deviation (Sx) parallel to the
surface for the lowest eigenvalue associated with @g=m, @x=0
and 4r3f =2.5. %e have taken H =1.0, and various values of SA
gath Jp=-,'Jg.

I xo. 5.The frequency of the lowest bulk mode and the surface
mode at p~=m, pg ——0 plotted as a function of AM. The remaining
parameters are the same as for Fig. 4,

Ji——0, Lsee Fig. 6(a)7, this has a cosinelike spatial varia-
tion throughout the 61m, with the spin deviation large
in the center, and small at both surfaces. %hen
5J~=0.08, the slope of the wave function at the surfaces
of the 61m decreases to a value near zero, as can be
seen in Fig. 6(a). Also, the value of S» at the surfaces is
considerably larger than for the case Jg——0. When SJg
is increased to 0.09, the slope at the surface changes sign,
and although the maximum is near the center of the
61m thcrc 18 R strong Qattcning of thc wRvc functloIl.

As one can see from Fig. 6(b), by the time SJi=0.12,
the maximum is depressed well below the value at the
61m surfaces, and thc mode appears to have the form
of a surface mode. As J~ is increased more, the mode
becomes morc tightly bound to thc surfaces. This may
be seen in Fig. 6(b), where we plot S» for the mode with
SJi=0.15. In these two 6gures, arbitrary units for
Sx have been used.

It should be mentioned that when two modes are
very nearly degenerate, the computer tended to produce
an eigenvector that was a linear combination of the
two nearly degenerate vectors. This dB5culty was
encountered for the modes illustrated in Fig. 6(b), since
the splitting between the symmetric and the anti-
syrnmetric modes is small. "The curves plotted were
obtained by assuming only the two surface modes are
mixed, so the eigenvector for the symmetric mode may be
extracted as proportional to the sum S»(lr)+S»( rr). —

All of the surface modes found in this work had
frequencies split OG below the bulk modes of the same
($»,$z) as the surface mode in question. It is interesting
that in the absence of exchange, and in the long-wave-
length limit, Damon and Eshbachs found surface modes
with frequencies greater than the maximum frequency
gpz(H(H+4rrMz))'I~ for bulk modes. For small values
of ($»,fz) where our numerical work might be ex-
pected to overlap with Damon and Eshbach's theory,
we were unable to 6nd evidence of surface modes above
the lowest bulk. frequency. Of course, in this region, the
penetration length of the Damon-Kshbach modes
becomes long compared to our slab thickness, so it is
not surprising for us to encounter diIIlculty in passing
from the short-wavelength modes of the type con-
sidered by %allis and co-workers' to the Damon-
Eshbach regime. Indeed, for small p» and pz, one en-
counters low-lying modes that are geometrical reso-
nances of the slab, with no clear surface character.
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'5 One may show from the symmetry arguments of Sec. G that
at the special point q~=x, qg=0, the modes again have weH-
deined parity. This follows upon noting that the points (m,0)
and (—+,0) are in fact the same points in reciprocal space, since
they diGer by a reciprocal lattice vector of thy t~g dimensional
Sriliouin zone.


