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Recently the authors have derived kinetic equations describing the behavior of the spin autocorrelation
function I'y(?) in a Heisenberg system at infinite temperature. In the present paper, this derivation is ex-
tended to finite temperatures (above the critical point). It is shown that, in the Weiss limit where the
number of neighbors Z — 0, the effects of the equilibrium (Ornstein-Zernicke) correlations present in the
system at the initial time can be entirely incorporated within an effective temperature-dependent inter-
action which governs the temporal behavior of the autocorrelation function (af). A non-Markoffian kinetic
equation is obtained in which the kernel is highly nonlinear in the complete af T'y(f) ; this contrasts with the
infinite-temperature case, where the kernel was a functional of the direct af only. This new feature leads to
simple approximations near the critical point, as will be discussed in detail in the next paper of this series.

I. INTRODUCTION

N two recent papers,!? the authors have analyzed the
spin autocorrelation functions (af)

Lap(8) =(Sa(6)S:7(0)) (1.1)

of a Heisenberg system of spins s=% in the high-
temperature limit. Here, S,%(¢) denotes the Heisenberg
representation of spin component a(a=-+, —, z) at
lattice point @, and the bracket indicates the average
over the equilibrium distribution.

Exact kinetic equations were obtained, in the limit
of a large number of neighbors, by a systematic re-
organization of the perturbation series for I';z*8(Z).
More precisely, it was shown that the direct af I'(z)
[T (#)=4T..**()] obeys the nonlinear equation

I (f)=— / t@o(t'll‘)I‘(t—t’)dt', (1.2)

while the Fourier transform I',(¢) of the af is given by
t

or 0= [ LG ID=Gult I (=100r, (1.9)
0

which is linear once I'(¢) has been determined from (1.2).
In these equations, the non-Markoffian kernel G,(¢|T)
is a nonlinear functional of I' and, as such, satisfies the
condition
G, (t|IT) >0 (t— »). (1.4)

Although this kernel is defined as an infinite series of
terms, simple approximations have been proposed,
which allow the kinetic equations (1.2) and (1.3) to
be solved explicitly.

The main results thus obtained can be summarized
as follows:
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(1) T'(¥) starts with a Gaussian behavior but finally
approaches zero through damped oscillations. The
origin of this behavior can be found in the non-Markof-
fian nature of Eq. (1.2), where the characteristic decay
time of the kernel Gy(#|T") is of the same order of
magnitude as the decay time of the function I'() itself.

(2) In the small-wave-number limit ¢ — 0, Eq. (1.3)
tends asymptotically to a Markoffian diffusion equation
because we then have a complete separation between the
characteristic time of I'({) (and thus of [G,({|T)
—Go(t|T)]) and the very large decay time (~¢~%) of
..

Although these results are interesting as such and
can be applied to a variety of experimental situations,?
there remains the very important question of generaliz-
ing them to finite temperature. In particular, we would
like to discuss in a similar frame the behavior of (1.1)
near the critical point, where traditional theories run
into severe difficulties.4 In this paper, we derive formal
kinetic equations for the af valid at any temperature
above the Curie point T¢. Approximate solutions of
these equations for ferromagnets near T'¢ will be
presented in the next paper of this series.

The method used has already been discussed in
detail in RDL 1. It is based on a formal solution of the
Liouville-von Neumann equation as developed by
Prigogine and co-workers in their study of nonequilib-
rium processes in quantum gases.’ In Sec. II, we briefly
recall the basic formulas of this approach; however,
the equations there are mainly quoted for further use
and the reader is urged to refer to RDL I (Sec. II
mainly) for further explanations.

The main difference between the present calculation
and the infinite-temperature case is the existence of
equilibrium correlations which will, or course, influence
the dynamical evolution of the system; in the Weiss

3 See, for instance, P. Résibois, P. Borckmans, and D. Walgraef,

Phys. Rev. Letters 17, 1290 (1966).
4See W. Marshall, Natl. Bur. Std. (U. S.), Misc. Publ. 273,

135 (1966).

5 I. Prigogine, Non Equilibrium Statisticdl Mechanics (Inter-
science Publishers, Inc., New York, 1962); P. Résibois, Physica
27, 541 (1961).
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limit (Z— o, where Z is the number of neighbors),
they are described by the well-known Ornstein-Zernicke
law and become of long range near T'¢.® In Sec. III,
we build the density matrix which describes our spin
system at time ¢{=0, taking these correlations into
account.

Section IV is devoted to a generalization of the
diagram technique introduced in RDL I. We represent
by graphs the formal perturbation expansion of (1.1),
including the equilibrium part.

Using this diagram technique, it is fairly easy to
determine which contributions dominate in the Weiss
limit; this is the object of Sec. V.

In Sec. VI, we analyze in detail the effect of the
equilibrium Ornstein-Zernicke-type correlations on the
dynamics of the system : Limiting ourselves to the Weiss
limit, we show that they can be entirely incorporated in
a so-called “vertex renormalization’”” which replaces the
exchange coupling between the spins by an effective
temperature-dependent interaction.

With this result, we are then left with a purely
dynamical problem, which presents the same difficulty
as its infinite-temperature limit. Namely, straight-
forward perturbation calculus is not possible because
the lowest-order transition probability between two
given spins grows like # instead of ¢ as in the usual
scattering problems. A key to this problem is given
which parallels closely the infinite-temperature case
discussed in RDL I. It is suggested that one is not
allowed to consider a given finite number of spins as
isolated, since they are imbedded in the rest of the
system, i.e., in a “bath’ which dissipates the magnetiza-
tion put on these given spins. We develop in Sec. VII
a renormalization scheme that expresses this idea;
however, this scheme is slightly more general than in
the infinite-temperature problem. There, indeed, the
renormalization was done with the help of the direct af
T'(®) [see (1.1), (1.2), and (1.3)], which essentially
describes the short-disiance behavior of the system.
Although formally correct, this procedure is not
adequate in general since, near the critical point, we
expect long-range effects (in both space and time) to
be essential; it thus appears natural to renmormalize
the graphs in terms of the complete af

fq(t) = I‘q(t)/rq(o) .

Once this program is achieved, it is fairly easy to
derive a kinetic equation for T, (#). We show in Sec. VIII
that T',(¢) obeys a nonlinear non-Markoffian equation
of the following form:

t
a8 ()= / Col—t [F)T ), (L)
0
where the kernel G, is now a nonlinear functional of

8 R. Brout, Phase Transitions (W. A. Benjamin, Inc., New
York, 1965).

IRREVERSIBILITY IN HEISENBERG SPIN SYSTEMS.

I11 807

Ty (for all ¢) itself. Rules are given which allow to
compute this kernel as an infinite series of terms, each
obeying a property analogous to (1.4); note that this
kernel is, of course, temperature-dependent, a fact
which has not been explicitly exhibited in the notation
used in (1.5).

A few formal proofs have been relegated to appen-
dices; moreover, we have not detailed any explicit
calculation obviously analogous to a similar develop-
ment given in the infinite-temperature case.

II. FORMAL PRELIMINARIES

We have shown” in RDL I that the af (1.1) can be
written as
T8 () =Trace[S.%0%(¢|5)],

where the operator pf(f|8) is the solution of the von
Neumann equation

2.1)

40P (¢|0)=N[H,pP(t]5)], (2.2)
subject to the initial condition
pP(0]8)=S4Ppee, (2.3)
p°? being the canonical distribution (3=1/kT):
p¢?=exp[ —BH]/Trace[exp—BH]. (2.4)

Note that in Eq. (2.2) we have introduced a counting
parameter A, which we shall set equal to one at the end
of the calculation (see Ref. 10).

In order to solve (1.2), we introduce the following
representation for the matrix elements of any operator
4 in the localized spin representation

'”‘>=1i11' me) (ma==£3)

<m|Alml>=Au(M),

=3(m+m’).

Here, as well as in all further formal expressions, we
use the compact notation m={myms,---my}, u
= {u1,i2, * * ,un}, etc. In this representation, the formal
solution of Eq. (2.2) leads to the following expansion
for the matrix elements p,f(M;¢|d) of the operator
0°(t|5) [see RDL I (I1.21)]:

(2.5)
with

p=m—m’, (2.6)

oB 1| B)= 3 (2) / a5 Sl [0 B0)T|w)

n==0
XPM’B(M; OI b) ’
where the ‘‘Liouville-von Neumann operator” is defined
by
(a3 (M) | W)= H o (M) #— ¥ H e (M)n*. (2.8)

2.7)

? Except when explicitly mentioned, we follow the notation of
RDL I and II.
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In this expression, we used the displacement operator
n=#, which acts on an arbitrary function of M in the

following way :
e f(M)= f(M=3w). (2.9)

The decomposition of the Heisenberg Hamiltonian in
transverse and longitudinal pair interactions, induces a
similar separation of the operator 3C:

(u|3C(M) Iu’)=§_[(ul5€ﬁ+‘lu'>+<ulC‘Cﬁ”Iu?] (2.10)

and the two-body operators 3C;— and 3C,;#¢ obey fairly
simple selection rules; their explicit form, already
established in RDL I (IL.16) to (I1.19) is reproduced
in Appendix A.

In RDL I, we also established the following results:

T2 (t)=p*(M,=1%; t| ab) (2.11)
and
ot (t)=p~(M.=0; t|ab), (2.12)
where the reduced density matrices appearing on the
right-hand side are partial traces of the matrix elements
given by (2.7):

p*(M,;tlab)= X po*(M;1|b) (2.13)
{Miza}
and
p~(Mastlab)= 3 p1~(M;tlad). (2.14)
{Mi;éa}

Note that the information given by (2.11) and (2.12)
is redundant, since the rotational invariance of (1.1)
implies that

I‘ab+—(t) = 2T43* (t) = %I‘ab(t) ’

the last equality defining the function T3 (f).
We shall also be interested in the Fourier transform
of these functions, for instance,

T'o()=2% explig(a—5)Ilas(®).

(2.15)

(2.16)

Since it is known that the equilibrium correlation
function I',(0) has a singular behavior for ¢ — 0 at the
critical point, it is useful to separate this singularity
by defining a normalized af

F(0)=T,(1)/T,(0), (2.17)
such that I';(0)=1. Similar definitions hold for T';*()

and Tt (). In configurational space, Eq. (2.17) is
equivalent to

Pab(t)=z Fas(t)rab(o)- (2'18)

III. INITIAL CONDITION AND EQUILIBRIUM
DENSITY MATRIX
Let us write the initial condition (2.3) in the u—M
variables. We have, from (2.3),

P (M 0[0)=(M+3u|Sfpee| M—3u),  (3.1)

P. RESIBOIS AND M. D LEENER
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which becomes, in the particular case f=3,

pu* (M ;0|8)= (Mo+Fus)M~+3u| p*e| M—3u)
= (My+3us)pu*(M).

Since M,=0 when up==1, while u,=0 when M0
[see (2.6)7, this result can still be rewritten as

(3.2)

pu* (M ; Olb)= (M y8,u0,05"+ 315X dun,0"pucd(M).  (3.3)
Similar formulas hold for p,£(M;0|3), which will,
however, not be needed here.

From (3.3), it is obvious that the only problem in
the calculation of the initial state p,#(};0[8) is the
explicit evaluation of the canonical density matrix pee.
In principle, we should start from the general expansion

-—( o)

P2y n—(-—H)"/Trace[: z— :l . (34)

We should then generalize to our time-dependent
problem the techniques developed for the equilibrium
situation and establish a linked cluster expansion for
the spin af. Then, limiting ourselves to the Weiss
approximation Z — <, we should look for the leading
terms in an expansion in powers of Z~1. These tedious
though simple manipulations have been accomplished
in detail but, in order to avoid superfluous lengthiness,
we shall use a short-cut, the validity of which should
become evident once it is noticed that the dimensionless
parameters appearing in the expansions of the dynam-
ical (~) and of the equilibrium (~p) parts are dif-
ferent. From what is known in the equilibrium theory
(see Ref. 6), we may infer that, in the Weiss limit and
for T> T¢, the dominant terms in the equilibrium density
matrix correspond o pair correlations, described by the
Ornstein-Zernicke law, both for the diagonal and for the
off-diagonal matrix elements.
Under these conditions, we thus write

paq_

1
Pueq(M) = Z H { ®n (MiaM.‘i) [5pi.1Kr3Mj.~lKr
2 ((’3’5 ]

+6ui,—1Kr5ni,+1Kr]} (I_I) {¢a (Ms’Mt)
8t

Xam,OKram.OKr}H 6ﬂa,0Kr: (35)

where the sum runs over all possible distinct ways of
dividing the system into 1 pairs of spins (i7), #, pairs
of spins (sf) and N—2(n1+n,) remaining spins a.
The functions ¢, and ¢4, respectively, describe the
transverse and longitudinal pair correlations in the
Weiss approximation:

@n(M 3, M ;) =BD;;00r,,05 001,05,

3.6
ea(M ;,M;)=28%;M M, (3.6)
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Fic. 1. The elementary dynamical vertices:
(a) transverse; (b) longitudinal.

i i
— ————i—

where

1
‘I’-'j=zv- 2= dqexpligi—j)], (3.7

$o=Jo/(1—3BT ), (3-8)

and J, denotes the Fourier transform of the exchange
interaction.

Let us stress once more that Eq. (3.5) can be proved
in the Weiss limit. Its physical content is, however,
self-evident; moreover, the function ®;; appearing in
(3.6) and (3.7) is well known from equilibrium theory,
while the M-dependent factors in these equations are
easily verified by computing the matrix elements of (3.4)
to first order in B3, in the u— M variables.

From (3.5), one can easily check that the equilibrium
correlation functions have the usual Weiss form
[see (2.1, 2.3 and 2.15)]:

T.5(0)=4T,;%%(0) = 2T, (0)
= aa.er"l' (1 - 5a,er)%ﬁ®ab-

IV. DIAGRAM TECHNIQUE

Equations (2.7), (3.3), and (3.5) furnish a well-
defined expansion for the evaluation of the spin af.
To analyze this expression, it is very useful to generalize
the diagrammatic representation introduced in RDL 1.

We first draw a vertical line which corresponds to
t=0. On the left of this line, we then represent the
various contributions to the dynamical expansion (2.7)
as in the infinite temperature case. In this expansion,
starting from the initial state |u), the sequence of
operators describes a series of transitions which bring
the system through the states |(u/)— |p")— :-- to
the final state |u). Each of these states is represented by
horizontal arrowed lines corresponding to the various
1;7%0, a plain line 7 with an arrow pointing to the left
(or right) describing a state with wj==41 (or —1).
Each interaction 3¢(M) then introduces a transition
represented by a vertex, either transverse or longi-
tudinal. Transverse vertices involve a loop while
longitudinal vertices involve a dot; these vertices are
shown in Fig. 1 and their analytical contributions,

(3.9)

F16. 2. A typical dynamical graph of
order 3)'2){;4 '} =14, —1;, {0}).
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already established in RDL I, are recalled in Appendix
A. In addition to the arrowed lines, we also introduce
semiconnection (dotted) lines, which appear whenever
a spin 7 is in a state u;=0, between two vertices where it
interacts. Finally, both specified spins 4 and e [see
(1.1)] are represented by a cross, drawn respectively
on the vertical line (at =0) and at the left end of the
graph (at time £); whenever spin b (or a) starts (or
ends) in a diagonal state up=0 (or u,=0), we link the
corresponding cross to its first (or last) interaction in
the dynamical part by a semiconnection line. An
example of the dynamical part of a diagram is given in
Fig. 2.

Of course, we also need a diagrammatic representation
of the particular initial state (3.3) and (3.5) which
appears in a given contribution. This will be drawn on
the right of the vertical line and, because (3.5) only
involves independent pair correlations, the graphs will
be fairly simple. For each longitudinal correlation
¢a(M,,M,) we draw a loop with spin indices s and ¢ at
its ends [see Fig. 3(a)]. Similarly, an arrowed plain
loop with two spin indices 7 and 7 represents a transverse
correlation ¢,(M;,M;). Note that the two cases where
the arrow points either from 7 to 7 or from 4 to j must
be considered distinctly, since they correspond to the
two terms of (3.5) where, respectively, u;= —1, uj=+1,
and p;=+1, p;=—1 (see Fig. 3b). Uncorrelated spins
are not represented.

In order to build the complete graphs, with both
dynamical and equilibrium parts, we match together
the lines (and their spin indices) appearing on the right
and on the left of the vertical line; we have, however,
to extend slightly the notion of semiconnection bond.
If a spin is in a state of longitudinal correlation (u;=0)
at t=0 and has some dynamical interaction at time
¢ (¢>0), we draw a semiconnection line for this spin
between 0 and ¢’. Examples are given in Fig. 4.

At this stage, we should prescribe the rules giving
the contribution associated to a given graph. We shall,
however, postpone the formulation of these rules and
first establish the following theorem which considerably
reduces the number of graphs to be considered.

111

F16. 3. Diagrammatic representation of the
equilibrium correlations: (a) longitudinal;
(b) and (c) transverse.

(a) (b}
F16. 4. Two contributions to po*(Ma;t|b).
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Fic. 5. Elementary vertices with semiconnection bonds: (a) one
semiconnection bond; (b) two semiconnection bonds.

Theorem I: For T>T¢, the only nowvanishing con-
tributions correspond to graphs built with vertices involving
at least one semiconmection line. Similarly, any spin
different from b appearing in a longitudinal equilibrium
correlation must be semiconnected to the dynamical part
of the graph.

The proof of this theorem is based on the observation
that we are interested in the reduced density matrix
(2.13) and (2.14) and thus have to take a trace over all
spin variables {M;.}. The first part of the theorem is
then exactly analogous to the Theorems I and II
established in RDL I. The second part is based on the
remark that if spin j appears in a longitudinal correla-
tion, we obtain from (3.7) a factor

ea(M s, M;)=28D;M :M;.

If 7 does not appear in the dynamical part (as is implied
by the absence of semiconnection), we may shift the
trace over M; in front of (4.1), and we get

> ea(M,M)=280;M; >, M;=0.
M; Mi=+1

(4.1)

(4.2)

This, of course, does not occur if j=b, because in this
case we have an additional M factor coming from (3.3).
As an illustration of this theorem, the graph of Fig. 4(a)
gives zero, because the starred vertex involves no
semiconnection line.

Because each vertex has to be at least once semi-
connected, it is convenient to consider the semiconnec-
tion bonds as integrant parts of the vertices. We have
then the elementary vertices represented in Fig. 5,
where the arrows have not been indicated. Note that
the vertices corresponding to the last three graphs of
Fig. 1(b) have no counterpart in Fig. 5. From Theorem
I, the contribution of graphs involving these vertices
identically vanish.

Although we shall later find stronger restrictions on
the type of graphs when going explicitly to the Weiss
limit Z— o (which until now has only been taken in
the equilibrium part), let us now state the rules for
calculating p?(M,; ¢|ad) [and hence TI'wp**(f) from Eq.
(2.11)].8

Rules A : (1) Draw all possible graphs ending at time
t with a crossed dotted line @, consistent with the
initial condition (3.3) and (3.5) and with the vertices

8 To make tedious things as short as possible, we limit ourselves

to the 2z component of the af. There is no difficulty in extending
the present rules to the transverse component.
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of Fig. 5. Each equilibrium correlation must be con-
nected or semiconnected to the dynamical part (except
for spin 6).°

(2) For each graph, associate a factor 28M,M d,:
to each longitudinal correlation (sf) and a factor
Bonr;,05%0u;,05"®;; to each transverse correlation (i7)
[see (3.6)].

(3) Associate a factor 8,05 to each plain line (see
the remark in Appendix A).

(4) Associate a factor M if the cross at time ¢=0
is on the dotted line &, or a factor %u; if it is on a plain
line with index u; [see (3.3)].

(5) Associate a factor (—J;)n; to each transverse
vertex and a factor (—2J)(u:M;+u;M;) to each
longitudinal vertex. The operator 7; introduced in
Appendix A is defined as

— Ll — gt lip =14

NG=10_"n (4.3)

Operators and M-dependent factors should be ordered
as they appear in the graph.

(6) Multiply by (3)™(\/3)fdr" for a graph of order
» involving m spins, including a and &.

(7) Take the trace (3 pr;—y1--+) over all spins
appearing in the graph and different from a.

(8) Sum over all dummy spin indices.

From these rules, one easily verifies that the con-
tribution associated with Fig. 4(b) is

A\ 2
(‘:) /d72 ('_ ]as) 2[7’saaM,,0Kr6M,,,0Kr77as:|
(2
X ZMssz,Bésb . (4.4)

GPT X

s Mq,Mp

V. WEISS LIMIT

The diagram technique developed in Sec. IV is of
little practical use for an arbitrary number of neighbors.
Moreover, it should be kept in mind that the equilibrium
correlations have already been expressed in a form which
is only correct in the Weiss limit Z — . In this section,
we establish the order of magnitude of an arbitrary
graph in this same limit and extract therefrom the
dominant contributions.

L. "
[ Ve Y
b 1’}
@ b

(a) (b) () (d)

F1c. 6. Basic components of the dominant graphs in the Weiss
limit: (a) elementary vertices; (b) equilibrium correlations;
(c) nonequilibrium initial states for Relqs**; (d) nonequilibrium
initial state for ImI'e;** (arrows are not indicated).

o’

% For longitudinal correlations, this is a consequence of Theorem
I; for transverse correlations, this condition has to be satisfied
because we need at least one transition to bring the system from
the nondiagonal initial state {u;>0} to the final diagonal state

{ui=0}
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a
pa—

(a) (b)

F1c. 7. Simple examples of dominant graphs:_(a) for Rel'as*(f);
(b) for ImTep?* ().

In principle, our problem involves five parameters,
t, Z, 8, J and the lattice distance d. This latter quantity
is, however, of no use in the present discussion. More-
over, Z, 8, and J cannot be considered as independent.
Indeed, for temperatures close to the critical point T,
we have (see, for instance, Ref. 6):

BZJ~1, (5.1)

whence it is easily shown that
BE~0(1/Z) (i#]).

Since, in our problem, 8 only enters in the combination
B8®;;, we may disregard this parameter completely and
estimate it with the help of (5.2). Thus, although the
function &,; is itself a complicated expression in J
[see (3.7) and (3.8)], we may limit ourselves in analyz-
ing the J dependence of the dynamical part only. In
this part, J has been scaled by the parameter X and we
are thus left with the problem of analyzing the (A,Z,t)
dependence of the graph.*

When the temperature is far above T¢, (5.1) is, of
course, replaced by

(5.2)

BZJ=ak1, (5.3)

and we should, in principle, introduce this new smallness
parameter. We shall, however, limit ourselves in
estimating the graphs in regime (5.1) since this tempera-
ture region is by far the most interesting one. Moreover,
our results can be easily applied to the situation (5.3)
by expanding them in powers of a.

In the Weiss limit Z— «, the following theorem
holds.

Theorem II: (a) Among the even terms in \, which are
all purely real, the dominant graphs are of order \?
X (\2Z)"=12" for the indirect af (as%b) end of order
(A2Z)nt2n for the direct af.

(b) Among the odd terms in N\, which are all purely
imaginary, the dominant graphs are of order N2(\2Z)»1
X2+ for the indirect af and of order N(N2Z)™2"+1 for the
direct of.

The proof is a generalization of that given in RDL I
for 8=0. It has been relegated in Appendix B, where we
also show that Theorem II furnishes precise information

10 This analysis motivates the introduction of a formal counting
parameter A in the von Neumann equation (2.2). With this trick,
the order in \ gives the order in J for the dynamical part only.
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about the structure of the dominant graphs. To
formulate this information, it is useful to extend slightly
our nomenclature by introducing the concept of a
nonequilibrium initial state. In the initial condition
(3.3), spin & plays a special role because it is the only
one which has been taken out of equilibrium. Two
cases may occur:

(a) Spin & is not involved in any correlation at {=0
[Fig. 6(c)(1)].

(b) Spin b is involved in a transverse [Fig. 6(d)] or
a longitudinal [Fig. 6(c)(2)] correlation; these we call
nonequilibrium initial correlations. These three possible
pieces of graphs describe the nonequilibrium initial
state of the system. On the contrary, all the remaining
correlations, which involve pairs of spins both different

from &, correspond to equilibrium correlations [Fig.
6(b)(1) and 6(b)(2)].

With these definitions, it is shown in Appendix 3

that the real part of T'up**(f) [see, also, (2.11)], which
behaves like

® 1
Rl ()= 3 an(VZ2)"  (a),  (54)
n=0 /

is the sum of all graphs built only with the elementary
vertices of Fig. 6(a), the equilibrium correlations of
Fig. 6(b) and the nonequilibrium initial states of Fig.
6(c). An example is given in Fig. 7(a). On the contrary,
the imaginary part of T'u»*2(f) behaves like

w M
Imlep® ()= X B—(\2Z)" (as2b)  (5.5)
n=0 Z

and is constructed with the elements of Fig. 6 [(a),
(b), and (d)]; an example is shown in Fig. 7(b).

From (5.4) and (5.5), it is apparent that the time
behavior of the af will be governed by the characteristic
time

Ta~ (ZY2\)1, (5.6)
Thus, we shall be interested in the formal expansions
(5.4) and (5.5) for times £ of the order of (5.6). Since,
from (5.1), the Weiss limit implies the double limiting
procedure Z— o« and A— 0, with (\Z)~kT¢ finite,
we have to take the limit {— o such that

r=t/1a= M 2)i=t/\/Z (5.7)

remains finite. Under these conditions, (5.4) and (5.5)
become

1 »
Relap® (1) ~— 2 anr?, (5.8)
Z n=0

1 o
2z A e 2n+1
ImT5%(f) P Eﬂﬁnr . (5.9)

This result indicates that in all cases where the real
part of I'3*# contributes to a physical property, we are
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(a) (b) (©)

Fic. 8. Example of effective interaction: (a) purely dynamical
graph; (b) effect of equilibrium correlations; (c) non-freely
propagating equilibrium correlations.

allowed to neglect completely the imaginary part. In
this paper, we limit our discussion to this situation
and, except when otherwise stated, we shall henceforth

use the notation

Top®*(f)=Rels%%(f). (5.10)

However, in the next paper of this series, we shall
compare our theory with previous work on the subject
and, to this aim, we shall also consider ImI,;* (%),
which can be calculated along the same lines; note that
these imaginary and real parts are not independent
quantities since they are related through the exact
fluctuation-dissipation theorem.

VI. VERTEX RENORMALIZATION

For the sake of the discussion, let us consider the
simple graph of Fig. 8(a). According to Rules A, its
contribution to T'yp2(2) is

A
Top®(2)| )= ( ) '
¢ Me,Mp
X 821,056 126886 M M 42 (3)3| ar0=1s2-

Two difficulties of different natures are apparent in
this expression:

(1) Precisely as in the infinite temperature case, the
Born approximation (6.1) gives a transition probability
which grows like #2 instead of the ¢ dependence of usual
scattering problems. The solution to this problem will
be obtained in Sec. VII by an adequate reorganization
of the perturbation scheme.

(2) Another weakness of Eq. (6.1) is that, except
for the nonequilibrium initial state, which involves
B8®.5(8), no temperature dependence appears. In partic-
ular, the dynamical operator, which has been put
between brackets in (6.1) has exactly the same form
asifor 3=0. However, we expect physically that the
equilibrium correlations present at {=0 should affect
the dynamical evolution of the system.

i
S i— —
s> Pt Sm—’—) D

j---------- - ]' j/

Z Z [( Jac)zﬂacsMa

(6.1)

F16. 9. Graphical formulation of Theorem III.
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We shall now show that it is indeed possible to find
such an effect by absorbing all equilibrium correlations
in the definition of effective temperature-dependent
interactions; in this way the new initial condition will
involve, at most, the nonequilibrium correlation
involving spin &. To illustrate this on a simple example,
let us evaluate the contribution of Fig. 8(b). From
Rules A, we get

Loy ()| @by = (2>2t

X 831,,05ca(—J ca) a1 4,05°8% a0
X2B® oM M2 (3) are=rs2.

Z Z [( ]ac)ﬂaoaMa

'chcM,sz

(6.2)

The displacement operations and summation on M, can
be explicitly performed, with the result

A\ 212
Pabzz(t)l@b)=(—) Z Z ( Jac)ﬂacsMa Kr5M¢0 e

1 ' e Mp,Mc
X[22(—Tea)2BPaa]28%eoM M 1*(3)}| mg=yj2, (6.3)
d
where the displacement operator 7, is defined as
ne=m"te—nytle, (6.4)

If we use the following identity, easily established
from (3.7) and (3.8),

q)cazjca"_z ch%ﬂq)da 3y (6'5)
d

and if we notice that, in (6.1), the operator 7., may be
replaced by 5. (because there is no M,-dependent factor
on the right), we can combine Egs. (6.1) and (6.3) and
find

A\ 222
Pab"] (8a+8b) = ('1:) Z E [( ]ac)( q’ac)‘ﬂacsMa

. ¢ My M.

X0a16,0506 1268t M M 12 (3)?| sg=12.  (6.6)
As announced, the effect of the equilibrium correlation
has been included in the effective interaction ®,.(8),
replacing in (6.6) one of the exchange interaction J,,
of (6.1).

The generalization of this result is, of course, very
desirable. But it is clear that the reorganization that we
have accomplished on the graph of Fig. 8(b) was
possible only because of its particularly simple topology.
Indeed, reading this graph in the direction of increasing
times (from right to left), we see that the correlated
spins @ and d “propagate freely,” i.e., do not participate
in any interaction between the initial time {=0 and the
time £, at which spin d is connected to the nonequilib-
rium initial state. This is essential in the derivation
of (6.6).
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Figure 8(c) shows a simple example where this is
not the case; here the equilibrium correlation ¢-d is
modified by a dynamical interaction at a time ¢, before
! In this case, the equilibrium correlation cannot be
absorbed immediately in an effective interaction, as
was done for Fig. 8(b). Fortunately, this difficulty is
only apparent because all unpleasant graphs of this
type combine to give zero! In other words, the following
theorem holds:

Theorem III (of propagation of equilibrium): In the
Weiss limit, the af Ty?*(t) is given by the sum of the
contributions associated with the only graphs where all
equilibrium correlations propagate freely until the time at
which they connect to the nonequilibrium initial state.

(c)

A%

~2ALGR-JGRIBO M,

Aoy
-B)\th(U)x
Kr 1, Kr .
8% -8 nﬂ
"[ Mpk Mgk
i
il TR
O V| Lad| A M,
“i i1 |
_____ A
®

4.1
A0, JhpM, LT+ 1D

Fi1c. 10. Effective temperature-dependent vertices: (a) graphs
to be combined; (b) effective vertices; (c) analytical contribu-
tions. The effective vertices (4) and (6) are drawn in the same way,
because they always appear together; their contributions must
then be added.

The physical content of this theorem is clear: In the
Weiss limit, the Heisenberg Hamiltonian propagates the
equilibrium Ornstein-Zernicke correlations. The formal
proof of this result is very simple, but tedious. Let us
consider, for example, a graph involving a longitudinal
correlation between spins ¢ and j and where the first
dynamical interaction leads to the new state p;=-1,
ps=—1, u;=0. As shown in Fig. 9, we can combine this
graph with two other contributions leading to the same
state pi=-1, p,=—1, p;=0 after one dynamical
interaction. Using Rules A, it can be verified explicitly

IRREVERSIBILITY IN HEISENBERG SPIN SYSTEMS.
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F16. 11. Nonrenormalizable vertices: the analytical contribution
of each vertex is given just below.

that the sum of these three graphs vanishes. The other
cases are treated similarly.

We can now generalize the result of Eq. (6.6), i.e.,
incorporate any freely propagating equilibrium correla-
tion in an effective temperature-dependent dynamical
vertex at time ?;, where f; is the time at which this
equilibrium correlation connects to the nonequilibrium
initial state of the graph.!* In Fig. 10, we have indicated
how the various effective vertices are defined. The first
column gives the graphical structures which are
combined to give the different effective temperature-
dependent interactions; these are represented by the
new square vertices in the second column. The third
column gives the analytical contribution associated to
them.

The calculations leading to these results run as in the
example of Fig. 8(a) and (b) and will not be reproduced
here. Let us just notice that in certain cases, the effective
vertex involves three different spins; this case offers,
however, no particular difficulty and, as readily seen
from the third column of Fig. 10, leads to a vanishing
result in the infinite-temperature limit 38— 0.

Note that the renormalized vertices that we have
just introduced do not exhaust all possibilities. Indeed,
the elementary vertices of Fig. 11, which involve two
lines going in from the right, must be considered as
nonrenormalizable vertices and will, of course, appear
as such in our diagrammatic expression.

With the temperature-dependent renormalization of
the vertices, we have thus eliminated all equilibrium
correlations from the diagrammatic expansion for the
af. The initial condition then merely reduces to the
nonequilibrium initial state where spin & may eventually
be involved in one correlation. More precisely, the most
general structure of a diagram is given either by Fig.
12(a) or by Fig. 12(b), where the box represents the
sum of all possible diagrams starting and ending with
one semiconnection line.

These two structures are easy to combine; if we
denote by ¥ (M,,M ;) the contribution of the box, where

(@ (b)
F16. 12. Elimination of the nonequilibrium initial state.

11 The existence of such a time #, for any equilibrium correlation
is a consequence of Ref. 9.

12 Except for case (2), we have given the contributions for one
given direction of the arrows. Changing the direction of the
arrows only modifies the sign of the analytical term.



(a) (b)
Fic. 13. Example of a skeleton: (a) graph; (b) skeleton.

the trace has been taken over all dummy spins, the sum
of these two terms can be written as (see Rules A)

T (t)=2 % W (Mo, M ;) [85,65" M j+ (1—6;,,%7)
7 M
X288uM;] > MG | me=1p2
Mpy==+1/2

=% 3 V(MM G 6.7)

7 M;
X [87,5+ (1—8;,5%%)38%3.] | ara=s2-
Comparing with (3.9), we get
Tar*()=4 Z,:{;, (Mo, M )M ;(3)*| ste=12} 0% (0).
(6.8)

From the definitions (2.15) and (2.18), we then discover
that the normalized af I',5(¢), which is of main interest,
is given, up to a factor of 4, by the contributions of the
graphs of the type given in Fig. 10(a) only.

All correlations have thus now been eliminated from
our general expansion and this leads to a considerable
simplification of the diagrammatic technique. Indeed,
T'.5(2) can be calculated (up to a factor of 4) from Rules
A, except that the vertices are now the renormalized
and nonrenormalizable vertices of Figs. 10 and 11 and
that all equilibrium correlations can be omitted.

VII. PROPAGATOR RENORMALIZATION

In RDL I, we discussed one method for getting rid
of the unphysical #2 factor in expressions of the type
(6.1). It was recognized that this factor can be inter-
preted as resulting from the arbitrary long duration of
the collision between two neighboring spins. Under
these circumstances, it is not physically satisfactory to
consider only two isolated spins and the interaction
with the “bath” made of the remaining spins has to
be taken into account explicitly. Because of this
interaction, the information put on two given spins a
and b at time /, diffuses away and, at time f,, the remain-
ing information on each of these spins is only I'(f1—7,).

Seg) + Seiigl -
b b _ b P -TYonl N I

Q

a
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b

Fi1G. 14. An example illustrating Theorem IV.
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Indeed, it was shown that an infinite resummation of
graphs leads to the following modification :

t2 t t1 t t1
—= / dh / diy— / dy / dtaT2(t— o)~
21 Jo 0 0 0

@t— ). (7.1)
Once a t-growing transition probability can be defined,
it is easy to derive kinetic equations according to
well-known techniques (see Ref. 5). In the infinite
temperature limit, this led to the results (1.2) and
(1.3). This remormalization procedure was shown to be
exact in the Weiss limit, although the kernel G,({[T)
was defined through an infinite series of graphs. How-
ever, its interest originated in the possibility of finding
simple and soluble approximations for this kernel.

We shall use a similar method here. However, we
shall generalize it in such a way that it leads to results
where simple and soluble approximations can be found
even near the critical point. In the infinite-temperature
case, the renormalization was done with the direct af
I'(f), our motivation being that, in that limit, the dif-
fusion mechanism is fairly fast while the exchange inter-
action J(i—j) is of short range; we then expect little
interaction between the fractions [1—T'()] of the
information on spins ¢ and &, which spread over the
bath. These effects were then classified in “higher-
order” terms in the series expansion for the kernel
G, 1).

Near the critical point, two new physical effects throw
suspicion on this argument: (1) Diffusion processes
are known to be slow near T¢, although one of the
difficulties in the classical theories is precisely that they
predict too slow a diffusion. (2) The effective interac-
tion, described in the present theory by the renormalized
vertices, has a very long range (the Fourier transform
¢4 diverges at T¢ when ¢ — 0). We thus expect that the
interaction between the parts of the information which
have diffused from spins ¢ and  may become important
near T'¢c. We shall now show how a different resumma-
tion procedure can be developed, leading to expressions
where this effect is clearly apparent and where sensible
approximations appear very naturally.

To this aim, we define the skeleton of a given graph
as the diagram which is obtained by cutting off the
self-energy insertions on all the plain and dotted lines
which are not isolated. Here, a self-energy insertion is
defined as a part of graph which starts with one plain
(dotted) line and ends with one plain (dotted) line, the
two lines carrying spin indices which can be either
identical or different’; we also define an isolated line
by the fact that cutting it makes the diagram fall in
two pieces.

13 These definitions are more general than in RDL I and IIL
Moreover, we use the nomenclature familiar from many-body
theory although the analogy is purely topological and has no
physical significance.
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skeleton parts: (a) example; (b) general
structure of T4s(2).

An example is given in Fig. 13, where the asterisks
denote the two isolated lines; note that, in contrast with
the definition given in RDL I and II, the skeleton of a
graph is generally not itself a graph appearing in the
expansion of T,3(f), because some lines carry two
different spin indices. However, except for these indices,
each skeleton is topologically identical to a graph
contributing to T'ys%#(Z).

We then have:

Theorem IV (of propagator renormalization): In the
Weiss limit, the whole series of graphs for T.5(f) may be
obtained by taking the sum of all skeleton graphs, i.e.,
skeletons where all nonisolated plain and dotted lines are
replaced by corresponding heavy lines representing the sum
of all self-energy insertions. The corresponding analytical
contribution is obtained as for ordinary graphs (including
vertex remormalization) except that (a) to each plain line,
starting at time b, with spin © and ending at time ty, with
spin j, we now associale a factor

201,05y, o Ty (li—1a)  (i%5), (7.2a)
Lalti—t2)0ur,, 0% (1= 7); (7.2b)

(6) to each heavy dotied line, we associate a factor
AM T (t—t)M;. (7.3)

The first part of this theorem is of purely topological
character and is established precisely as in RDL I
(Theorem III); it is illustrated in Fig. 14.

The second part is more difficult to prove because,
according to Rules A, self-energy insertions are still
operators which, when inserted in a skeleton, act on
whatever stands on their right. Note that this fact is
explicit in (7.2a). However, the calculation parallels
closely that given in RDL I for 3=0 and will not be
reproduced here. For the sake of illustration, one case
is treated in detail in Appendix C.1

VIII. DERIVATION OF THE KINETIC
EQUATIONS

In Secs. V-VII, we have derived a series of formal
theorems, valid in the Weiss limit, which considerably
simplify the series expansion for the normalized af
T.5(¢). Theorems I and II tell us that the dominant
graphs can be built using only the basic components of
Fig. 6. Theorem III and Eq. (6.8) allow us to eliminate
all initial correlations, by the introduction of renormal-

14 The reader who wants to prove Eq. (7.2) should first general-
ize Rules A to the transverse component I';5(#) (see Ref. 8).
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ized (temperature-dependent) vertices. Theorem IV
further reduces the number of relevant graphs: Only
skeletons should be considered, with, however, the
renormalized (time-dependent) propagators of Egs.
(7.2) and (7.3).

At this stage, it is worthwhile to formulate the rules
which give the exact formal expression for I'yp(f) in
terms of renormalized quantities.

Rules B: [(1)] Draw all possible renormalized skele-
tons (see Sec. VII) starting with a crossed dotted line b
at time O and ending with a crossed dotted line a at
time ¢. These graphs are constructed with the renormal-
ized vertices of Fig. 10 (column b) and from the non-
renormalizable vertices of Fig. 11. The plain lines and
the nonisolated dotted lines can carry one or two spin
indices.

(2) Associate a factor 20,05 by, e® Lyj(t1—12)
(5% 7) or dar;, 0% Tsi(ti—t2) (i%7) to a heavy plain line
starting with spin j at time /, and ending with spin 4
at time #;. Similarly the contribution of a heavy dotted
line is 4M M T;(8—1s).

(3) To each vertex, associate the contribution
indicated in Figs. 10 and 11. Associate a factor M to
the cross b at ¢t=0. Operators and M-dependent factors
are ordered as they appear in the graph.

[(4)] Multiply by a factor 4(3)™(—N2)»Sd+?" for a
skeleton of order 2% involving m distinct spins (includ-
ing a and b).

(5) Take the trace (X ary—iy2--+) over all spins
i7#%a and set M,=1% once all operations are performed.

(6) Sum over all dummy spin indices.

The great similarity with the Rules of RDL I for the
infinite temperature case should be recognized. All the
features brought in by the finite temperature are
contained in the more complicated analytical contribu-
tion associated with vertices and lines. Yet, in the
derivation of formal kinetic equations, the major role is
played by the topological structure of the graphs and
not by the explicit analytic expressions. We are thus
able to use, without any deep modification, the scheme
developed in RDL I; this will allow us to be very
brief.

We first define an drreducible renormalized skeleton
part ij as a renormalized skeleton starting at #; with an
isolated dotted line j and ending at ¢, with an isolated
dotted line 4, with no intermediate state involving one
isolated line. We denote the contribution associated
with one irreducible skeleton part 75 (numbered %) by

Gi™ (hi—ta; Mo, M { My} | Tar) 8.1)
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where the functional dependence on T,, has been
exhibited, and a;; denotes the spins, different from ¢
and j, which appear in G;™. This quantity is an
operator, acting on whatever stands on its right;
moreover, no trace is taken over the quantum numbers
M, Mj, Ma,;. It thus cannot be directly calculated from
Rules B, although it is readily obtainable therefrom as
was shown in an analogous case in RDL I. We shall not
need the explicit form of (8.1) here.

The sum of all such irreducible skeleton parts 77 is
schematically denoted by the “bubble” of Fig. 15(a)

=4y ¥ = X%

m=0 4,50 {oai}{ais} o {Miza} Jo
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and the corresponding contribution is written as
Gii(tr—to; Mo M i {M o} | Tsr)
=3 Gi™ (h—ta; My, M;{ Mo} | Tor). (8.2)
n

With these definitions, it is readily seen that the most
general renormalized skeleton contributing to Tups(?)
has the structure indicated in Fig. 15(b).

The analytical expression for I,;(f) is then easily
seen to have the following form:

t 5 t2m~1
dh/ dig-+ '/ dt2méai(ll—l2; M,= %, M.i) {Mﬂij} I IN‘kl)
0 0

X Gio(ts—ta; MM o{M o} | Ton)- - - Cro(tam1—tom; My Mo{Map} | Ta) M)V, (83)

where, for convenience, we have summed over all
M ;. and introduced a factor ()%, in such a way that,
for any spin 8 which does not appear explicitly in
(8.3), we have 2_u, 3=1. Note also that no exclusion is
imposed on the spin indices 4, s, ---, /, because this
would introduce corrections of order Z—! and would be
negligible in the Weiss limit.

The analogy between Egs. (8.3) and RDL I (5.3) is
complete. The method followed in this latter paper to
reduce the formal solution for T.;(f) to a kinetic
equation can be followed step by step. We shall thus
not reproduce this calculation and merely give the
formal result. The following equation is obtained!®:

afa()=2 / A'Gei (1=t | Te)Tin(t'),  (8.4)

where the kernel G,;(t—#|Ts) is a function and not an
operator, defined by

Gai(1—t'|Te) =2 Goj™ (t—¥'| T's1), (8.5)
(n)
with
Goi™(|T)=42 X X
(0ai) (Mg Mi
Guj(") (¢ M,=3, M, {Maaj} | o) M;(3)™2;  (8.6)

here m denotes the number of spins in the set aq;.
Because the kernel G,;(¢|Ts;) plays a central role in
applications of the theory, it is very helpful to have
prescriptions which allow to calculate it directly, without
using the auxiliary operator G,;. These rules are
immediate to obtain once the formal similarity between
Egs. (8.5) and (8.6) and Eq. (6.8) is noted. The only
difference lies in the fact that G, corresponds to érreduc-
ible renormalized skeleton parts while T's () is given by

15 Although G, is larger by a factor Z than any other Gay(a5b),
we have not found it convenient here to separate this term, as was

done in RDL 1.

the sum of all renormalized skeletons. As a consequence,
the rules for constructing G,s(f1—12|T's;) will be again
Rules B except that the bracketed points [(1)] and
[(4)] should be modified as follows.

Rules C: (1) Draw all possible srreducible renormal-
ized skeletons - - -

(4) Multiply by a factor 4(3)"(—2)» f;,t2dr2n1
for a graph of order » involving m distinct spins
(including @ and 5).

It is often convenient to work with the Fourier trans-
form of T';5(2),

I“q(t)=§ Tus(t) exp[ig(a—b)]. (8.7)

If we define
Gq(’lf‘q')"—‘zb Gab(tlf‘st) exp[ig(a—b)], (8.8)

Eq. (8.4) transforms at once into
t
of0)= [ Gt @, ©9)
0

which is the final form of our kinetic equation for the
af in the Heisenberg spin system at finite temperature.

Let us stress once more that this result is exact in the
Weiss limit only; although we hope that this equation
will still approximately describe the behavior of a
realistic system, where Z is finite, we do not know
whether an equation of the same structurel® can be
derived exactly in the latter case. Precisely as in the

16 Of course, using a projection operator technique [see, for
instance, R. Zwanzig, Phys. Rev. 124, 983 (1961)7], it is trivial to
derive a kinetic equation of the type 8:Tq(f) = f3!G,(t—1')To(¢)dt’
independent of the value of Z. However, the important feature of
the kernal of Eq. (8.9) is its explicit dependence on T'y’, which has
only been established in the Weiss limit.
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infinite temperature case, we expect, of course, that
T',t)—0, t— o, (8.10)

although, for small enough ¢, the characteristic time of
this decay can become very large. This in turn should
imply a property analogous to (1.4).

The reorganization of the perturbation series for
T.5(f) with the help of renormalized vertices and
propagators leads thus, hopefully, to a kinetic equation
in which all quantities are well behaved in the limit of
long times. This is the basis for an explicit though
approximate calculation of T',(#), as will be discussed in
the next paper of this series.

APPENDIX A. MATRIX ELEMENTS OF THE
LIOUVILLE-VON NEUMANN OPERATOR

For the sake of reference, we list here the matrix
elements of the Liouville-von Neumann operator, as
derived in RDL I Egs. (I1.19). The only nonvanishing
transverse matrix elements are the following [see Fig.
1(a) 1)-@]:
pi=0, u;=0:  (0;0;{u}’ |31, +1,, {u})

= —J (i— J)n:031:,0%021;,0%"
(L, =1 {u}'[3C:7[0:,0;,{u}")

= —J(i-—j)aMi_oKrij,OKr"lij;

(A1)

pi=1, pj=—1:
(A2)

pi=1, 0=0: (150, {n}'[3C;70:1,,{n}")
= _J(i_j)aMi,OKrnijan,OKr) (As)
pi=0, uj=—1: (0;, —1; {u}'[5C;| —1,0;,{u}’)

= —J (i— 7)bn;,05 08,057, (A4)

where 7;; is the displacement operator defined by (4.3)
and J(i—j) denotes the exchange interaction between
spins ¢ and j. The longitudinal matrix elements obey
[see Fig. 1(b)]

(|3 (M) | w)y= —J (i— H[Mpi+Mu:]. (AS)

It should be noted that the Kronecker functions in
(A1) and (A4) appear on the side where the correspond-
ing p index is not vanishing. This property is important
for justifying Rules A, where these Kronecker functions
are associated with the plain lines and not with the
vertices.

APPENDIX B. PROOF OF THEOREM II

In analogy with RDL I, we introduce the topological
index Z; of a vertex 7; it is equal to the number of spins
over which we may sum freely, at this vertex, if we read
a graph from right to left. There are seven types of
elementary vertices, denoted by ¢ (i=1, 2, ---7),
which are indicated on Fig. 16(a). Similarly, we define
the topological index for each equilibrium pair correla-
tion: Zg=Z"! for the transverse correlations and Z,
=Zfor the longitudinal ones; these values follow from
the estimate (5.2) [see Fig. 16(b)]. Similarly, we take
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F16. 16. Topological indices: (a) elementary vertices; (b) equilib-
rium correlations; (c) nonequilibrium initial states.

into account that the cross describes the given spin b;
this imposes further restrictions expressed by the
topological indices Zyo=Z71, Z11=0, Z1s=2"1, Z13=2"1,
according to the possible initial states, as indicated in
Fig. 16(c).

Consider an arbitrary graph with as£b, made of
m; (m:20) elements of type ¢ (i=1, ---13), with the
restriction

13
Z mi=1;

=10

(B1)

because there is only one cross per graph.

From the definition of the topological index, the order
in Z of the graph, denoted by Oz, is immediately found
to be

Oz= m1+M2*M3—MQ—mw—ml2_’m13; (BZ)
while the order in A, denoted by O,, is simply
7
Or= X m;. (B3)
i=1

We remark that each plain line which is created has to
disappear; this implies that

2(m1tms) = 2(ms+me+ms). (B4)
A similar condition for the dotted lines leads to
1+mot-ma+2met-myy
=ma+mst2ms+2mo+-myo.  (BS)
Combining (B2, B3, B4, and BS5), we get
0z=302—3—3(ms+me+m7)+5(mwtmu). (B6)
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Two cases are to be discussed separately :
(A) O, is even: The order Oz obviously has to be an

integer; the largest possible order is thus obtained by
choosing

mp or mp=1, (B7)
M5=M5=M7=0. (BS)

We then get
07m*=10,~1, (BY)

and we also see that, among all ¢ priori possible struc-
tures, the graphs of largest order are constructed with
the basic components of Figs. 6(a)-6(c) only.

(B) O» is odd: The largest integer order Oz is here
obtained by choosing

ms= M5=M7=0 (B].O)
and
mi=m1=0. (Bll)
This leads to
O max — 10)\_..«
while, comparing (B1) and (B11), we see that
i OF m13=1. (BIZ)

It is easily verified by combining graphs differing only
by the direction of the arrows that the structure
13 of Fig. 16 always gives zero for an odd-order graph.
We thus conclude that, in case O, is odd, the graphs are
constructed with the basic components of Figs. 6(a),
6(b), and 6(d).

The case a=b is treated similarly; the time depen-
dence of a graph and itsreal or imaginary character are
trivial to obtain.

APPENDIX C. AN EXAMPLE OF PRO-
PAGATOR RENORMALIZATION

We discuss here the effect of the self-energy insertion
drawn in Fig. 17(b) and show that it amounts to
weight the heavy dotted line of Fig. 17(a) by a factor
AM M ,T;;(th1—1:). Note that in this figure, the vertices
at times #; and {, have been specified. The general
proof of Eq. (7.3) thus requires all possible vertices to
be considered. This makes the complete calculation

1

F1c. 17. An example of self-energy insertion.
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fairly long, and we limit ourselves here to the case of
Fig. 17.

Schematically, the contribution C of an arbitrary
graph involving Fig. 17 as a part can be written as

C= o2 daay o (= ua)naak (M, M)
7
X (=T ki)uridn;, o (C1)

In this equation, the dots indicate both the time
factors (which are trivial to handle) and the part of C
which is not the particular insertion we discuss;
¥(M;,M;) is the most general self-energy insertion
starting with spin ;7 and ending with spin 7; it depends,
of course, on a set of dummy spin indices {e;;}, but all
operations with these spins are formally considered as
performed; W(M;M;) is thus simply an operator
depending on »*, 9¥i, M;, and M.

Because of the factor du;,0%*, this operator ¥ does not
act on the dots on the right, although they depend on
M; [see RDL I, Eq. (A3)]; similarly, because of the
factor dm; 0%, the dots on the left do not operate on
W(M;,M;), although they depend on 5%,

From Egs. (6.8) and (2.18), we see that

4 V(MMM ;(5)?| simaje=T45. (C2)
M

Moreover, symmetry considerations allow us to
deduce from (C2) that
Y(3,3)=—Y3 —3)=—%(—%1%)

=¥(—3 —9=Cy (C3)

[see RDL I, Eq. (I11.10) for a similar example].

Let us then perform explicitly the displacement
operations in Eq. (C1); from the definitions (2.9) and
(4.3), we get

C=- 2 0™ (=T i) (= Jug) L it 10 (— 3, — %)

;j
X HapHli— i1 (3,
X (—§, Pty Vit ig 0@ (5, 5) ey 14]

Xan,OK

— 5 eyl — it

(C4)
Using (C3), this result is easily seen to be identical to
C=-- 1;24: -+ 8a;,05 (— T i)nar

1 XAM M T3 (— T 5) 025,05

as may be checked by direct evaluation. Comparison
between (C1) and (CS) then establishes the required
result.

(Cs)



