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magnitude smaller than the uncertainties given in Table
I and is, therefore, not significant.
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A detailed account is given of the calculation of the generalized susceptibility functions of Gd, Dy, Er,
and Lu using realistic energy bands. These susceptibilities clearly show the inQuence of the Fermi-surface
geometry in determining the helical ordering arrangements of the heavy rare earths, and the ferromagnetic
ordering of Gd. A microscopic discussion of the magneto-elastic effect for a general ordered spin state is
also presented. The first-order transition from the helical state to the ferromagnetic or conical ferromagnetic
state in Tb, Dy, Ho, and Er is explained by this effect. Dy is used as an example of the application of the
formalism, and a fundamental understanding is obtained of the transition between the helical and the
ferromagnetic state and of the anomalous thermal expansion in both ordered states.

MICROSCOPIC theory of the magnetic ordering

~
~

of heavy rare earths must answer the following
questions: (1) Why does the indirect exchange inter-
action support a ferromagnetic ordering in Gd but a
periodic moment arrangement in other members of the
group; and (2) What is the interaction that stabilizes
the ferromagnetic"state in Tb~and Dy and the conical
ferromagnetic state in Er and Ho at low enough tem-
peraturesP In an earlier publication' we showed, by
calculating the generalized susceptibility functions of
Gd, Dy, Kr, and t,u, that the type of initial magnetic
ordering depends sensitively on the Fermi-surface
geometry as suggested by Loucks. ' The first part of
this paper is a detailed account and some extension of
this work. The second part of this paper gives a general

proof of the current idea that the magneto-elastic eGect
is the driving force which stabilizes the ferromagnetic
state at low temperatures. %e work out a microscopic
formalism of the magnetoelastic eGect for a general
ordered spin state. Using Dy as an example, we obtain
a fundamental understanding of the transition between
the helical and the ferromagnetic states and the
anomalous thermal expansion of this material in both
types of ordered states.

~ Work was performed in the Ames Laboratory of the V. S.
Atomic Energy Commission. Contribution No. 2366.

t Danforth Foundation Fellow. Present address: Department of
Physics, University of Pennsylvania, Philadelphia, Pa.

~ W. E. Evenson and S. H. Liu, Phys. Rev. Letters 21, 432
(&968).' S. C. Keeton and T. L. Louis, Phys. Rev. 168, 672 (1968},
and references cited therein.

I. THE EXCHANGE INTERACTION

A. Introduction

The magnetic ordering in the heavy rare-earth
metals comes about through an indirect-exchange inter-
action mediated by the conduction electrons. Ke know
that this mechanism must be the dominant one because
of the insignificance of the overlap between ions in
these materials. The theory for this type of exchange
interaction has been worked o».t formally with various
approximations, ' and is known as the Ruderman-
Kittel-Kasuya- Yosida (RKKY) interaction. The inter-
action can easily be related to a q-dependent suscepti-
bility X(q), which is the linear response of the conduc-
tion electron system to the effective 6eld of the ionic
moments. For one"atom per unit cell this susceptibility
has the form4

fs (1—fs+p+xp")x q =—,(1.1)X &. .~'E. (k+q+Kp) —E„(k)

where the fk~ are Fermi-Dirac distribution functions
for reduced wave vector k and band e, the E„(k) are
the energy bands, K0 is the reciprocal lattice vector
necessary to reduce k+q, and we have assumed the
matrix elements to be constant and have factored them
out. %e have dropped other constant factors for con-
venience. This gives X(q) the dimensions of (energy) ',

~ See the review article by T. Kasuya, in Magnetism, edited by
G. T. Rado and H. Suhl iAcademic Press Inc., Wew York, 1966),
Vol. IIB, pp. 21S-294.' Reference 3, Sec. III.
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FIG. I. Energy bands for Dy 2
along the symmetry axes of the
BriHouin zone. The dashed line
indicates the Fermi energy.
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The stable magnetic structure will be determined by
the minimum in the Iree energy. When the exchange
germ is the dominant contribution to the free energy,
so that all other contributions can be neglected by
comparison, then the energy of a magnetic structure
cha,racterized by wave vector g can be shown to bc
proportional to —X(q).4 s Therefore, under these cir-
cuIQstanccs, the stRblc IDagnctic con6guration wiH. bc
determined by the maximum in the susceptibility X(q).

The previous evaluations of X(q) have been done
with free-electron energy bands. The band calculations
on rare-earth DIctals2 have shown that they are not
free-electron-like but resemble more closely the transi-
tion-clement bands. The bands for Dy calculated by
Keeton and Louckss (the Dy2 of Ref. 2) are shown in
Fig. i, for example. The Fermi surfaces also Rrc quite
different froIn fI'ec-electron I'crIDi surfaces. Wc have
felt that the use of free-electron bands has been the
%'cRkcst point In pl'cvlous calculations. Thcrcforcq %'c

have kept all the usual approximations' in the calcula-
tion of the exchange energy except that we have put
realistic energy bands into Eq. (1.1) in place of the

s J. Vill@in, J, phys, Chem. SoHds 11,303 (M9).

usual free-electron bands. Relativistic augmented-
plane-wave energy bands for Gd, Dy, Er, and Lu
werc available to us from work of Kecton and Loucks. '
These RI'c parRJQagnctlc bands~ so our conclusions apply
to the initial ordering of the metals, before the bands
are too greatly perturbed by the magnetic interactions.
Our results, which wc have bricQy discussed ln a
previous publication, ' conhrm the idea that the FcITni-

surface geometry is the dominant factor in the deter-
mination of the maxima in the susceptibilities &(g),
and hence the minimum in the exchange contribution
to thc fI'cc cncI'gy.

Wc Rrc interested ITIainly in Q along thc linc I to A

of the Srillouin zone because all the magnetic structures
observed in the heavy rare earths can be~described by
a wave vector in that direction. 6 Since the heavy rare
earths in which wc are interested RB have hcp crystal
structures, we can treat X(q) in the~double zone repre-
sentation for q along the line I' to A, q being the
Inagnitude of a wave vector q. %'e have used the
energy bands in the double-zone representation so that
Eq. (i.i) is the correct formulation of the suscepti-

~ %'. C. Koehler, J. Appl. Phys. 86, j.%8 (&9&~)
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bility. This is a very good approximation because the
maximum splittings on the AIII. zone face due to
relativistic sects were within the numerical accuracy
of the bands. The relativistic form of the bands was
important to the present results, however, because the
relative positions of the bands and the Fermi surface
were signi6cantly modified by relativistic effects."

Roth et a/. ' have discussed in some detail the relation
between the geometry of the Fermi surface and the
features of the susceptibility, X(q). They show that the
occurrence of nearly parallel pieces of Fermi surface
such that sizable areas can be "nested" into each other
by the same wave vector Q gives a logarithmic diver-
gence in the susceptibility at the nesting Q. The nesting
of points or of lines of Fermi surface gives other char-
acteristic anomalies in the susceptibility without pro-
ducing a maximum in X(q) at any point related to the
nesting Q. Lomer' erst pointed out that nesting areas
of Fermi surface are responsible for the magnetic
ordering in chromium. For the rare earths, Keeton and
Loucks' pointed out a number of places on the Fermi
surface where near nesting could occur. Our calcula-
tion' of X(q) gave support to their prediction.

A word should be said about the exchange matrix
elements that were factored out of Eq. (1.1) as
constants. Strictly speaking, they are of the form
I ~ (k, k+q+Ks). An intermediate approximation is
to call the matrix elements functions of q and e, e'
only. This approximation should certainly be an im-
provement over constant matrix elements. In general
we would expect the matrix elements to be decreasing
functions of q because as q increases there should be
more oscillations in the electron polarization within the
ionic 4f shells, giving more cancellation to the overlap
integral. We will discuss a possible simple approxima-
tion to I '(q) in connection with the results of the
susceptibility calculation. We will see that a very
simple P(q) which decreases with q can give nice
qualitative agreement with experimental magnon spec-
tra for the rare earths.

B. Numerical Considerations

In the actual calculation of X(q) from Eq. (1.1), we
have to consider a number of numerical problems. We
have neglected the temperature dependence of the
Fermi functions in Eq. (1.1); the error introduced by
this is only of the order of (kT/Er)'. The rest of the
equation, then, is an integral over k with two sums over
bands on the energy denominator, the Fermi functions
being "on" or "off" switches.

We 6rst look at the summations over the energy
bands. We have calculated the susceptibility from Kq.
(1.1) by treating the sums on bands in three different

7 S. C. Keeton, Ph. D. thesis, Iowa State University, Ames~
Iowa, 1966 (unpublished).' I.M. Roth, H. J. Zeiger, and T. A. Kaplan, Phys. Rev. 149,
5&9 (1966).

I &. M, Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).
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FIG. 2. Example of distortion of the Fermi surface in the
numerical calculation due to the finite mesh size.

ways to check their convergence. Using the bands for
Dy shown in Fig. 1, we calculated X(q) three ways:
once with the bands shown in the figure, once with
four free-electron bands added on top of those shown,
and once with only the two bands which determine the
Fermi surface. There was only an essentially q-inde-
pendent shift in X(q) between these three cases. Refer-
ence to Fig. 1 shows that the bands near the Fermi
energy are quite Qat which would give only a q-inde-
pendent contribution to X(q) as long as they do not
cut the Fermi surface to bring in the fq(1—fq ) factor.
Those bands which are much higher or lower than the
Fermi energy contribute large energy denominators to
Eq. (1.1), and their contributions to the susceptibility
are not effective to bring about a q dependence. All
further discussion and results then will deal only with
the two bands that determine the Fermi surface. This
also demonstrates that the Fermi surface is crucial in
the determination of the shape of the susceptibility,
X(q).

Having eliminated the band summation, we turn our
attention to the k integration. We have used the three-
dimensional extension of the trapezoidal rule to per-
form the integration over k on a mesh of 2'7 216 points
in the Brillouin zone. The position of the 6nite mesh
with respect to the Fermi surface may introduce some
spurious peaks in the susceptibility. This is the prin-
cipal source of noise in our calculation. Figure 2 shows
an example of how this happens. A cross section of the
Brillouin zone with a spherical Fermi surface at its
center is shown. In the numerical integration, however,
each mesh point is taken to be representative of the
volume element in which it is centered, so the whole
volume element is counted as being in or out of the
Fermi surface depending on whether its mesh point is
in or out. Therefore, the Fermi surface really looks to
the computer like the set of shelves shown in Fig. 2,
and there is nesting of areas, giving rise to spurious
peaks in X. A comparison of the results using several
meshes shows that the spurious peaks move around as
the mesh is changed, allowing us to eliminate them.
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FIG. 3. Generalized susceptibility for linear bands
and cubic Fermi surface.
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FIG. 4. Generalized susceptibility for three-
dimensional free electrons.

Comparison with Fermi-surface geometry also allows
us to eliminate peaks due only to the numerical
procedures.

We have used two special sets of bands to develop
and check the numerical procedures: (1) free-electron
bands, E(k)=nk' for a spherical Fermi surface, and
(2) linear bands, E(k) = ~k;~, where k; is the largest
component of the vector II in absolute magnitude, for
a cubic Fermi surface. The cubic Fermi surface exhibits
nesting of opposite faces of the cube into each other
at Q=2k~. The numerical result for two different
meshes is shown in Fig. 3 along with the analytical
result for X(q) in this special case. The agreement be-
tween the analytical and numerical calculations for the

TABLE I. g(g 0) compared to ~N(Ep).

Metal

Gd
Dyi
Dy2
Eri
Er2
Lu

x(g~ o)
(states/Ry/atom)

16
13.5
14
11.5
12
12

'E(Z&)
(states/Ry/atom)

14.25
13.85
12.15
12.15
11.8
12.75

Reference 4.

cubic Fermi surface is quite satisfactory, and we see
that the numerical calculation gives the position and
shape of the logarithmic divergence quite well. The
spherical Fermi surface, on the other hand, is the
worst case for spurious peaks of the type discussed
above. Figure 4 shows the analytical result for the
spherical Fermi surface along with the numerical X(q)
for two different meshes. Comparison of the two nu-
merical results shows immediately that three of the
peaks are spurious. We could calculate X(q) on still a
third mesh and eliminate the last peak in this way.
However, it is simpler, knowing the importance of the
Fermi surface to the shape of X(q), to notice that there
are no nesting areas of Fermi surface so there should
be no peak in X(q) at all. When we eliminate these
peaks, we see that the numerical results agree quite
satisfactorily with the analytical result.

The type of distortion of the Fermi surface introduced
by the numerical integration as illustrated in Fig. 2
will not be as bad for a more complicated Fermi surface
as it is for the sphere. However, one should expect
considerable noise in the calculated X(q) for this reason.
We have averaged over two diferent meshes to reduce
the noise somewhat, but a very fine mesh is needed to
get a really smooth curve for X(q).

Because of the discrete mesh we must use to perform
the principal-value integral over k, the numerical pro-
cedure cannot calculate X(q) properly for q=0. When
q=0, the denominator in Eq. (1.1) goes to zero, but
the numerator also goes to zero and X(0) has a ffnite
value. When there is a single sheet of Fermi surface in
the double zone and X(q) is calculated with only the
Fermi surface band, as in this work, it is easy to show
that X(0)=-',1V(Ez), where X(Ez) is the density of
electronic states of both spins at the Fermi energy. It
is quite possible that the numerical calculation may
also be poor for small, nonzero q. Special care had to be
taken at small q in the case of the cubic Fermi surface
to put in terms analytically for which E(k+q) and
E(k) were both equal to E&, i.e., terms on the sides of
the cube. In a more complicated Fermi surface these
terms are less important than in the case of a simple
cube. A comparison of the apparent limit of X(q) as q
goes to zero and ,$(EI) will give an ind—ication of how
good the numerical calculation of X(q) is for small but
nonzero q. We see in Table I that our calculated
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X(q ~ 0) is within the 10—20% uncertainty in ,X—(Ez)
for the heavy rare earths, indicating that the numerical
calculation is reasonably good except for q=0 in these
cases.

The uncertainties in the energy bands which were
used to calculate X(q) led us to investigate the effects
of shifting the Fermi energy up or down from the value
calculated by Keeton and Loucks. As we point out
below, the results are changed only by a remarkably
small amount with these variations in Fermi energy.
We have written a program which maps out the Fermi
surface and plots appropriate cross sections to enable
us to watch the changes in Fermi surface along with
changes in X(q) for various Fermi energies.

I.80

l.60

l.40

l20

l.00

0.80

C. Results

We have shown the calculated susceptibilities along
with Fermi surface cross sections for Gd, Dy, Kr, and
Lu in a previous publication. ' Table II shows a com-
parison between the magnetic Q as determined from
experiment and as determined from the beginning of
the maximum in X(q) both for the calculated Fermi
energy and for a Fermi energy 0.005 Ry higher than
the calculated one. (Dy1, Dy2 and Er1, Er2 correspond
to diGerent potentials used in the band calculations for
Dy and Er as noted in Ref. 2.) The agreement with
experiment seems to be quite satisfactory. The slightly
better agreement for the higher Fermi energy is not
significant because of the uncertainties in the input
bands themselves. What does seem to be signi6cant,
however, is the stability of the results with respect to
variations of the Fermi energy. We have considered
the eBect of varying the Fermi energy up or down by
0.005 Ry for all six sets of energy bands that we used:
Gd, Dy1, Dy2, Er1, Er2, and Lu. The Fermi surfaces
and the susceptibility curves change gradually in all
cases.

Keeton and Loucks' pointed out that the existence
of the webbing" in the Fermi surfaces of Dy, Er, and
Lu was probably important in establishing a distinct
maximum in X(q). It is of course possible to obtain a
maximum in X(q) without the webbing feature in the

Metal

Dyi
Dy2
Eri

Er2
Lu

0.49

0.57

0.53

Qthoory
(with calcu-
lated E~)

0.60
0.60

0.6i
0.61
0.54

Qth 0~
(with Eg

increased by
0.005 Ry from
calculated Ey)

0.53
0.53

0.56
0.54
0.50

Reference 6.

TmLE II. Magnetic ordering wave vectors (in units of m/c) as
determined from experiment' and from the maximum in the
theoretical susceptibilities.
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0,20—

FrG. 5. J(q) =I'(q)p(q) for Gd.

Fermi surface, as long as we have suKcient area of
Fermi surface separated by roughly the same wave
vector Q. However, a detailed examination confirms
their conclusion that the webbing is the only feature
of the set of calculated Fermi surfaces that nests with
roughly the right Q and shows the proper trend through
the series, i.e., as one goes up the series of heavy rare
earths, the webbing gets thicker and the helical struc-
ture gets more stable. This trend is further supported
by the recent Fermi-surface calculation of Jackson for
Tb."

We have pointed out above that the matrix elements
associated with the generalized susceptibility should be
decreasing functions of g. We have tried matrix ele-
ments of the form

P(q) =I'(0)[e ~~'+e &'~t~~~'j (1.2)

We have chosen I(0)=0.04 eU and n=0 05c' in o.rder
to make the width of I(q) approximately correspond to
the size of the 4f shell, and to normalize/(q) =P(q)X(q)
to approximately the size of J(q) for Tb-10% Ho."
The second term in Eq. (1.2) makes P(q) horizontal at
the Brillouin-zone boundary. The result of applying
P(q) to our calculated susceptibilities is shown in Figs.
5 and 6. (The results for Er and Lu are very similar
to those for Dy. ) The J(q) derived from the magnon
spectra of Mgller et a/. is reproduced in Fig. 'I. The
similarity between the calculated and the experimental
curves is rather striking. It is, however, apparent that

"C. Jackson, (to be published)."H. 8jerrum Mufller, J.C. G. Houmann, and A. R. Mackintosh,
Phys. Rev. Letters 19, 312 (1967).
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q values corresponding to nesting Fermi surfaces. The
magnon spectrum of Er measured by Woods et ul."
does not show suf6cient detail to compare with the
important features of &(q).

We can get some idea of how reasonable the mag-
nitude of X(Q)-x(0) is by a simple molecular field
calculation. The Neel temperature T~ and the para-
magnetic Curie temperature 0& are related by

k (T~—Hi )——',[PS(S+1)7Lx(Q) —x(0)7. (1.3)

We find LX(Q) —X(0)7—6 Ry ' for Dy and 4.5 Ry '
for Er. Taking Tz ——178.5'K, 8&——153'K for Dy and
7~=85'K, 0~=42'K for Er, we Gnd I 0.04 to 0.09
eV. This value of I(0) is consistent with other estimates. "
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FIG. 6. J(q) =P(q)g(q) for Dy.
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» T. O. Brun, S. K. Sinha, L. D. Muhlestein, and J. Sakurai,
Bull. Am. Phys. Soc. 13, 450 (1968), and (to be published)."T.L. Loucks, Phys. Rev. 144, 504 (1966).

the present work is still too crude to expect any mean-
ingful quantitative comparison. The matrix element in
Eq. (1.2) also shifts the maximum of J(g) to a smaller

g than that of X(q).
Along with the similarity observed between the

magnon spectrum of Tb—10% Ho and X(g), we should
also point out that bumps in the phonon spectrum of
Y have been observed" which fit in nicely with the
features we see in our calculated x's. This is to be
expected because the Fermi surface of Y" is very
similar to that of the heavy rare earths, and the
phonon spectrum should show Kohn anomalies at those

E =A'k'j2nz (1.4)

it is clear that X(g) diverges logarithmically at g= 2k+.
When the 4f moments are ordered in a helical state
with wave vector q, the energy bands at k for one spin
and at k+tt for the opposite spin are mixed according
to

Eg=-', (E(k)+E(k+g)
+(L&(k)—&(k+V)7+l")'"), (1 5)

where
V=Io-, (1.6)

I is the s finteraction m-atrix element (assumed to be
a constant), and a is the magnetic moment per spin.

A. D. B. Woods, T. M. Holden, and B. M. Powell, Phys.
Rev. Letters 19, 908 (1967)."R. J. Elliott, in Magnetism, edited by G. T. Rado and H.
Suhl (Academic Press Inc. , New York, 1966), Vol. IIA, pp. 385-
424; J. O. Dimmock and A. J. Freeman, Phys. Rev. Letters 13,
750 (1964).

'6 W. C. Kohler, E. O. Wollan, H. R. Child, and J. W. Cable,
Proceedings of the Third Conference on Rare-Earth Research, 1963
(Science Press, New York, 1964), p. 199."R. J. Elliott and F. A. Wedgwood, Proc. Phys. Soc. (London)
84, 63 (1964).

1 Reference 3, Sec. IV."R.J. Elliott, Phys. Rev. 124, 346 (1961).

D. Variation of Q with Temperature

Neutron diffraction experiments revealed that the
wave vectors of the periodic moment structure in
heavy rare earths decrease as the temperature is re-
duced from the initial ordering temperature. " Three
mechanisms have been recognized as the possible causes
of this phenomenon: (1) The band splitting due to the
ordering of the 4f moments'~"; (2) The magneto-
elastic effect; and (3) The sixfold anisotropy in the
basal plane. " We give here a brief derivation of the
first effect based on a slightly different model than
those used in Refs. 17 and 18. The magnetoelastic
effect will be discussed in the next section. The ani-
sotropy effect is not important in Tb and Dy because
the sixfold anisotropy is negligibly small in the tem-
perature range where the helical structure is stable.

If we postulate a one-dimensional parabolic band
model
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The new Fermi wave vectors are found from

E+(kg+)=E (kp ),
and the conservation of the number of particles. The
energy of the system is

h(a V) = L&+(k)f(&+)+& (k)f-(& )7~k-(~ g)

where f(E) is the Fermi distribution function. The
result of this calculation is depicted in Fig. 8 for
various values of g and V. In contrast to X(q) the
function 8(g, V) does not diverge but has a minimum
near 2k' for small values of V. The position of the
minimum determines the stable magnetic configuration.
Since V increases with decreasing temperature accord-
ing to Kq. (1.6), it is seen from Fig. g that the Q for the
stable magnetic structure shifts to lower values. If V
is large enough the ferromagnetic structure eventually
becomes stable. The qualitative conclusions here are
in complete agreement with the previous work, so we
feel that they must be valid for general energy bands.

The fact that the ferromagnetic state may become
stable for large V does not explain the ferromagnetic
ground state of Tb and Dy, because in the theory Q
vanishes continuously whereas the observed Q drops
abruptly to zero from a Gnite value. It will be shown
that this sudden change in magnetic structure can be
explained by considering the magneto-elastic effect.

IL MAGN'ETO-ELASTIC EFFECT

A. Introduction

The magneto-elastic effect has been suggested by
many authors as the driving force which stabilizes the
ferromagnetic state in Tb and Dy at low tempera-
tures. '~ The reasoning is as follows: The crystal
lattice is coupled elastically to the magnetic system
such that when the moments are aligned in a certain
direction, the lattice becomes distorted somewhat in
order to minimize the total energy. In the antiferro-
magnetic state, the magnetic moments cancel internally
and so the lattice does not respond to the magnetic
ordering. Cooper" called this the lattice clamping
effect. It is easy to see that the antiferromagnetic state
has a higher magneto-elastic energy than the ferro-
magnetic state. One can also show that the difference
in elastic energy between the two states depends at
least on the fourth power of the magnetization, so it
is very small near the initial ordering temperature and
much larger at lower temperatures. When added to the

~ C. Kittel, Phys. Rev. 120, 335 (1960}.
» U. Enz, Physica 26, 698 (1960)."E.W. Lee, Proc. Phys. Soc. (London) 84, 693 (1964); Phys.

Letters 4, 358 (1963);R. G. Jordan and E. W. Lee, ibid. 92, 1074
(1967).

'

'I B.R. Cooper, Phys. Rev. Letters 19, 900 (1967).
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FIG. 8. Magnetic energy as function of q for
several interaction strengths.

exchange energy, which favors periodic moment ar-
rangement, the total energy of the crystal may favor a
ferromagnetic state at suKciently low temperatures.

Recently the magnetostriction and the anomalous
thermal expansion of some rare earths have been meas-
ured on single crystals. '~' Meanwhile the basic theo-
retical formulation was worked out by Callen and
Callen. ""These developments enable us to make a
detailed study of the connection between the magneto-
elastic effect and the magnetic order transition. In
order to adopt the Callen and Callen formalism to the
helical spin structure, we have generalized it to allow
nonuniform strain in the crystal. We will show that
when the magnetic ordering is periodic, there is a thin
layer at the surface of the crystal where the lattice is
distorted with the same periodicity. The bulk of the
material remains uniformly strained. The lattice is
completely clamped with respect to certain compo-
nents of the strain but only partially clamped for the
other components. A study of the dependence of the
elastic energy on the magnetic periodicity shows that
the magneto-elastic effect also contributes to the tem-
perature dependence of the magnetic Q in the helical
region.

~ S. Legvold, J. Alstad, and J. Rhyne, Phys. Rev. Letters 10,
509 (1963).

"A. E. Clark, R. M. Bozorth, and B. F. DeSavage, Phys.
Letters 5, 100 (1963).

~6 A. E. Clark, B. F. DeSavage, and R. Bozorth, Phys. Rev.
138, A216 (1965).

» E. R. Callen and H. B. Callen, Phys. Rev. 129, 578 (1963).
~8 K. Callen and H. B. Callen, Phys. Rev. 139, A455 (1965}.
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B. FoxBlQIation

The Hamiltonian for the crystal is written in the
foBowing form

&=& +&.+II&+&u,

where H is the indirect exchange coupling term plus
th p t f iot py t hich

' td t th
strain. H, is the elastic energy term, Hl the one-ion
contribution to the magneto-clastic energy, and B2 the
two-ion contribution. Presumably Bl arises from crys-
talline 6eld c6ccts and B~ from the spatial dependence
of the indirect exchange. The elastic energy can be
written down according to the standard QMthod of
lattice dynamics. 29 In particular, under uniform strain
B, is, as given in Ref. 28

g p r&,r g e.r, ue.r, p

where the quantities c and e are the elastic constants
and. the strain components respectively. The indices I',

J J label the irreducible representations of thc crystal
group, and i labels the basis functions of thc repre-
scntRtlon. Thc Inagncto-clastic energy terms alc

~ =-Z Z Z &$; Z h"'(f)$""(f),
r ii'

(2.3)». r(f g)Z & r,;(fg)$. ,'(f g)
(f,a) r i,i'

where the functions $(f) and $(f,g) are the one-spin and
two-spin basisfunctions tabulated in Rcf. 27. The lattice
sites are labeled by f and g, and the coupling constants
by S and 5&(fg). The functions 8(f) and h(f g) are
thc basis fuQctlons of thc local stI'Rln constructed ln thc
following manner: Let R&&'&= (X~&'& I'r&'& Z~ ") be the
unstrained position vector of the lattice point f, and

rr= (ar,yr„sr) be its displacement from the unstrained
position, we can construct the following functions which
are isomorphic to the strain tcnsors

@-(f,g)= (Xr"&—Xu "&)(ar—&u)

and similar expressions for 8» and 8„,and

&.u(fg) = 2I (Xr"& Xu"') (y—r y.)—
+ (i'r "&—~u "&)(ar—&u)j, (2 4)

Rnd slIIlllar expressions for Bye Rnd Bzx Then thc basis
functions 8;r & (f,g) may be 'constructed out of these
functions according to Table II of Ref. 28. The one-ion
strain terms are obtained from 8(f,g) by contraction

h(f)=E @(f,f+$)

where $ denotes the nearest neighbors of f.
Thc px'cscIlt formalism I'cduccs to that ln Rcf. 28 ln

uu See for example J. M. Ziman, Ekcuruuuu omE pkueuwu (Claren
don Press, Oxford, 1962), Chap. j..

the ferromagnetic state. To show this we consider a
simple cubic crystal with lattice parameter a. The free
energy of the system is

I'=E +~.+(&x)+(&u).

Since the strain is uniform we can express all compo-
nents of 8 in terms of thc strain tensor e. For instance,

if Ru&a& is in the x direction, and

8„(f,f+8)=0
otherwise. Also

8.„(f,f+8)=~a'e.„
if Ru&u& is in either the x or y direction, and

&*u(f f+$)=o
otherwise. In Hg the expectation values of thc spin
functions ($(f, f+b)) are the same for all nearest
neighbors. Hence, when summed over all nearest neigh-
bors, we obtain

P h;r& (f, f+8)'=2a'e;ru.

%c CRD thcQ ldcntlfy

2o'Z» "(f,f+$)=Z, » "(f,f+$),

where 8, D are thc coupling constants dc6ned in Rcf.
28. For next nearest neighbors, we And the following
relation between the coupling constants in thc two
thcoI'lcs

$o' 2 &'~"(f,g) =Z»r" (f,g)

Similar relations may be found for morc distant neigh-
bor coupling constants. In an ideal hexagonal closed-
packed crystal, where every ion has the same exchange
interaction with all of its twelve nearest neighbors, one
can show that

2@",r g",r

«'2 & '"(f, f+$)=Z» "(f,f+$), (26)

where u is the lattice parameter in the basal plane.
For simplicity wc hmit ourselves to a nearest-neighbor
Inodel in the present discussion and will denote the
two-ion magneto-clastic coupling constRQts simply by
Qp jt ~

.. r

C. Lattice Distortion in the Helica1 State

%C demonstrate with a very simple model the cGcct
of helical spin ordering on the lattice distortion. Con-
sider a simple cubic crystal with nearest-neighbor
elastic coupling. %c label the lattice sites by integers
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(l,m,N); then the elastic energy is

~s 2 E $E 1(Xl+l,mn Xlmn) ++2(Xl,m+1,» Xlmn}

+@2(Xl,m, n+1 X—lmn) +Sinular terms

for y and s components), (2.7)

where

F=B(T) sin222$.

Try a solution of the form

g) „= A, g, a'&&'+& +&"~d ad,

Xe'&&'+rn&d]dfldt = F—(2 13)

Combining Eqs. (2.12) and (2.13), we 6nd

where E1, E2 are the spring constants. The specimen then from Eq (2 10) one finds
is assumed to be rectangular in shape with 1., M, E
unit cells on the edges. We consider only the (0,2) corn- El(1—cosg)+E2(1—cosy)+E2(1 —cosf') =0. (2.12)
ponent in the one-ion part of the magneto-elastic term.
The general result becomes obvious after this disussion.

Consider a helical spin structure such that every xy
plane is ferromagnetically ordered and the net moments g (p & f )[~,(1 cos~)+g (1
of adjacent planes make an angle f. The spin functions
involved in the term B& may be found to be

I/O

{S2"(f))= sin222lltZ(T),
16'

2 (&,g, i )K2 singe'&&'+rn&d&dgdi'= B(T)—sin221$.

where 22 is the s coordinate of the site f. The function gy comparing the 1 22 dependence on both sides one
Z(T) is the abbreviated notation of &(T,O) of Ref. 28 obtains
At low temperatures Z(T) is proportional to the third )=0,
power of the magnetization. Substituting into Eq. (2.3),
we 6nd the magneto"elastic coupling energy to be

15$
(Pl)= — 3'2g(T) p sin2NQ

i&r lfnn

where 8=~1.Most of the terms in the sum cancel out
except those involving the disp/acement of the surface
atoms. The above expression reduces to

(Hl)= —B(T) g sin2N|t p(xlM„—xlp„)

Substituting into Eq. (2.12), one obtains the following
relation between g and f:

cosy= 2—cos2$) 0.

Thus g is purely imaginary and the solution for x~ „is
damped out as one moves away from the surface. The
interlayer turn angle in rare earths is around 50'. This
gives

cosy—2

or

where we group together a number of factors and call
them B(T). To 6nd the equilibrium lattice distortion
we minimize F.,+(Hl) with respect to the displace-
ments. For the x components the equilibrium conditions
are

+1(2Xlm» Xl+1,mn Xl-l, mn)

+J12(2Xlmn Xl,m+1, » Xl,ml,n)-
+E2(2xlmn —xl,~l—xl, 1)=0 (2.10)

for a point (l,222,22) inside the crystal. On the surfaces
vs=0 and M, we 6nd

+1(2Xlpn Xl+1,0» X1-1,0»)+It2(Xlpn Xlln)

+E2(2xlp„—xlp „~1—xlp „,)= —F,
+2(2xlM» xi+1,Ma xll, M»)+E.2(xlM»-xl,M 1,»)-

+E2(2xlM» xlM, »+1 xlM, »1)=F q (2 11)-

The thickness of the surface layer is only a few lattice
parameters. The bulk of the crystal remains unstrained.
This is a microscopic demonstration of the lattice
clamping eGect. Although the theory is based on a very
simple model, the result should have general validity.

The elastic energy associated with the lattice dis-
tortion is proportional to the surface area, and is
therefore negligible compared with other volume effects.

D. App11Catlon to Df

We apply our theory of the magneto-elastic eGect to
Dy because it has been extensively investigated experi-
mentally. "Dy has a hexagonal closed-packed structure.
It is ferromagnetic below 85'K and has a helical
structure between 85 and 179'K." The magnetic
ordering transition at 85'K is of the 6rst order and is
accompanied by a spontaneous change in 1attice pa-



792 W. E. EVE NSON AN 0 S. H. LI U

We now evaluate the expectation values of the spin
functions. In the ferromagnetic state with moments
aligned in the x direction

(8"(f, f+~)&=~ (T),
(8 '(f, f+&)&= (1/2~)~ (T—) (2.15)

&8 (f))=-,'~(T),
&32"(f)&=o

where gb(T), Zb(T), Z(T) are the abbreviated nota-
tions for gr, f+b(T,O), zr, fyb(T, O) and zl(T,O) in Ref. 28.
Since the strain is uniform we may use the relation in

Eq. (2.6) to reduce (Bl& and (EE2) to

(H,&= ',NB eZ(T), ——
1

(H2&= 2X Q Dll 2 ' gb(T) D12 2 ' Zb(T)
2@3

1
+D21»2 'gb (T)— D22»2»'Zb(T)2' (2.16)

rameters. ~ The magnetic properties of Dy are highly
anisotropic such that the moments are confined in the
basal plane in the ordered state. Below 90'K the u

axis in the hexagonal plane is the easy direction. "We
choose a coordinate system where the a, b, and c axes
are the x, y, and s directions, respectively.

From magnetostriction studies Clark et ul." con-
cluded that magneto-elastic eGects in Dy can be de-
scribed to a high degree of accuracy by keeping only
the (y, 2) and (2,2) terms in Bl and (n, 1) and (n, 2)
terms in B~." We use the same notation for the ir-
reducible representations as in Ref. 27. Since the
moments are restricted in the basal plane, the (2,2)
terms do not enter the theory as long as there is no
external Qeld. The elastic constants of Dy have been
measured on a single crystal at room temperature and
above by Fisher and Dever. "Their data show that

ci~ =0,
so that the (n, 1) and (n, 2) representations of the stress
tensor are not coupled. Hence, the relevant elastic and
magneto-elastic energies are given by the following
expressions:

a(2», l)2+ ~ a (2»,2)2+ ~2 (2y) 2

&&)=—Z +'L& '(f)(8 "'(f))
f

+h" (f)&8 "(f))j (2 14)

(&2&= —Z Z & &"'(f, f+s)&8 "(f, f+&)&

E is the total number of atoms in the crystal. Minimiz-
ing the total energy with respect to the strain tensors,
we And the equilibrium strains to be

& =0~
where

E 1
4= Z Dll k(T)— D12»~b(T)

2ci.g & 2'
1

D21 gb(T) — D22 Zb(T), (2.17)
2cgg 2'

8~Z(T)—.
C~

The total elastic energy at equilibrium is then

E,+(H1)+(H2)
= ——2'Cll (Xl)'—-'2C22 (X )'—',C2P, 2')' (2 18)

In the helical state,

&8.'(f, f+&)&=a (T),
&8 '(f f+~)&= (1/2~—)~b(T),

if f+6 is one the same basal plane as f, and

&8 '(f, f+~))=82(T) cosf,
(2.19)

($»'(f, f+8))= —(1/2V3)Zb(T) COS&,

if f+8 is on a difierent basal plane, if = interlayer turn
angle. The quantities

(812(f))= —,'Z(T) cos222g,

&3"(f)&=-,'~(T)
where 22 labels the basal plane of the site f. From the
previous discussion we conclude that the (y, 2) compo-
nent of the strain is completely clamped. The (a,1) and
(n, 2) components of the local strain are

p g 1(f»f+$) —2bb2(2», l +2»,2)

Q h »,2 (f f+ I$)
— (1/V3) ( 1»22,

1 2t/32», 2)

where f+8 is on the same basal plane as f, and

Z & '(f f+~)=212'(2"'+&2")

P g» 2(f f+g) = bb2$(1/V3)2», 1+32»»j

Io F.J.Darnell and E.P. Moore, J. Appl. Phys. 34, 1337 (1963).
V. A. Finkel and V. V. Vorobev, Zh. Eksperim. i Teor. Fiz. 51,
786 (1966) fEnglish transl. :Soviet Phys. —JKTP 24, 524 (1967)j."D.R. Behrendt, S. Legvold, and F. H. Spedding, Phys. Rev.
109, 1544 (1958).

~ See also the review article by E. Callen, J. Appl. Phys. 39,
519 (1968)."K. S. Fisher and D. Dever, Trans. Met. Soc. AIMK 239, 48
(1967).

where f+b is on a different basal plane. Hence

(&1&=O

(H2) = —L12cll Xl(1+cosp)
—(1/4&3)c22 X2(1—coslp)je '

+L—-'2v3cll Xl(1—cosljt)

+bc22»X2(1+3 cosg) jea'

(2.20)
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where 7~i, Xs are defined in Eq. (2.17). Again the equi-
librium strains are found by minimizing the total
energy:

' = sht(1+coslP) —(1/4%3) (css /ctt )Xs(1—cosl//),

e~ '= eX,(1+3cosP) —y/3(ctt~/css )lit(1 —cosf), (2.21)

61 =62 =0

EXPER IMENT

---——THEORY

The e ', e ' components are partially clamped in the
helical state. The total elastic energy is

E +(Ht)+(Hs) = ——',ctt~(e ')' —tsc» (e ')'. (2.22)

Ke can relate the strain tensor to the anomalous
thermal expansion along the symmetry axes by

(bl/l), = —',e~' —-'v3'e '+ et&,

(bl/l) „=-', el '—tsv3e~ '—ep,
(bl/l). = -,'em'+-', v3'e~ '.

(2.23)
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Fre. 9. The anomalous thermal expansion of Dy
along the c axis of the crystal.

N

We see from these results that the anomalous thermal
expansion must change abruptly at the transition tem-
perature between the ferromagnetic and the helical
states because f changes abruptly there. Furthermore,
the anomalous thermal expansion along the u and b

axes are the same in the helical spin state but become
different in the ferromagnetic state. Using the data in
Ref. 26 for the anomalous thermal expansion and the
interlayer turn angle /= 27' just above 85'K, we find
the quantities X& and X2 to be

) g
———2.5X10 ')

~,=~.24X 10-3.

If we approximate both g&(T) and Z&(Z) by os, where
a is the magnetization, we can calculate the anomalous
thermal expansion at higher temperatures. The results
are plotted in Figs. 9 and 10 along with the experi-
mental curves. The agreement is reasonably good. The
discrepancy is possibly due to our neglect of the higher-
order representations of the magneto-elastic coupling
terms.

At the ferro-helical transition point the elastic con-
stants change abruptly, as found by Rosen. " The
Young's modulus changes from 5.7)&10"dyn/cm' just
below 85'K to 6.9&&10" dyn/cm' just above 85'K.
The measurement was not done on a single crystal, but
we may assume that the individual elastic constants
vary in the same ratio as the average elastic moduli.
lf the magneto-elastic coupling remains constant at the
transition, then, since X~ and X2 are inversely propor-
tional to the elastic constants, their values in the ferro-
magnetic state should be

~i= —3.oX10 ',
»=3.9X10-3.

'4 M. Rosen, Phys. Rev. (to be published).

EXPERIMENT
---»- THEORY
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FIG. 10. The average anomalous thermal expansion
of Dy)along the a and b axes.

From these we compute the thermal expansion along
the c axis and the average thermal expansion along the
a and b axes. The results are also shown on Figs. 9
and 10. The disagreement between the theoretical and
experimental values is relatively large. From the ex-
perimental strains in the ferromagnetic state, we find

~a= —3.0X 10-',

X,=4.'?X10-3.

The large discrepancy for» seems to indicate that some
higher-order representations of the magneto-elastic cou-

pling have been left out, or that our way of scaling the
temperature dependence of the elastic constants is too
naive.

Finally, we calculate the difference in elastic energy
between the helical and the ferromagnetic states at
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INTERLAYER TURN ANQLE just below 85'K. Thus, the elastic energies are found
to be

Er= —1.66 J/cm'

for the ferromagnetic state, and

EI, =0.7—2 J/cm'

for the helical state. The diGerence

X

hl
hC

K
a
6

IJJ

FIG. 11. The total magneto-elastic energy of Dy in the helical
state as a function of the interlayer turn angle. The curve is
computed using the energy parameters just above 85'K. The
energy of the ferromagnetic state just below 85'K is represented
by a dot at /= 0, E,= —4.0 I/atom.

85'K. We use as much as possible the experimentally
measured quantities. One finds from the data of Fisher
and Dever" that

cia =4.11X10"

c22 ——11.27X10"
c&= 9.7X10"dyn/cm'

at room temperature. If we apply the temperature
correction as found by Rosen, we estimate

czz =4.5X10"
c22

——12.4X 10"dyn/crn'

just above 85'K, and

crx =3.7X10",
c22~= 10.2X10"

c&=8.6SX10"dyn/cm'

DE= 0.94 J/cm' or 2.2 K/atom

is equal to the difference between the exchange energies
of these two states. The latter quantity was estimated
by Jordan and Lee" to be 0.7 J'/cm' and by Cooper"
as 0.8 K/atom. Our value is in accord with both esti-
mates. This shows that the magneto-elastic eGect is the
principal driving force which stabilizes the ferromag-
netic state.

One can see from Eqs. (2.18) and (2.22) that the
(u, 1)and (n, 2) components of the magneto-elastic energy
depends on the temperature like 0' and the (y, 2) com-
ponent like O'. Hence, the magneto-elastic energy is
relatively unimportant at the initial ordering tempera-
ture, but may compete with the exchange energy in the
determination of the stable magnetic structure at lower
temperatures.

In Fig. 11 we plot the variation of the elastic energy
with the interlayer turn angle using the parameters
just above 85'K. We can see that the elastic energy
always favors smaller turn angle. This also helps to
shift the magnetic Q to a lower value than that deter-
mined from the Fermi-surface geometry.

The conical ferromagnetic state in Er and Ho at low
temperatures is stabilized by a combination of magneto-
elastic and anisotropy eGects. The elastic energies of
the conical and modulated moment states in Ho, Er,
and Tm may be calculated in a way analogous to the
helical structure. The effect of anisotropy on the mag-
netic ordering has been discussed in detail by Kaplan"
and Elliott" and there is no need for further elaboration.

'~ T. A. Kaplan, Phys. Rev. 124, 329 (1961).


