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Frefluency-Dependent Self-Correlation Function for the Heisenberg
Spin System in One Dimension

RmA A. TAHIR-KHELr Apm DANIEr. 0, McFADDEz

Department of I'hysk s, Twsple University, I'h8adelphiu, I'ennsylvunia 1NZZ

(Rcccivcd 23 September 1968)

The exact numerical calculations by Carboni and Richards for (S&'(f)S&*(0))~„» in a one-dimensional
Heisenberg system of 5= ~ spins at elevated temperatures are compared with the predictions of a simple,
two-parameter Gaussian representation of the generalized diffusivity. The parameters of the dift'usivity are
completely determined by thc known second and fourth frequency moments, and the procedure is free of
arbitrary parameters. The results of the calculation are found to be in good agreement with Carboni and
Richards. The calculation is also carried out for S&L and it is found that with the increase in the magni-
tude of spin, P'q'(g)5q'(0))(„) gradually loses its characteristic hump and approaches a shape roughly similar
to the one which would result from the use of sn appropriate Lorentrian for the function (SI*(f)S,'(0))&s,„~

I. INTRODUCTION

ECENTLY Carboni and Richards' have performed
cxRct nulTlcrical c8,lculRtlons fol thc tilTlc-depcnd-

ent self-correlation (St'(f)St*(0))—=P(f) for finite linear
chains with periodic boundary conditions containing
up to 10 spins (with S= ~s) coupled by nearest-neighbor
Heisenberg exchange interaction (in contact with a
heat and angular momentum bath at temperature
T~ ~).Following the example of Bonner and Fisher s

who, after computing equal-6m@ correlations for Quite
linear cha, ins, extrapolated them to the case S=
with excellent resultant accuracy, Carboni Rnd Richards
have made a plausible extrapolation to the thermo-
dynamic lilnit E= ce. Thcll results hRvc thc surprlslng
feature (see the histogram in Fig. 1) that the frequency
Fourier-transform of the self-correlation qb(~) has a
steep rise as ~~ 0. Moreover, P(s&) clearly has neither
the Gaussian form, in contradiction to the requirements
of thc CIRsslc theory of Kubo Rnd Tomita, noI' ls th.c
shape entirely Lorentzian.

Very recently Fernandez and Gersch4 (FG) have
noted that if the Fourier transform (St'(f)Ss*(0)}is,„l
=—fs(~) is assumed to possess a Lorentzian structure
for small k and &o, the steep rise of the transform Q(a&)

can bc quRlltRtlvcly explained. MOI'covcl; ln RnRlogy
with the work of Collins and Marshalls (for three-
dimensional Heisenberg spin systems), FG propose that
the line shape fs(&a) be taken to be a Gaussian for k
close to the Hrillouin zone boundary.

This qualitative picture is then developed into a
quantitative representation of the line shape fs(te)
by an arbitrary choice of the weighting factors W'„+(k)
=l J(0)1'"+'+t J(k)js"+'/2LJ(0)]'"+' where the upper
sign refers to the Lorentzian and the lower to the Gaus-
sian weighting factor. Lnote the limiting requirements

8' +(k=0)=1, 0 and W„+(k=zone boundary)=0, 1j.
%ith some further arbitrary choices for the numerical
coeScients of the Gaussian, FG have been. able to get a

satisfactory agrccmcnt with thc extrapolated cxRct
numerical calculations of Ref. I.

In view of the somewhat ad koc nature of the I'6
procedure for constructing the line shape fs(co), and
the consequent arbitrariness of the choice of the weight-
ing factors lF +(k) (note that W„+(k), for all integral
e&0 would still satisfy the limiting requirements
mentioned earlierj as well as the actual numerical
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Ftu. 1. Plot of (S~'(/)Sp(0))~„~L4S(S+1)/31 ' versus (co/I).
The histogram shows the exact numerical results of Carboni and
Richards for spin, .The other curves are the results of the present
analysis for spins .',-, 1, and $.
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coeKcients of the Gaussian, and to a lesser extent the
Lorentzian, in the present work it is intended to pro-
ceed from a well-defined procedure. This procedure is a
logical extension of the ideas of Martin, Bennett, Kada-
noff, and Tahir-Kheli ' for three-dimensional spin
systems and can be thought to be in the same spirit
as the recent work of Martin and Yip on diffusion in
simple liquids. '

The crucial assumption in this treatment is the two-
parameter Gaussian representation of the frequency-
wave-dependent diffusivity. This representation ac-
curately preserves the sum rule p(0)=sS(S+1) as
well as the second and the fourth frequency moments
known from the work of Collins and Marshall5 and
moreover, does not contain any arbitrary adjustable
parameters. The results for S=~~ are in satisfactory
agreement with the "exact" numerical results' (see Figs.
1 and 2).

We have also carried out the evaluation of P(to) for
S& ~ and we 6nd that with the increase in the magni-
tude of S, the function p(co) gradually loses its hump
and approaches a shape similar to the one which would
result from the use of an appropriate Lorentzian for
the line shape fs(to) It shou. ld be interesting to com-
pare the results for S—+ ~ (which are nearly the same
as those for S= —, given in Fig. 1) with the corresponding
"exact" ones for the classical Heisenberg spin system. '
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a= —P I(ftfs) Sr, Sr„ (2.1)

where the exchange integral between positions fi and

fs, I(fi,fs), is assumed to be restricted only to the near-
est neighbors, i.e.,

I(fifs) =I, when fi and fs are nearest neighbors
2.2a=0, otherwise.

It is convenient to define the spectral function Fs(to) as

Fs(to)e *'~t' '&ko, (2.2b)

6 H. S.Bennett and P. C. Martin, Phys. Rev. 138, A608 (1965);
L. P. KadanoG and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(i963).

~ R. A. Tahir-Kheli, Phys. Rev. 159, 439 (1967); (J.Appl. Phys.
to be published); H. S. Bennett, Phys. Rev. 174, 629 (1968).

8 P. C. Martin and S. Vip, Phys. Rev. 170, 151 (1968).
~ In this connection it should be noted that in the limit S—+ ~,

the statistical mechanics of the classical Heisenberg model
(CHM) coincides with that of the quantum-mechanical Heisen-
berg spin system (QHM). On the other hand, the CHM for 6nite
spin Lsee, e.g. , C. G. Windsor, Proc. Phys. Soc. (London) 91, 353
(1967)g cannot be directly compared with the S—+ ~ limit of
the QHM being discussed in the present work. A possible identi-

II. FORMALISM

For an in6nite one-dimensional array of spins S, the
Heisenberg Hamiltonian has the form

and, therefore,

t'11
&S, ~(t')Sf ~(t)) =

~

—
~

dk e'"«r »&-
+" Fs(~)

X e ' t' "&dto, (2.2c)„(ee~-1)

(the unit of length being the nearest-neighbor distance),
where as usual the pointed brackets denote a statistical
average over a canonical ensemble and where the time
dependence of the spin operators is in the Heisenberg
picture. The retarded Green's function,

lIIfx fs(i, t')= —.so(t—1')&Lsfr (t),sr.'(1')j) (2 3)

then has the usual spectral representation

1 +"Fs(to)
Ms(Z) =— dro,

2'r co Z Go

(2.4)

fication —of somewhat dubious value —of the Gnite-spin cases of
the CHM and the QHM could be achieved by replacing in the
CHM the magnitude of the spin vector S with its quantum-
mechanical counterpart PS(S+1)g'~'.

5
Cd/f

Fio. 2. The spin--,'results for (Sp(t)S&'(0))~„&L4S(S+1)/3g-t
versus (co/I}. The full curve G shows the Fernandez-Gersch's
results, the histogram the exact numerical results of Carboni and
Richards, and the dotted curve the results of the present calcula-
tion. Note that the agreement of our results with the exact ones
seems to be better than that of Fernandez and Gersch for all co

and in particular for au&5I.
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where ImZ) 0 and M), (Z) is the analytic extension of to define the frequency-wave-dependent diffusivity
the Fourier transform 3E&,(E) D&, ((0) as follows:

+8

M», »(t, t') =— dk e'"(»-»&
2~ . 3II&,(Z) ' -—k' +" D4, (o&)1- =1-— da . (2.6)

M4,.(0) s „Z'—(e'

E'l&—sZ(t—f,')de Now using Eq. (2.4), the relationship between the

spectral function F&,(o)) and the diffusivity may be
Following Kadanoff and Martin, ' it is convenient readily established

k' +"d44'D4((0')-' —1

F&, (a)) = —2M&, (0)cok'D&, (o)) (0' 1 P —— +[k'D4;(~)]'
7P ~ GO

—
GO

(2 7)

where ilf4, (0) is related to the wave-dependent susceptibility X(k) by

X(k)=pp e 'at dy (S04(0)e e"~St*(0)e+e"~)
f p

=—2s M'4 (0) . (2.8)

In the limit P —) 0, the dominant term of X(k) is readily calculated

lim [X(k)]=P-,'S(S+1),

and, therefore, Eq. (2.7) becomes

() ( )
lim

pM 3'E

F„(o — S-S+1 k ~d(i)D (o&)
k'D (~) ~' 1——F +[k'Da(~)]'

M —M

(2.9)

(2.10)

jpD~ (o) —p~(2)

k2Dp(&)+.k4[Dg(0)]2 —Fg(4)

(2.11)

The left-hand side of Eq. (2.10) is what we called the
line shape f), (44) in Sec. I [To see thisexp, and the factor
(ee"—1) ' in the integrand of Eq. (2.2c), retaining the
dominant term, 1/Po)].

Before we conclude this section, we need to notice
that using Eq. (2.4) in the left-hand side of Eq. (2.6),
expanding both sides in inverse powers of (1/Z) for
large Re(Z) and comparing coeKcients of equal powers
of (1/Z) on either side, we readily get the following
relationships which will be needed later:

DI, (44) does not by itself guarantee any revealing in-

formation about the spectral function F&,(o)) Rather, .
Eq. (2.10) merely reexpresses the function F&, (&o) in

terms of another, as yet unknown but possibly quite
well-behaved, function D4(&v).

The essential statement of the treatments of Refs.
6—8 is that a phenomenological representation of the
well-behaved function D&((d) is hopefully a less hazard-
ous assumption than one which makes statements about
the rather singular function F&,(o)) itself. In any case,
we shall for the present assume that this viewpoint has

merit. The results of the present work will hopefully

justify it a posteriori

The second and the fourth frequency moments of the
function F&,(ar) are known in the limit of infinite

temperatures. ' In the present notation for spin S these

moments are

F&, ((o)oP 'd(eF4(")=[—24rjf'), (0)] '

III. GAUSSIAN DIFFUSIVITY AND RESULTS
where

The formal development of Sec. II is exact. It is,
however, clear that the introductoin of the diffusivity (3.2)J(k) = 2I cosk.

F4(') = (8/3)[S (S+1)]I[J(0)—J(k)],
&=0i 1i 2i ' ' '. (2 12) F&,("=32[-',S(S+1)]'P[J(0)—&(k)]

X[77(0)—3J(k)—(4+[3/2S(S+1)])I], (3.1)
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These two moments uniquely determine the moments
D), (') and D),") of the diffusivity Lsee Eqs. (2.11) and
(2 12)3.

In analogy with the Refs. 6—8, we shall assume a
two parameter Guassian representation for the dif-
fusivity, i.e.,

D),((0) A(k)I'(k)e "'r'(s) (3.3)

where the normalization and co1lision parameters
A (k) and I'(k) are readily related to the known moments
F~(2) and F~(4) via D~(0) and DI, (2), i.e.,

A (k) = (gm)D&, (') = (Qm) LFp("/k'],

F~(2)
I"(k) =

2Dg, (') 2LF (4)—(F (2))2j
(3.4)

We emphasize that the above representation for the
diGusivity conserves the frequency moments F~(')
through F~(4). Here, of course, F~(') is the sum rule

F&(o)

F/, (') and F~(3) are identically zero because of the anti-
symmetry F),((e) = —F~(—(0), and the moments F),(2)

and F~(4) are automatically preserved because of the
particular choice (3.4).

After introducing the two parameter Gaussian
representation (3.3) with the moment conserving choice
of Eq. (3.4) into the right-hand side of Eq. (2.10),
we have numerically carried out the k sum, i.e.,

1 + F),((o)-
=»m L(S~'(t)S)'(0))( )j (3 5)

2s.
, P(e

for various values of spin S.The results for S=~„2, and
-,'are plotted in Figs. 1 and 2 along with those given by
the numerical calculations of Carboni and Richards and
the recent results of Fernandez and Gersch.

IV. CONCLUSIONS

The results of the present analysis provide an inter-
esting check on the adequacy of the two parameter
Gaussian description of the frequency-wave-dependent
diffusivity. The relatively reasonable agreement of the
present results suggests that while in princip1e the dif-

fusivity could possibly be highly peaked in certain
regions of the frequency-wave-vector space, for the case
of a one-dimensional Heisenberg spin system at elevated
temperatures, a simple two parameter Gaussian rep-
resentation of this function does seem to be ae adeqlute
approxirlatior) Moreo. ver, such a representation is free
from any arbitrariness of choice and preserves all the
known frquency moments.

Note added ir& proof. We have recently noticed that
when the results displayed in Fig. 1 are expressed as a
plot of I'Q'( )(oversus (0', the curves are almost spin-

independent, i.e., the spread between the S=~ and
S=~ is only a few percent. Here p'((e)=p(M)y ',
I'=Iy& co'= ( /(eI'), and y=tS(S+1))I.
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