
M. NAKA MURA, 8 t a l. 178

Energy differences of all these absorption bands
from the first strong-absorption band agree well
with those of the Rydberg states of the NQ mole-
cule from its ground state, if we shift the zero
point for measuring the energy difference of each
band by 0.60 eV from the center of the first ab-
sorption band toward the lower energies; this is
because the absorption to the v=0 level of the
(o„&s) '(mg2P), 'fl„state must appear near the
threshold of the absorption band instead of its
center.

With the above assignment, the present experi-
mental absorption data are compatible with the
theoretical expectations for the excited states
originating from the 1s electron excitations.
The energy value of 409.5+ 0.1 eV is obtained for

the K energy level of the nitrogen molecule, using
the ionization energy of the NO molecule (9.27 eV)
and the energy values where the absorption bands
appear in the present experiment.
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A model calculation has been made of the effects of perturbations of the 3s nd series of
aluminum by the 3s3p D term. The model employed is the traditional one of configura-
tion interaction among the independent-particle model representations of the relevant dis-
crete states, with Hartree-Fock functions being used to compute the necessary matrix
elements. It is found that, while in the Hartree-Fock approximation the 3s3p term is
bound and embedded in the 3s nd series, the configuration interaction gives rise to a. new

autoionizing state just beyond the series limit. This state, which is approximately 50%

3s3p, is found to have most of the D absorption oscillator strength (f=1.1). The gener-
al properties of this model of series perturbations are also discussed in some detail.

INTRODUCTION

This paper reports the results of a configura-
tion-interaction study of the term scheme and
oscillator-strength distribution in an atomic
Rydberg series perturbed by a single foreign
term. Such perturbations have long been famil-
iar in atomic spectroscopy where they produce
an otherwise anomalous behavior in the quantum
defects and term splittings along the series.
These effects are normally so striking as to
clearly identify the perturbing state. "'

A particularly interesting example of a per-

turbed series appears in the spectrum of neutral
alum). num, where the 3s'nd'D series should be
strongly perturbed by the D term of 3s3p . The
feature of interest in this case is the fact that
the perturber can't seem to be found. Both Har-
tree- Pock calculations and semi-empirical esti-.
mates of the Slater parameters place the 3s3p'
term in the middle of the series —between 5d
and 6d. However, the latest experimental data'
(quantum defects and doublet splittings) does not
provide any unambiguous identification of the per-
turber, suggesting that the configuration interac-
tion is quite strong with its effects spread out



178 SERIES OF Al I

over a number of the lower-lying states. The
situation is sufficiently ambiguous that the sug-
gested identification for the 'Ll levels is simply
that of the Rydberg series, 3d, 4d, etc. , omit-
ting entirely 3s3p'.

Of more general interest is the behavior of os-
cillator strengths (for the transitions originating
in some given initial state) along a perturbed
series. W'hile some intensity anomalies have
been noted with regard to the effects of autoion-
izing states, 4 relatively little attention appears to
have been given to the effect of such pex'turbations
on f values. The basic theoretical model under-
lying the usual interpretation of perturbed series
is that of configuration interaction among the
single configuration representations of the per-
turber and series members. This means that,
at least in the vicinity of the perturber, the mave
functions mill be mixtures of the series and per-
turber configurations, which could strongly af-
fect the f values. In fact, the oscillator strengths
should probably be more sensitive than the ener-
gy levels to the extent of the configuration mix-
ing induced by the foreign term.

The calculations reported here were originally
undertaken to shed some light on the question of
th6 level assignments lQ Al J. Conflguratlon-
interaction wave functions mere computed using
as a basis the Haxtree-Fock functions for the
3s3p' and for the four-lowest 3s'nd states (3d
—Gd), and neglecting any other interactions.
While this ignores a substantial portion of the
correlation error, the calculations are entirely
within the framework of the traditional model
of series perturbations and shouM provide at least
a qualitatively reliable description of the term
scheme. Since the f values for the series of
transitions from the ground state have been mea-
sured experimentally, '~6 one has a further, and
perhaps more stri.ngent, check on the general val-
idity of the model.

The aluminum calculations will be described in
more detail in the next section. This will be fol-
lomed by a general theoretical discussion of the
model. The use of Hartree-Fock functi, ons means
that the submatrix for the series is already nearly
diagonal so that the full configuration interaction
matrix is a bordexed matrix. This simplifies the
problem sufficiently so that one can dram some
general conclusions about the predictions of this
model.

THE AI r CALCULATIONS

The analytical, expansion method Ha, rtree- Foek
technique' mas used to generate a set of 3s'md

Rydberg states (n = 3, 4, 5, 6) as well as the 383p'
perturber. In this procedure, the Hax'tree- Fock
orbitals are approximated as linear combinations
of analytic basis functions,

n$ E

A„I =2&,. X, ,

with the basis set (yf ) here taken to be the usual
Slater-type orbitals (STO),

1

l P + 2 1

y, =(3C,)
'

[(3p,)tj

P -1 -l~
x x e I'I (8, &)

Since the self- consistent-f ield procedure induces
a small core x elaxation in going from one state to
another, the Hartree-Foek orbitals for the differ-
ent D states are not quite orthonormal, and some
modifications mere required to get an orthonormal
set suitable for the conf lguratlon-&nteractlon cRl-
culation. The procedure adopted mas to take the
core and 3s functions from the 3s'3d calculation.
The Hartree-Fock 4d, 5d, and 6d' were then. suc-
cessively orthogonalized to this M and to each
other. The 3p mas the Hartree-Foek 3P for 3s3P,
Schmidt orthogonalized to the 2P core function.
It was felt that this procedure would not give rise
to any significant, deviations from the Hartree-
Fock for any given state, and indeed the worst
case was 3s3p' where the energy was raised by
0.001 a,.u. (0.03 eV) above the Hartree-Fock. '

Such a 5-term configuration interaction is un-

doubtedly quite crude since it neglects the curnula-

tive, residual correlation effects. However, this
is the basic model underlying the interpretation of
series perturbation effects, and it should be ade-
quate to descxibe the main features of the spec-
trum. Since the nd series is nonpenetrating, the
use of Hartree-Fock functions for purposes of
computation also should not represent a severe
approxiIQRtioQ. It seems reRsonRble to expect Rt

least qualitative accuracy with regard to predic-
tions of oscillator-strength trends and identifica-
tion of the dominant configuration for any particu-
lar state.

The wave functions and energies resulting from
this 5 &&5 configuration interaction are given in
Tables I and II. All the energies are given rela-
tive to the Hartree-Fock ionization limit, 3s''8
of Al rr, for which Etotal= —241.6741 a.u. Note
that for this model, the unperturbed 3s3p' state
is an interloper between the third and fourth mem-
bers of the Rydberg sexies. ' Also given in these
tables are the energies and wave functions for a
2 x 2 configuration-interaction calculation of the
'P ground state

3s 3p+ 3p

This latter calculation mas done to maintain xoughly
the same level of accuracy as in the excited states,
since all the f values of interest here are for tran-
sitions originating in the ground state. While the
numerical results to be presented refer to this two-
term ground- state function, it turns out not to be very
important —the f values are not substantially
changed by using simply a Hartree-Fock ground
state.
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TABI E I. Energies (in a. u. ) and eigenvectors for D states in Al x. Energies are vrith respect to the Hartree-

Pock ionization limit.

3s 3d
3s 4d
3s 5d
3s 6d
3s3P

0.0580
0.0325
0.0207
0.0142
0.0165

0.8748
-0.1727

0,1062
—0.0748

0.4336

0.0682

0,3728
0.8185

—0.2330
0.1292

—0.3467

0.0386

—0.1543
0.4444
0.8119

—0.2415
0.2476

0.0240

0.0824
—0.1328

0.4024
0.8869
0.1647

0.0158

—0.2553
0.2919

—0.3368
0.3645
0.7767

-0.0048

It is cleax from Tables I and II, that a fairly se-
vere mixing of the coxlfigurations is indicated for
eRch elgenfunctlon, It ls Rlso somewhat interest-
ing to see to what extent the 3s'nd Rydberg states
are intermixed; since the submatrix for these
terms is already very nearly diagonal, this is all
brought about by their interaction with the 383p'
interloper. Although the identity of the 'D levels
may be somewhat questionable, it is possible to
pick out a single configuration which is dominant
for each state. This model thus supports the nor-
mal Rydberg-series assignments for at least the
first four 'D levels.

The oscillator strengths for transitions from the
ground state to these levels are given in Table III,
for both the Hartree-Pock and configuration-intex-
action wave functions, and compared with the ex-
perimental VRlues. & The configuration- lntex'Rc-
tion fvalues are computed using the two-configura-
tion ground-state approximation as well as the five-
term 8-state functions. In every case the theoret-
ical energies have been used, although this is not
a significant factor. It is clear that, while it un-
derestimates the f values for the higher terms, the
configuration interaction does give the correct
qualitative behavior for the series.

The effects of configuration interaction on both
the energy levels and f values are displayed in
Fig. 1. Here energy is plotted along the abscissa,
and oscillator strength along the ordinate. The
Hartree-Pock scheme gives a normal, well-be-
haved Hydberg series, with the 383p' interloper
embedded in it between n = 5 and 6. When these
terms are allowed to interact, however, all but
one of the states are depressed in energy and

TABLE II. Energies (in a.n. ) and eigenveotors for P'
states in Al x. Energies are with respect to the Hartree-
Fock ionization limit.

with diminished f values, while the highest level
floats off the top carrying most of the osciQator
strength with it. The topmost level is here pre-
dicted to 1ie about 0.13 eV above the ionization
limit

The configuration interaction has thus effectively
removed the 3s3P perturbing texm from the dis-
crete spectrum and produced an autoionizing state
which, while predominantly 3s3p', contains a sig-
nificant admixture of each of the series members
(see Table I). It is interesting to note in passing
that this calculation bears some resemblance to
the schematic model of collective states in nuclear-
physics, " although the single-configuration basis
is rather different in the two cases.

While an obviously important question now arises
concerning the interaction of the autoionizing state
with the continuum, we will concentrate next on
the general properties of this simple model of
sel'ies perturbations Rnd its implications fol the
discrete spectrum.

DISCUSSION OF THE MODEL

The basic model considers only a single Rydberg
series perturbed by R single foreign term. The
wave function for each state is supposed to be a
linear superposition of the unperturbed, indepen-
dent-particle conf igurations,

C .O. (3)8 e 0 Sj

TABLE IG. Calculated and measured oscillator
strengths for transitions from the ground state 3s 3P P
of Al x to the D levels. The expeximental values for
the series (Ref. 6) have been normalized to a lifetime
measurement (Hef, 5) of the lowest level.

2po

0.2025
—0.2382

0.9821
0.1882

0.2193

—0.1882
0,9821

—0.2550

Hartree-Fock
Configuration

Interaction
Experiment

3s 3d 3s 4d 3s 5d 3s 6d 3s3P

0.398 0.132 0.072 0.042 0.530

0.165 0.007 0.028 0.021 1.060
0.175 0.044 0.120 0.098
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l.2— a . =(C IXIC.)=V. ,
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CONF IGURATION INTERACTION

with &~ being the unperturbed energies. Since
one can, without loss of generality, take the wave
functions to be real, these matrices are symmet-
ric ~

The configuration- interaction problem then is
that of solving the eigenvalue problem,

N
5 a..C.=ZC. ,
=0 'j jj=0

for the bordered matrix (4). In this case, the
eigenvalue Eq. (6) becomes,

f
0

.8—
i f I

N

e0C 0+ Q V0.C .=E C
0On0, . Ojnj nn0j=l

(6a)

HARTRKE-FOCK V0.C 0+&.C, =E C
Oj nO

Equation (6b) gives the coefficients,

C .=C V./(Z -e.),
nj n0 Oj n j

(6b)

I

—.IO
I

—.0B —,06

4d 5d 61
3S3p~

I I

—,04 —.02
E(au) ~

1

,02
l

,04

where Cn0 has become a normalization factor.
SubstitutIng (7) illto (6a) g1ves a foI'IIlal sollltloll
for the eigenvalues,

N
E =e0+ 5 V0.'/(E - e.) . (6)

n I j j n

FIG. 1. The energy levels and oscillator strengths

for A1 r computed with and without configuration in-

teraction. The observed level positions are also in-

dicated.

where the summation can go over any desired
number of Rydberg states. The C are further-
more supposed to be Hartree-Foci, single-con-
figuration functions and the C . are the coeffi-

nj
cients of the nth eigenvector of the energy matrix.
The convention mill be adopted here that Co re-
fers to the perturber, and 4 (j & 0) to the Rydberg
terms.

In a Hartree-Pock representation of a single-
series electron outside-closed shells, the matrix
elements between series members vanish almost
exactly. " To be more precise, the matrix ele-
ment between a Hartree-Pock wave function and

a single excitation function vanishes identically.
If we then assume that core relaxation is negligi-
ble and that the Hartree-Pock functions for the in-

dividual series members form an orthonormal
set, we have the following simplification. The
matrix elements over the fuQ Hamiltonian 3C are
given by,

H ..=(4 .I X I 4 ) = e.
n

H. . =(&.I XI C.) =0, i 4j 40
U i j

This equation can be solved graphicaQy by plotting
the left- and right-hand sides as separate functions
of a continuous variable Z (in place of &8) and

finding the intersections of these curves. The
right side of (6) gives a set of tangent-like curves
which go to + ~ at the locations of the unperturbed
Rydberg levels ej, and the left side is simply the
straight line F= E. The values of E where they
intersect are then the ei,genvalues E .

The graphical solution for a set of parameters
representative of the earlier aluminum calculation
is illustrated in Pig. 2. Here, the curves have

been shifted by e„so that the straight-line plot
of the left side of (6) crosses the abscissa at e„
the location of the perturbing term. The figure
is actually drawn for a five-member series, al-
though, of course, the actual number is not im-
portant, since any number of series terms couM
be used. It is clear that including more, or less,
terms in the series would not have changed things
substantially; the highest eigenvalue would still
detach itself from the series and move up into the
continuum. Nor would the results have changed
much if the perturber were further up in the series
or just above the limit. Had it been significantly
below the lowest member, however, the main ef-
fect of the interaction mouM have been to push it
down and the lomest series members up, with the
effects dying out further up in the series.

Since these results are somewhat different from
the classical effect of a perturber buried in a spec-
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X

X
X'I

I

X

the vicinity of the perturber, will probably be
strong mixtures of the neighboring configurations.
The important question seems to be whether or
not the matrix elements are comparable in magni-
tude to the cox responding unperturbed- series
spacings. Thus, if t VO I is comparable to (e&
—e.), one has the situation depicted in Fig. 2; if
it ~s significantly smaller one has the case of Fig.
3.

One can get some idea of the effect on the oscil-
lator strengths now by substituting the wave func-
tions (Eqs. 3 and 7) into the expression for the
transition moment

DO =(gO'~r~g ),

FIG. 2. The graphical solution of Eq. 8, for the ease
where the matrix elements are comparable to the un-

perturbed Rydberg level spacings. The energy scale
in the figure is that of the Hydberg series under con-
sideration.

tral series, it is of interest to examine what hap-
Pens if the interactions V0j a,re altered. In Particu-
lar, if the magnitudes of the matrix elements are
decreased by about an order of magnitude and
made to fa].l off more rapidly along the series, one
obtains for the graphical solution of (S) the set of
curves in Fig. 3. This change in the V0j results
in making the curves much tighter and, in effect,
wipes out the autoionizing state. The perturber
now remains bound and pushes its nearest neigh-
bors apart, with the effect dying out toward the
extremes of the series, just as one noxmally ex-
pects from series perturbations. The identifica-
tion of the pexturber itself will depend on a de-
tailed examination of the wave functions, which in

X
X

x I

FIG, 3. The graphical solution of Eq. 8 for a set of
matrix elements which are both smaller and fall off more
rapidly than those for Fig. 2.

where P,
' is the ground-state wave function. This

gives
N

D = C dOO+ Q VO.dO. /(E —&.)
0n n0 00 . , Oj0j nj=l

where d„and d0j are the transition moments from
the ground state to the perturber and series mem-
bers, respectively. If now one makes the dipole
approximation for the interaction matrix elements,
i,e., supposes that they can be approximated by a
product of the transition moments,

V0. —Xd00d0. ,

then the transition moment (9) becomes

D =C
OdOO

1+XX d .2/(E —e.)
On nO OO . , n

If A. &0, then for the highest eigenvalue all the
terms in (12) add up coherently, enabling the top-
most state to collect a laxge portion of the oscil-
lator strength. Conversely, for the lowest state
the entire sum over the Rydberg terms in (12) is
negative, and one can expect a severe cancellation
in the oscillator strength. This means that if the
perturber were originally below the series, it
would lose oscillator strength to the series.

It should be noted here that the conclusions with
regard to the energy levels are independent of the
dipole approximation. This latter approximation
is only important for the predictions concerning
the oscillator strengths, and here all that one
really needs is that the phase of the matrix ele--
ments t/'0 j match those of the transition moments

dO& according to Eq. (11). The validity of the di-
pole approximation appears to depend on the ser-
ies being a nonpenetrating one, so that the series
electron is radially far removed from the rest of
the atom. This is discussed in the Appendix for
the case 3s3p'+ 3s'nd.

Some experimental support fox these conclusions
for the case of a perturbing state lying below a
nonpenetrating series is shown in Table IV. This
table compares Hartree- Fock calculations with
some recent measurements of f values for tran-
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TABLE IV. f values for some transitions involving low-lying series perturbers.

Transition

2s 2p P-2s2p D

2s 2p P-2s2p D

2s 2p P-2s2p S
3s 3p P-3s3p D
3s 3p P-3s3p D

3s 3p P-3s3p $

Atom

8 x

C xx

C x

N xx

Ne xx

Si xx

Si x

P xx

Ar xx

Hartree-Fock

0.339
0.274
0.286
0.240
0.161
0.451
0.419
0.410
0.227

0.048
0 114
0.076a, 0.091b
0.109a
0.035

& 0.006
0.068
0.008
0.009'

See Lawrence and Savage (Ref. 12).
See Boldt (Ref, 13).c
See Hinnov (Ref. 14).
See Savage and Lawrence (Ref. 15).

e
See Lawrence (Ref. 16).

sitions in first- and second-row atoms and ions
which connect the ground state with low-lying val-
ence excited states. " " In every case the excited
state has a nonpenetrating series above it with
which it can interact, and in every case the f value
is significantly smaller than predicted by the sin-
gle- configuration approximation, which is in agree-
ment with the above conclusions.

The importance of the nonpenetrating property
of the series electron appears to be well illustrat-
ed by the 'S series in carbon zr. Here, the 2s'ns
series is perturbed by the 'S term of 2s2p', which
lies below the series. However, in this case, it
is the 2s'3s which has the anomalously low f val
ue, "and which is just the opposite of the behavior
shown in Table IV. A comparison of the matrix
elements from a direct calculation with those
given by the dipole approximation shows that the
dipole approximation gives the wrong sign. In ad-
dition to this, of course, a penetrating series,
with the attendant core relaxation, makes the bor-
dered matrix approximation rather questionable.

SUMMARY AND CONCLUSIONS

The preceding two sections have described a
rather simple model of series perturbations,
namely a single Rydberg series perturbed by a
single foreign term. For a nonpenetrating series,
the conclusions can be summarized as follows.
If the energy matrix elements connecting the per-
turber with the series members are small com-
pared to the unperturbed series spacings, then
the perturber behaves classically, repelling the
neighboring series states, and with the effect dy-
ing out fairly rapidly along the series. If the ma-
trix elements are comparable to the unperturbed
spacings, then the perturber interacts with the
entire series as a single entity.

In this latter case, if the matrix elements are
also moderately well represented by a dipole ap-

proximation, it appears reasonable to distinguish
three different possibilities. (1) If the perturber
is originally an autoionizing state lying above the
series, it will be pushed up still further by the in-
teraction and take up much of the series oscillator
strength. (2) If the perturber is initially embed-
ded in the series, the interaction will give rise to
a "previously nonexistent" autoionizing state which
takes up a large portion of the oscillator strength.
This appears to be the case in Aluminum r and
probably is responsible for the recently reported
difficulties in calculating the 3s3P22D state. " (3)
If the perturber is initially below the series, the
interaction pushes the perturbing state down and
transfers oscillator strength from it to the series,
and perhaps into the continuum.

While the main point of the present investiga-
tion has been a study of the standard model for
perturbed series, it should be kept in mind that
there are deficiencies in this treatment which
can be quite serious. In the first place of course,
a good deal of the residual correlation error has
simply been neglected, and it is difficult to assess
the cumulative effect of a charge number of "cor-
relation" configurations added into the wave func-
tions. There does seem to be general, qualitative
experimental support for some conclusions, such
as the f value trends in the aluminum series and

for a number of low-lying perturber states in
other atoms.

Another important way in which this treatment
is deficient is in the neglect of the continuum
part of the spectrum, both with regard to its
possible effect on the discrete spectrum as well
as the behavior of the photoionization cross sec-
tion. In the case of the 'D series of aluminum,
the fact that the perturber interacts so strongly
with the discrete series suggests also a strong
interaction with the continuum. Indeed, a rough
estimate of the strength of the 3s3p' interaction
with 3s'kd near threshold, using wave functions
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computed in a Hartree-Fock-Slater potential, in-
dicates a width of approximately 1.0 eV for the
autoionizing state. " This, no doubt, accounts for
the underestimation of the higher-series mem-
ber f values in Table III.

At one point in this research, it was thought
that this predicted D autoionizing state in alumi-
num accounted for the reported experimental ob-
servation of a doublet just beyond the ionization
limit. " However, the identification of this dou-
bletasbelongingto atomic aluminum has recently
been questioned. ' Furthermore, with this kind
of width it is doubtful if this state would appear
as anything more striking than a hump on the
photoionization cross section. It is of interest to
note here that there does appear to be some evi-
dence from solar uv spectra for an enhanced ab-
sorption just beyond the aluminum threshold. "

In conclusion, it seems clear that a more thor-
oughgoing study of the aluminum cross section
near threshold is called for, probably along the
lines of a recent study of photo-ionization in
beryllium. "
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APPENDIX

In the case of the Al I configuration interaction

3s3p + 3s nd ~

the matrix element reduces to a single radial in-
tegral,

g'(3s3pl 3pnd) = f f drldr2P3 (1)P (1)
p p 1 2 3s

xr r 'P3 (2)P d(2), (A1)
3p nd

where Pn~ are the radial functions. Since now the
nd function is a Rydberg orbital, the charge dis-
tribution for electron 2 should be radially much
further out than that of electron 1. Thus one
should be able to approximate (Al) by the product
of one- electron integrals:

8'(3s3pl 3pnd) = (3sl ri 3p)(3p lr 'Ind) . (A2)

The first factor is just the dipole integral for the
transition from the ground state to 3s3p'.

If it is now supposed that the 3p and nd functions
can be approximated by solutions of some screened
Coulomb type of potential, then the second factor
is just the dipole acceleration form of the transi-
tion integral for the transition from the ground
state to Ss'nd,

8'(3s3p I 3pnd)

=(~ )'(3str(3p)(3pirind) .
nd

(A3)

Since the separation of the Rydberg states is
small compared to their distance from the ground
state, hEnd is a slowly varying function of n. If
it is taken as a constant, one now gets the dipole
approximation (11), or conversely one gets a dipole
approximation where X is a slowly varying func-
tion of the series excitation energy. The latter
case does not alter the conclusions drawn from
(12).

As a check on the approximation, this formula
was fit to the exact matrix element for the 5d of
Al r and then all the other matrix elements com-
puted. It was found that they all agreed with the
correctly computed V0 to within 10%.

*Research supported by the Advanced Research Proj-
ects Agency of the Department of Defense under the
Strategic Technology Office.

A. G. Shenstone and H. N. Russell, Phys. Rev. 39,
415 (1932).

B. Edlbn, Handbuch der Physik, (Springer-Verlag,
Berlin, 1964), Vol. 27, p. 80.

K. Eriksson and H. Isberg, Arkiv. Fysik 23, 527

(1963).
W. R. 8. Garton, Antoionization (Mono Book Corp. ,

Baltimore, 1966), p. 111.
B. Budick, Bull. Am. Phys. Soc. 11, 456 (1966).
N. P. Penkin and L. N. Shabanova, Opt. i Spek-

troskopiya 18, 896 (1965) [English transl. : Opt. Spectry.
(USSR) 18, 504 (1965)].

C. C. J. Roothaan and P. S. Bagus, Methods in

Computational Physics (Academic Press, Inc. , New

York, 1963), Vol. 2, p. 47.
Atomic units are used throughout this paper. For

the energy, 1 a. u. = 2R= 27.210 eV, where R is the
usual Rydberg unit.

9If one uses the experimental positions of the P, P,4 2

and S terms of 3s3p to determine the usual Slater
parameters, the D term is again predicted to lie be-
tween 5d and 6d. The author is indebted to Dr.
J. Sugar and Dr. %'. Martin forpointing this out tohim.

G. E. Brown, Unified Theory of Nuclear Models
(North-Holland Publishing Co. , Amsterdam, 1967).

L. Brillouin, Actualitbs Sci. Ind. 71, (1933); ibid.
159 (1934); E. R. Davidson, J. Chem. Phys. 41, 656
(1964).

G. M. Lawrence and B. D. Savage, Phys. Rev. 141,
67 (1966).

G. Boldt, Z. Naturforschung 18a, 1107 (1963).



'D SERIES OF Al r

E. Hinnov, J. Opt. Soc. Am. 56, 1179 (1966).
isB. D. Savage and G. M. Lawrence, Astrophys. J.

146, 940 (1966).
ieG. M, Lawrence, private communication.

A. W. %'eiss, Phys. Rev. 162, 71 (1967).
C. Froese Fischer, J. Quant. Spectr. Radiative

Transfer 8, 755 (1968).
'l8S. Manson, private communication.

20%'. R. S. Garton, Proceedings of the Fifth Inter-
national Conference on Ionization Phenomena in Gases,

1961 {North-Holland Publishing Co. , Amsterdam, 1962)

Vol. 2, p. 1884.
%'. R. S. Garton, private communication.

R. Tousey, Astrophys. J. 149, 239 (1967).

P. L. Altiek, Phys. Rev. 169, 21 (1968).

PHYSICAL R E V I K%' VOLUME 178,- NUM HER 1 5 FEBRUARY 1969

&ariational-Bound Method for Autoionization States*

J. F. Perkins
U. 8. Army Missiie Command, Bedstone Arsenal, A/abaca 35809

(Received 1 November 1968)

A variational method which provides upper bounds to energies of atomic autoionization states
(Q&Q eigenvalues) without requiring knowledge of target eigenstates is sought. For two-
electron atoms, it is found that such a method is provided by a superposition of configurations
of a single set of arbitrarily chosen orbitals, with a (physically plausible) prescribed choice
of secular-equation roots. This conclusion is applicable to calculations of HoQien, and ex-
plains the observed "stabilization of roots. "

The states of interest herein are subject to auto-
ionization within the nonrelativistic approximation,
being associated with resonances in electron-atom
scattering. ' Many of the resonances are quite
narrow and it is natural to attempt to calculate
these quasidiscrete compound-atom' states by
methods similar to those which are commonly
used to calculate true discrete states. The
Rayleigh-Ritz method when applied to discrete
states has the desirable properties of providing
energy bounds and being subject to indefinite ex-
tension so as to provide as good an approximation
as desired. The variational theorem'~4 guaran-
tees that the Ith lowest root of the secular equa-
tion is an upper bound to the energy of the Ith low-
est state which is not orthogonal to the trial func-
tion by symmetry. This theorem does not apply
in a straightfor'ward way to compound-atom auto-
ionization states, which B.e above an infinite num-
ber of states of the same symmetry; this limita-
tion was formally overcome by O' Malley and
Geltman, ' as noted below. The variational theo-
rem does apply to states such as the 4Ss and 4Po
states of I i below the lowest 38 state of Li+; these
are true discrete states within the nonrelativistic
approximation, even though they lie above the Li
ionization threshold. '

Following O' Malley and Geltman, ' we define
autoionization states as eigenfunctions of QHQ,
where P = 1- Q is the Feshbach projection opera-

tor which projects onto the energetically accessi-
ble target eigenstates. For two-electron atoms,
and energies below the lowest inelastic threshold,
we have

Q. = l —P. ,
2

P.= ) uO(r. )&(uo(r.) I .
0 2 0 2

(I)

(2)

For two-electron atoms an alternative, but equiv-
alent, definition is that autoionization states are
those states corresponding to stationary-energy
functions in Q space, the space of quadratically
integrable functions which have identically vanish-
ing overlap with the wave function(s) of the lower-
lying state(s) of the target. It seems plausible to
assume that this alternative definition is also
meaningfuland appropriate for systems with more
than two electrons. It is interesting to note that
this definition also encompasses such states as
the quartet states of Li referred to above, since
the vanishing overlap is immediately assured by
symmetry properties.

The eigenvalues of QHQ, as distinguished from
those of H itself, are discrete in the energy range
of interest; hence the Rayleigh-Ritz method is at
least formally applicable and the variational theo-
rem guarantees energy bounds. O' Malley and
Geltman showed that one can deal variationally


