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The interaction of a localized impurity magnetic moment interacting with an electron gas by means of
the s-d exchange interaction leads to the Kondo spin-compensated state at low temperatures, in which the
moment of the impurity is greatly reduced. We have examined the electron-spin~impurity-spin correlation
function in the ground state of the Nagaoka theory as well as those of the singlet theories due to Heeger and
Jensen and to Kondo and Appelbaum. It is shown that the dominant behavior of the spin correlation func-
tion is given by (sin%xr)/ (krr)?. It is also shown that the size of the spin-compensated state is characterized
by a length £, which is inversely proportional to the energy parameter Tx in the Nagaoka theory, and to
the binding energy e of the singlet states in the singlet theories.

I. INTRODUCTION

HE problem of a localized-magnetic impurity has
attracted considerable attention since Kondo’s
explanation of the resistivity minimum in 1964.* The
breakdown of perturbation theory at temperatures
below the Kondo temperature T'x led many workers
to the use of self-consistent schemes,>* such as a de-
coupling approximation in the equations of motion,*
which have generated solutions to the problem at low
temperatures. Unfortunately not very much informa-
tion about the ground state of the localized moment-
electron system has been obtained from these solutions.
The work of Nagaoka® and Hamann,® on the suscepti-
bility, however, seems to suggest the impurity spin is
greatly reduced in the ground state. This last result
involves a self-consistent decoupling procedure in
addition to the original decoupling used by Nagaoka .*
The notion of a spin-compensated ground state has
naturally led to the use of variational methods in which,
for impurity spin %, the ground state has been described
by a many-body singlet wave function,” % thereby
assuming complete compensation of the impurity spin.
What these variational methods achieve is a ground
state energy lower than that of the noninteracting
system by an amount, ¢, which is nonanalytic in the
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coupling, y=Jp/N, where J is the “s—d” interaction
constant, p the density of states at the Fermi surface,
and N the number of ions. The energy e is similar in
form to T'x, the Kondo temperature.

In order to get a deeper insight into the nature of the
ground state predicted by the Nagaoka equations,* we
shall examine the correlation between the conduction
electrons and the localized impurity moment as given
by the matrix element {Cxt'Cy+S,) which measures this
correlation in momentum space. Because of symmetry
considerations in spin space, this is related to the matrix
element 3,5 (S-04p)CralCirg which, when transformed
into real space, is a measure of the spin distribution of
the electron cloud around the impurity. In momentum
space this matrix element is a measure of the distortion
of the Fermi surface in the particular ground state in
question.

We shall compute (Cit'Cy+S.) for the Nagaoka
equations, the solution of which is due to Bloomfield
and Hamann (BH)," as well as the variational methods
of Heeger and Jensen (HJ),” and Kondo and Appelbaum
(KA).8 In addition the function $(r)=(S-e(r)) will be
computed in all cases with the point of view of dis-
tinguishing the different theories.

II. NAGAOKA THEORY

In the Nagaoka formalism¢* one is able to write the
electron propagator, Gxx(w), and the electron-impurity
propagator, Ik (w), as

G (@) = Gi(w) i+ Gi® () ) G () (1a)
T (0) = G®(0) G (@) { (J/2N) [ — S(S+-1) ]
X [1—mipt(w) ]+ 2t(w)[m—51} , (1)

where Gi%(w)=(w—ex)™%, e being the electron kinetic
energy measured relative to the Fermi surface, and
my and #y are defined as

Ner =Zl: {CittCirt),

My = 3 Zl (Cn"quS.) )

(22)
(2b)
1P, E. Bloomfield and D. R. Hamann, Phys. Rev. 164, 856

(1967).
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F16. 1. The real part of the S matrix, y*(w), at 7=0°K, as a
function of w. The dashed curve is the Nagaoka non-spin-flip
solution and the solid curve is the exact solution of Bloomfield-
Hamann.

while #(w) is the non-spin-flip { matrix. The Nagaoka
equations (1) are arrived at by assuming only the
electron-impurity correlations are of importance and
ignoring higher-order correlations, such as electron-
electron correlations.

The Nagaoka approximation® implies an equation for
the ¢ matrix which may be most easily written by first
defining the analog to the S matrix of scattering theory,

¥(w), as ()= 1—2rmipt(w). ®)
Then ¢(w) obeys the equation®?
YH(w)=X*(w)/[a+ér7(w)], (4a)
)=}
pr+(w) = / Wi, @y
_p w—w-tiy
where b (@)1
XHw)=b+ / w2 (5)
-p ow—o'+ig
b=7"[1-S(S+1)GEm)*], (Sb)
and

a=y'[14+S(S+1)Gmy)%]. ©)

Here f(w) is the Fermi function, y=Jp/N the dimen-
sionless coupling constant, and the superscript on ¢, X,
and ¢ indicates the function involved is the boundary
value of a function holomorphic in one half of the com-
plex w plane; the symbol 4 means analytic in the upper
half plane. Equation (4) has been solved by Bloomfield
and Hamann (BH)Y; the solution is

- X+(w) 1
[EXH(w) 4SS+ 1) #2]v2 | K (w)| 2
1 D In| K (o'
Xexp{— / dw'ig‘jl} , (7

2t w—w
2D. S. Falk and M. Fowler, Phys. Rev. 158, 567 (1967).

YHw)=
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with the function K(w) being given by the relation
XHw) X~ (w)+S(S+1)n?
XSS+

©)

K(w)

The details of the derivation and solution of these
equations may be found in Refs. 4, 12, 6, and 11.

We have programmed an IBM 7094 computer to
evaluate ¥*(w). The real and imaginary parts of ¢*(w)
are shown in Figs. 1 and 2 with S=% at 7=0°K. These
are compared with the old Nagaoka non-spin-flip
solution,* Y x*(w), where

¥nt(w)=(0—1ih0)/(w+1ilo), )

with Ay to be identified as Tx. The Kondo temperature,
Tk, is determined from the relation

(10)

(11)

Re{X+(w=0)}=0,
which gives
Tx=De 1101,

In addition we have taken 2D, the bandwidth, as 10 eV,
and y=—0.1; this gives a value for Tk of 3.28°K.

As a first step in calculating (Cyt'Cy1.S,) we need to
know the matrix elements 7y and my, defined as

nx=y_ ({C1+1Cxt) (12a)

and

me=3 2, {C1t'CxsS-). (12b)
1

In the usual way these are related to frequency integrals
of the retarded electron propagator, Gyx (w), and the
retarded electron-impurity propagator, T (w):

ne=—21Im do (@) 22 Gu(w) , (13a)
./27rf 1

and

dw
Mx= —4 Im/z—f(w) Z P]k(w). (13b)
™ 1

After some straightforward manipulation (keeping in
mind that one may let f(w)— f(w)—% in all integrals
involving #(w)®) one obtains

ind me—3=—(1/2r) Im{{(ex)},  (14a)
mx—S(S+1)=(2/7*) Re{{(e)}, (14b)

where {(ex) is given by
$(e)=X(ew) — X~ (ex) /¥ (ex) - (15)

We have plotted these functions at 7=0°K for S=3%
in Figs. 3 and 4. On the same graph is plotted the
Nagaoka non-spin-flip result; it is seen that the approxi-
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mate Nagaoka results® approach their noninteracting ¢(w) by means of (3), one has
values, zero and —3, respectively, more rapidly as the .
energy is increased than the exact solutions in BH.!! A= _1 1 Im [ fl)—3%
The primary purpose of this section is to compute ¥~ T ex— € m o extin

{Cxt'Cx1S.). From the definition of Ty (w) we have
the formal expression

3{Ct'CurtS2y=—2 Im/%:f(w)rkk'(w)- (16)
Employing the identity
Gi®()Gir* (@)= (1/(ex— e ) 1 Gi(@) — G ()} (17)
we rewrite (16) as
3(CxrTCutS,)= —l !

X{[Gw"(&) I'—[Gi"() ]} T (@) (18)
(19)

Im f dw f(w)

or
3(Cit'Cxr1S2)=Axw+ Biwr

where Ay and Byw are two subsidiary functions defined

such that Auw corresponds to the first term in the

integrand of (18), while By corresponds to the second.
Thus our explicit expression for 4. becomes

1 1 flw)
Akkr =— Im dw—————
T €x— €xr w— ex+1n

X{(J/2N)[mxr— S(S+1) J[1—mipt(w)]
+2[ne—3 Tt w)}.  (20)

If flw)— flw)—3% in terms multiplying #(w) in the
integrand of (20), and #(w) is then written in terms of

X {(J/4N>[mk,-s<s+ DT+

1
+——,—[nk,—%3[1—¢*<w>1}

TP

1
4+

(J/2N)[mw—S(S+1)]. (21)

€x— €K’

By the definition of Ayxxs and By, (18) and (19), the
form found for Tkk(w), (16), implies the last term of (21)
will vanish in the sum Ayw= By so we will drop it.
Then the definition of ¢2*(ex) as the complex conjugate
of ¢, 7(ex) [Eq. (46)] (see BH), combined with the
definition of X*(ex) [Eq. (52)] gives

(J/4N)[mw— S(S+1)]

Ayyr —> ——
™ €x— €k’

XIm{—X"(ex) — s (ex)}
1 1 1

—(nx—%)
T €x— €x/ TP

XRe{ X (ex) —b—o¢s(ex)}

(22)
or, by the definition of ¢s(ex), we get

Ay — 1/(€k“ €k’)(7/2P)
X{ [mer—S(S+1)J(mx—3) —mu[mw—31} . (23)
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The evaluation of Byys follows along the same lines.
The result is

A+ Buw= 1/ (ex—exr)(v/ 2p)
X {[me— 3 Jmier—S(S+1)]

—[me—3]Lm—S(S+1)7}, (24
so that
(CkaCkaz): (v/6p)/ (ex— exr)
X {[m—3 1l —S(S+1)]
—[mw—3]0m—S(S+1)]}.  (25)

The functions #;—% and m—S(S+1) are odd and
even in ey, respectively, since X+(ex)=[X*(—ex)]*,

and ¢*+(ex) =¥ +(— ex) J*. Thus if we write

(Ct'CurSa)= (v/60) M (exs€xr) (26)
we have the relations
M (exye) =M (exryexr) (27a)
M is even under the interchange of £ and %/, and
M(— ex, —exr) =M (ex,exr) (27b)

M is even under inversion with respect to the origin.
In Figs. 5 and 6 we have plotted (CitCy1S,) holding

e fixed and positive, and varying ex. From the limiting

forms given in Appendix A, one may see that the
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matrix element diverges logarithmically when either ex  symmetry of the two solutions. This occurs because the
Or ey are zero, i.e., on the Fermi surface. On the same function M (exex) in the Nagaoka non-spin-flip solu-
graphs we have plotted the results of the Nagaoka tion* is separable and proportional to [mx—S(S+1)]
approximate solution. We notice the difference in the X[mw—S(S+1)]; thus M¥(exex)=M"(ex, —ex).
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Fi16. 6. The matrix element {(Cit'Ci1S,) at T=0°K as a function of e with €=0.54°K.
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That the exact solution does not exhibit such symmetry
is obvious from (25).

In what follows we will exploit the variation of
M (ex,ex+) as a function of e and e to obtain an estimate
of the range and oscillatory behavior of the function
p(r)=(S-e(r)). The¥electron-spin-impurity-spin corre-
lation function, $(r), is given, in terms of the matrix
element (Cy1'Cy1S.) by the relation

P®)=6 3 (Cr"Cr1 S, et r, (28)
k&’

This correlation function, $(r), is important in that it
specifies the spin distribution of the electron cloud
around the impurity spin.

Converting the sums in (26) to integrals over k and
k’, and performing the angular integrations, we get

p)=— dkk sinkr

27I'1’20

31

; —_

X/ dk’k’ sink'r(C“TCMSz>. (29)
0

The arguments used by Nagaoka in computing 5(r) for
his approximate solution are not applicable here. In that
case (Cxt'Cys1.S.) was a separable function; as is evident
from (25) this is no longer the case. He obtained*
p(x)~sinkpr/(kpr)?, for by '<<rLop/Tk.

Substituting (26) into (29) and changing variables to
dimensionless energies (Dv=~k?/2m— D) in units of half
the bandwidth, D (which we take equal to the chemical
potential), (29) becomes

1
dv sin[ (142)12x]

-1

1
B =y
X

1
X / dv' sin[ (1+4)2x1DM (Dv,Dv’),  (30)
-1

where x=Fkpr and # is the average density of electrons
of one spin. The function M (Dv,Dv") varies most rapidly
over regions near the Fermi surface, therefore we want
to consider this region separately. The rapid variation
of M (Dv,Dv') is over energies on the order of Vg=Tg/D
«1; accordingly the region |2|, |7'| <Vg will be con-
sidered separately. In fact we shall show in Appendix B
that the remainder of the region of integration gives only
contributions to £#(r) of order x~¢, which, for 2>>1, can
be neglected compared with the contributions kept.
Because of the weak logarithmic divergence of the
matrix element as » or ¥ — 0 (see Appendix A) within
the region |9, |v'| <V, we shall treat the two strips
|v] <& and |v'| <& separately, deferring the discussion
of these strips until later. Here 8<Vx<«<1. Since
Vg=Tg/DK1, (14v)'2~1-4}v throughout. Then (30)

S. FULLENBAUM AND D.
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becomes
_ 1
56)= ) [
¥
X [[sinx cos(3vx)+sin(vx) cosx ] / dv’

X [sinx cos(3v'x)+sin(3v'x) cosx ]DM (Dv,Dv').  (31)

The form taken by the arguments of the oscillating func-
tions in the integrand of (31), in particular $vx and 3v'x,
suggests that we first consider that region of x in which
costvae~1 and sin(3vx)~3vx. Thus we restrict ourselves
to regions of x such that

<L Vgl= D/TK.
Then (31) yields

(32)

1
p)= (%)w;{sin% / dv / dv' DM (Do, D)
+(3)x sin2x / dv / dv'vDM (Dv,Dv')

+ (%) «? cos®x / dv / dv'vW’ DM (Dv,Dv') ; . (33)

Only the presence of the second and third terms on the
right-hand side of (33) makes this different from
Nagaoka’s result for £(r). The second term

(3)x sin2x / dv / dv'vDM (Dv,Dv")

vanishes since M (x,y)=M (—=x, —y), (27b). The third
term, while nonzero is small since we have

l / dv / dv'vo’ DM (Dv,Dv’)

<|Vk|?

/dv/dv’DM(Dv,Dv’)

so the ratio of this term to the first term in (33) is
Ratio~ ()| Vg2?|<<1,

the inequality being due to the region of x we are

considering (32).
Thus, neglecting the third term of (33) we get

p(t)=—|a| sin®x/2?, 1<KaKD/Tk,  (34)
where x=Fkpr, and
a=(&yn) / dv / dv' DM (Dv,Dv'). (35)
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This result is essentially the same as that of Nagaoka
[see Egs. (4.19) and (4.20) of Ref. 4].

We must now verify that the two excluded strips of
integration, |v| <3, [+'| <3, do not materially alter the
result. Consider first the region in which [v]|>8, but
|+'| <8; then using the limiting values displayed in
Appendix A we must deal with an integral of the form

. (m—3) °
f dv[sinx+ (3vx) cosx ] / dv’
1v1>8 (D

) -5

X [sinx+ (3v'%) cosx]In| Dv'/Tk|,

where 7y is to be evaluated at ex=vD.
Noting that #x—% is an odd function of v and
In|Dy'/Tk| is even in o/, we get for this integral

. (nx—3%) °
sin?x / dv——| dv'In|Dv/Tk|.
101> Dy J_;

We thus obtain only a small correction, proportional to
81Ing, to the sin?x/x® behavior found previously. The
result for the region |v| <8, |v'| >4 is the same.

The square defined by ||, |v/|<6&Vk can be
handled by considering the limiting forms of M (x,y)
given in Appendix A since d&KVgxKl we write
sin[ (1+v)'2xJ~sinx so our result is proportional to
sin®x/x* and we must only make sure the remaining
coefficient is finite.

The coefficient involves the integral

s 8 In|Dv/Tk|

/dv—— d—

-8 anID‘Z)/TKI -8 v’—-v
6_

I(v)= [ln]Dv/TKl In

o+

sgno
where

8 sgny
= / dv——I(v),
—s In?|Dv/Tk|

()

?

where fi(x) is the Spence function!? defined by

xl 1_
filw)=— / —n—'—yi'dy.

One can then demonstrate that I(v) goes as In% as
—'0 and as In|é2=v| as v— =44§. Thus the integrand,
In—2» I(v), is well behaved at =0 and diverges logarith-
mically at the end points, 4=§. The logarithmic diver-
gence is integrable and so the result is just some finite
number proportional to 8. Consequently the contribu-
tion to $(r) is proportional to & and hence negligible.
We may thus conclude that, within the Nagaoka
picture, p(r), given by (34) is a reasonable description
of the electron-spin-impurity spin correlation function

1 K. Mitchell, Phil. Mag. 40, 351 (1949).
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for distances  from the impurity such that 1/kp<<r< &y
=vp/Tk. For ¥>¢xy=1vp/Tk a similar argument yields
p(r) proportional to x~* times an oscillating function
of kr. (This is briefly explained in Appendix C.)

III. SINGLET-STATE VARIATIONAL THEORIES

The calculation of £(r) and (Cxt'Cy1S.,) in Sec. IT
was performed in the context of the Nagaoka theory.
We now proceed to a calculation of (Cit'Cy1.S,) and
P(r) using the ground-state wave functions of Heeger
and Jensen (HJ),” and Kondo and Appelbaum (KA).?
These wave functions, the easiest to manipulate, have
provided the smallest (H]) and largest (KA) value of
the binding energy for the spin-correlated state. The
many-body singlet of Yosida, whose energy lies between
these extremes, is not considered.

The first variational scheme with which we shall deal
was proposed by Heeger and Jensen.” They represent
the impurity spin by Fermi operators which create
electrons in a single orbital d shell state localized on the
impurity. This is suggestive of the Anderson model with
a large intra-atomic Coulomb interaction U. The HJ
singlet is

[¥)=KX ﬁ{(CkadLT_Ck&TdTT)
k V2
X I;Ik (Uq+chququT)|0>s (36)
q

where K is a normalization constant and px, Uy, and fx
are numbers to be determined variationally. The
operators d,' create electrons of spin ¢ in the localized
d state, while the Cyx,’ create conduction electrons of
momentum k, spin o.

The results for px, fi, Ux, obtained by minimizing the
energy in the state |¢), are

fi=1=p)"2, k| <kp

=0, lk|>kF) 37
Ux=0, k| <kp
=1—p2)¥?, |k|>kr, (38)
and
1 1
2 ) (39)

Pt =
2pens (14 lex|/ens)?

where p is the density of states at the Fermi surface, ex
the energy measured relative to the Fermi surface, and
—eng is the reduction of the ground-state energy

<¢|H|¢>/<¢|EI/‘>|min=E(]=0)“€HJ

emg= De~43171, (40)
Since the density of states, p, is proportional to the
number of particles, N, divided by the Fermi energy,
the pairing function py? is proportional to 1/N; this is
because there is only one impurity and only one electron
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F16. 7. The matrix element (Cyt1Cy1S,) in the Heeger-Jensen ground state as a function of e with e=0.54°K.
The function is zero for ex <0 and has a finite value at the origin.

is used in forming the singlet. The functions fi? and U?
are analogous to Fermi functions for electrons and holes,
respectively.

The matrix element {CxtCyi1S,) is computed in a
straightforward fashion using (37). The result is

(CitTCur1S2)=— @) bt (UxUw~+ fufur)  (41)

plus terms of order 1/N?2. Substituting the appropriate
quantities we get

1 1
8pers 1+ | ex|/ens 1+ | ex| /ens
X (fufurt+UxUx).

We shall ignore the deviation (of order 1/N) of fi and
Uy from unity in the regions defined and make the
approximations

(CitTCyr1 S, )=—

(“2)

S 0(kr— | Kk|) (43)
and

ngo(u(l—kp).
Thus (42) becomes
(CytTCyr1S, ); ! !

K 8pery 1+ | ex|/ens 14| exr|/ens
X{0(kr—|k|)0(kr—K'|)
+0(| k| —kr)o(|K' | —kr)}. (44)

We note that k and k’ must both either be above or
below the Fermi surface; however the process where k is
above the Fermi surface and k' below is not allowed. We
have plotted (Cyxt'Cy/4S;) holding e fixed and varying
ew in Fig. 7. The variation near e is much more rapid
than was the case previously in BH; part of the reason
for this is the scale of energies are very different, i.e.,
ea;<Tx. In addition we should point out that
(Cxt'CyetS.) does not have the logarithmic divergence
that the BH result has as ¢; or e — 0.

The calculation of p(r) follows from (29) and (44).
We find

_ 9 emg\1 2 )
F-—(> T UGr, 6
2 €F 22 =1
where x=F%pr, and I(3) is given by
1(5) " Qi sint ! (46)
= dl 1 sinlg —————
./; ’ [P—1|4ens/er
where
91= 1, l<1 Qz= 0, l<1
{ @)
=0, I>1; =11, I>1.
The evaluation of I(j) is straightforward. Since
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(ems/er)<<1 we get

I(1)=—3% cos[ x+xeny/2er ]
X{Si[2x+xems/2er]— Si[ xens/2¢r |}
—% sin[x—i—erJ/ZeF]

X {Ci[:erJ/zép:l— C1[2x+ xGHJ/ZEF]} y (48)
and
I(2)=% cos[x—xems/2er ]
X {1r— (Si[erJ/Zep]+ Sl[Zx— xGHJ/2EF])}
+% sin[x—xems/2er ]
X {Ci[2x—— erJ/ 261,':]'— Ci[erJ/ZEF:l} . (49)

We now want to consider these expressions for the range
of x such that 1<<x<<¢mskr, where £ms is some charac-
teristic length. We choose

(50)

fay=vr/ens

so that, in this limit,
I1) ~  (—m/4) cosx
kP1Lr LEHT
YEX€HT

-Ham(z

) sin2x, (51)

€F
where Inyg=0.577 is Euler’s constant, and

YEX€HT

(r/4) cosx— (%) ln< 5

12  ~

krlrLEaT

) sing.  (52)

€F

The Inx term multiplying sinx comes from the struc-
ture of the matrix element near the Fermi surface. Its
magnitude is monotonically increasing as x becomes
small and since (ygzxems/er)<<1, it is expected to
dominate the factor w/4 multiplying cosx. Upon
performing the required manipulations

_ 9 ens\ 1
50, -
krlr LEaT 2 ep/x?

w2 YEEHIJX
X {E cos?x+ () ln2( ) sin%c} . (53)

€F

It is relatively easy to see that p(r) — x~* for £>>£nsks.
Since, for a fixed value of v, the Tx of the Nagaoka
theory is larger than ems, the characteristic length,
£n3>2vp/eny, is correspondingly longer.

The lowest ground state energy obtained in a varia-
tional theory to date has been in the work of Kondo and
Appelbaum.? Although similar in concept to HJ, their
wave functions builds up the many body singlet by
using combinations of free electron operators.

The KA wave function is

N/2
[¥)=3V2(a0t"8—ans'e) ZH an'ant|0),  (54)
=1

where « and 8 are the usual spin-up and spin-down
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spinors for the impurity and the operators a;,' create a
particle in the state / with spin . The o’s are defined in
terms of the usual electron operators, Cy,', by means of
a, to be determined, cannonical transformation.

aOuT:- Z PokagT , (55&)
k

alﬁ: Z plkC;,,'f. (55b)
k

This wave function, as that in (36), attempts to
represent the spin condensed part of the ground state
by the operator @, while the Fermi sea, suitably
modified, is built up by the other a’s. The variational
calculation then proceeds to find pex and from it pu
(they are not independent since the conditions of the
canonical transformation require Y x poxpu’ =0). The
form of pox is determined only approximately by an
integral equation obtained by minimizing the expecta-
tion value of the Hamiltonian with respect to the p’s,
and is assumed from its large energy behavior to be

1\12 1
po= (,'Z_pe) 14 I ekl/e '

The parameter ¢ is then found by minimizing £ and has
the same significance as in HJ, i.e.,

<¢IH!¢>/<¢I¢>I min.=E(J=0)—¢€xa,

eKA=D3“2/3|7| .

(56)

with

(57)

We notice that for a fixed value of v this turns out to be
considerably larger than both em; and Tk. Since the
trial wave function, (50), does not provide that pox
exactly satisfy the integral equation derived from this
formalism, the true energy —e could be even lower and
—exa 1s an upper bound:

—e< —e€xa.

We next compute {Cxt'Cy/1.S,) and the spin correla-
tion function, $(r). Using (54), the inverse of (55),
and (56), we find

1
8oexa 14 | ex|/exa 14 | e |/exa

We notice that the form of (CitTCyx/1.S.) in KA is the
same as that due to HJ, (44), to order 1/N, There is, of
course, the definition of ¢, which differs radically in
magnitude in the two cases; but more significant is the
fact that the KA result (58) does not distinguish
between above and below the Fermi surface as does H]J,
(44). We have plotted (Cxt'Cy/1.S,) in Fig. 8 holding ex
fixed and varying ex. The range of variation here is over
a much larger energy range since exa>7T'x, eny. As with
HJ, the KA result has a finite value as ex» — 0. However
the distortion of the Fermi surface is so great in KA
that the density of states is now infinite there.

(Cxt'Cyr1 Soy=— (58)
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Fic. 8. The matrix element (CxtTCi4S.) in the Kondo-Appelbaum ground state as a function of ez with e,=0.54°K.
The function has a finite value at e =0.

The calculation of p(r) follows directly from the HJ
calculation. In this case, however, there are no 6 func-
tion restrictions. Consequently it is easy to get

zs(r>=—(?ni“i’)itz<1>+z<2>12 (59)
2 x2 ’

€r

where I() are identical to those defined in (46) and (47),
except that exa replaces ems. Using the limiting values
given in (51) and (52) we conclude that

YE€RA
IM+1(2) ~ —sinx In

kP 1&Kr <ERA 2er

%,  (60)

where £xy is similar to £my but exa has replaced eny,

Exa=1vr/exa. (61)
Thus,
B 9 exa\ 1 . YEEKAX
) ~ = —n——)— sinx In? (62)
kr1r LEkA 2 €r %2 ZGF

The characteristic length here is much less than £g;
since
txa=0p/exa= (vp/ems)e ML Exy.

14 After completion of this work we received a report from
Heeger, Welsh, Jensen, and Gladstone in which they have obtained
essentially this form for p(r). We wish to thank them for sending
us their work prior to publication. A. J. Heeger, L. B. Welsh,
M. A. Jensen and G. Gladstone, Phys. Rev. 172, 302 (1968).

For x>>¢xar the asymptotic expansions of 7(1)+1(2)
go to zero faster than x~1 so that $(r)=0(1/x%) when

x> Erar.
IV. CONCLUSIONS

We have thus shown the similarity of the spatial
dependence of the spin correlation function, $(r), in all
the theories considered. The dominant behavior of (r)
is (sin%kpr)/(kpr)?, a relatively long range function.
This behavior is independent of the specific theory. In
the singlet theories it is possible to evaluate $(r) exactly
and, in those cases, we have found a slowly varying
function of the form In?(r/£) multiplying the (sin%krr)/
(kpr)? term. Apparently this comes from the detailed
structure of (Cx+'Cws1S,) near the Fermi surface and
our treatment of the Nagaoka theory is insensitive to
such details.

The characteristic length £ in each case has the form
vrp/e, where e is chosen from the appropriate theory; in
this sense £ is theory independent. This length, in each
theory, corresponds to that distance from the impurity
beyond which $(r) changes its behavior and falls off
more rapidly. It may therefore be viewed as a measure
of the ‘“‘size” of the spin compensated state. Since £ is
inversely proportional to the binding energy e we have
the inequalities

txaktn<tns,
since
ERAD EN= TK>>€HJ .

That is, the size of the correlated ground state is smaller
as the binding is greater.



178

Note added in proof: Recently a different coherence
length has been suggested.!® We should like to point out
that this length v5/D is simply a measure of the change
in total electron density in the vicinity of the impurity,
and in fact only reflects the range of the potential. It
has nothing to do with the range of the spin correlations,
which reflects the properties of the spin compensated
state.

APPENDIX A

In this appendix we wish to display the limiting forms
for small energies of the functions found in Sec. II. We
are only interested in the case 7=0°K and thus, from
(5a) and (10) we write

X*(w)=—In|w/Tk|+ (Gir) sgn(w). (A1)
For small w our expansion will most naturally be in
inverse powers of In|w/Tx|. The expansion of ¢(w), (7),

can easily be achieved using an approximate form found
by Hamann®:

— XHw)

1+ w)= .
pre (XH@) PSS+ 1))

(A2)

This is permissible since | K(w)] is an even function and
so the integral

» In|K@)]
P/ do'———

-D w—o'

yields only odd powers of » which go to zero much more
rapidly than the inverse In|w/Tx| dependence of
Y1(w). The term |K(w)|~'? is dropped because
|K(w)| = 14+0(n3|w/Tk|), as w/Txk—0. Then we

have
2

(S

™

Rey+ ~
eyt(w) +1n2]w/TK |

A3
lo]/Tx =0 (43)
and

$n? sgn(w)

Imyt(w) ~
lol/Tx = 01n3| o/ T |

(A4)

Substituting (A3) and (A4) into (13) yields the
limiting forms

—x?  sgn(ex)
Ly L T o
lexl/Tx -0 16 In?|ex/Tk|
and
mx—S(S+1) ~ In|ex/Tx]. (A6)

lexl/Tx =0 72| |

Consequently we find from (25) that (Cxt'Cx1S.) be-

15 A, Zawadowski and J. Solyom, in Proceedings of the Eleventh
International Conference on Low Temperature Physics, St.
Andrews, 1968 (unpublished) and, (to be published).
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comes logarithmically infinite if either the electron
destroyed, labeled I/, or the electron created, labeled k,
is at the Fermi surface. Explicitly

. Y np—3%
hmo (CitTCx1 S.)=— - In|ex/Tx|.
ekfar;i)trary 6p € l'Y (A7)
APPENDIX B

In this section we will show that the contribution to
p(r) from integrating over the region |v], |v'|> Vg is
proportional to x4 and therefore, for £3>1, is negligible.

The integral is

/dv/dv’ sin[ (142)Y2x] sin[ (14v")/2x]

X DM (Dv,Dv'). (B1)
Our argument is the same for all four quadrants in the
2, o' plane so we need only consider the region 2, ¥'>0.
In that case the integral in (B1) can be broken up as

1 1 VK 1 1 Vi
/ dv f dv'+ / dv /- av'+ dv / 4. (B2)
Vk Vk 0 VK Vk 0

In the region where Vg<u,v'<1, the function
M (Dv,Dv") is either zero or very slowly varying. Assum-
ing the latter we replace M (Dv,Dv’) by some average
value. Thus

1 1 1 1
/ dv/ ' —M dv/ dv'

VK VK VK VK

Xsin[ (1+v)Y2x] sin[(1+42)12x], (B3)

where M is the average value of M in this region.
Making the substitution 1—v=£%2, the integration yields
a term proportional to cos?x/x? and since, by (30), p(r)
has an extra factor of #~2, the contribution to #(r) from
itis ™4

The argument for the remaining integrals applies to
either so we only consider

0

1 VK
/ dv f dv' sin[ (14-v')"22] sin[ (1-+0) /2]
" XM(Dv,Dv'). (B4)

We proceed by writing

VK 5 VK
/ dv'= / dv'+ / dv',
0 0 &

where 8’ Vg=Txk/D. In the case where we integrate
v from §’ to Vg the function M (Dv,Dv') is slowly vary-
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ing since v>Vg even though §'<?'<Vg. Then the
previous argument applies and we get a contribution
proportional to x~2, and a contribution to p(r)~x 4
In the remaining integral, we write (14v")!/2~1+4-14/,
since 8’1, and use the limiting form (A7) to get:

nk—l

1 1
dov sin[ (1+2)1/2x] f dv’
J. 5.

X {sinx cos}v'x+sin3v'x cosx} In| Dv'/Tk].

(BS)

Denoting the o' integral from 0 to &’ as I; we have

8'
|1 <~2 [ In| DY/ Tx| o, (B6)
0

so that
Tk
| 525'[1n—+ 1]
D&’

and so this contribution to £(r) is small compared to the
term we have kept, (34).

APPENDIX C

In this section we will demonstrate that p(r)~x4,
for x/kr>éxy=vr/Tk. By Appendix B we need only
consider the region of integration 0<|v|, |¢|<Vgk
=Tg/DK1. Hence, we may take (14v)!/2~1-+1v, but
the linear approximations for sinvx/2 and cosvx/2 are
no longer valid since 3V xx)>>1, for 23>V g '=D/Tk.
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Our expressions for $(r), (30), then takes the form

_ sin%x
;b(r)=%'yn{ ; f dv cosivx / dv' cos3v'x DM (Dv,Dv'")
%
sin2x
- / dv sinfovx / dv' cosiv'xDM (Dv,Dv')
%
cos’y
+ - / dv sinjvx [ dv' sinyv'xDM (Dv,D'u’)} . (C1)
%

The argument used previously when x/kp<<fy again
serves to eliminate the term proportional to sin2x, the
integrand still being odd with respect to inversion
through the origin.

The limits of integration are Vg=Tk/D<1; hence
we can find some number {<<Vg in which the linear
approximations of Appendix B hold. The contribution
from this section would be sin%x/x? but since {<<KVg
the weight of this contribution is accordingly very small.

Except for the strips |v| <{<|7'| and |¢']| <¢<|?],
the period of the oscillating functions in the rest of the
region, i.e., for {<|v|,|v'| <Vk is proportional to &~1
Since ¥ '« Vg, these functions oscillate very rapidly
and this behavior dominates the variation of M (Dv, V')
in this region. Holding M (Dv,Dv’) at some constant
value we obtain two extra powers of ¥~ Thus we have
P(r)~(kpr)—* times an oscillatory function of kpr. The
strips mentioned above can be handled as in Sec. IT and
Appendix B and, as there, contribute little to the result.



