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Low-Temperature Spin Correlations about a Localized Magnetic Impurity Moment*t
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The interaction of a localized impurity magnetic moment interacting with an electron gas by means of
the s-d exchange interaction leads to the Kondo spin-compensated state at low temperatures, in which the
moment of the impurity is greatly reduced. We have examined the electron-spin-impurity-spin correlation
function in the ground state of the Nagaoka theory aswellas those of the singlet theories due to Heeger and
Jensen and to Kondo and Appelbaum. It is shown that the dominant behavior of the spin correlation func-
tion is given by (sin'kyar)/(kyar)'. lt is also shown that the size of the spin-compensated state is characterized
by a length $, which is inversely proportional to the energy parameter T& in the Nagaoka theory, and to
the binding energy e of the singlet states in the singlet theories.

coupling, y= Jp/E, where J is the "s—tg" interaction
constant, p the density of states at the Fermi surface,
and E the number of ions. The energy e is similar in
form to 2 ~, the Kondo temperature.

In order to get a deeper insight into the nature of the
ground state predicted by the Nagaoka equations, 4 we
shall examine the correlation between the conduction
electrons and the localized impurity moment as given
by the matrix element (C»tC& tS.) which measures this
correlation in momentum space. Because of symmetry
considerations in spin space, this is related to the matrix
element g, s (S rr s)Cs tCs s which, when transformed
into real space, is a measure of the spin distribution of
the electron cloud around the impurity. In momentum
space this matrix element is a measure of the distortion
of the Fermi surface in the particular ground state in
question.

We shall compute (CsttCs. tS,) for the Nagaoka
equations, the solution of which is due to Bloom6eld
and Hamann (BH),"as well as the variational methods
of Heeger and Jensen (HJ),r and Kondo and Appelbaum
(KA).' In addition the function P(r) —= (S o(r)) will be
computed in all cases with the point of view of dis-
tinguishing the diferent theories.

I. INTRODUCTION

HE problem of a localized-magnetic impurity has
attracted considerable attention since Kondo's

explanation of the resistivity minimum in 1964.' The
breakdown of perturbation theory at temperatures
below the Kondo temperature Tz led many workers
to the use of self-consistent schemes, ~4 such as a de-
coupling approximation in the equations of motion, 4

which have generated solutions to the problem at low
temperatures. Unfortunately not very much informa-
tion about the ground state of the localized moment-
electron system has been obtained from these solutions.
The work of Nagaoka' and Hamann, ' on the suscepti-
bility, however, seems to suggest the impurity spin is
greatly reduced in the ground state. This last result
involves a self-consistent decoupling procedure in
addition to the original decoupling used by Nagaoka .4

The notion of a spin-compensated ground state has
naturally led to the use of variational methods in which,
for impurity spin —'„ the ground state has been described
by a many-body singlet wave function, ' " thereby
assuming complete compensation of the impurity spin.
What these variational methods achieve is a ground
state energy lower than that of the noninteracting
system by an amount, e, which is nonanalytic in the
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II. NAGAOKA THEORY

In the Nagaoka formalism' one is able to write the
electron propagator, G~~ (ro), and the electron-impurity
propagator, I's~ (&o), as

Ggg~(M) =Gg (co)3sg~+Gg (N)t(ro)Gg~ (ro), (1a)

I'tk (~)=Gs'(~)Gs'(~) ((~/2&) I:ta~ —S(S+1)3
XL1—s spt(ro) )+2t((o)Lrsg —-,')}, (1b)

where G~s(to) = (ro—eq) t, eq being the electron kinetic
energy measured relative to the Fermi surface, and
ml, . and ni, are de6ned as

(2a)tss =P (CtttCs. t),
1

rtss =3 Q (CtttCz &S ), (2b)

"P. E. Bloom6eld and D. R. Hamann, Phys. Rev. 164, 856
(1967).
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~2 with the function E(pi) being given by the relation

~ 2

—.6

—.8

( K)

MANN

X+(pp) X—(ip)+ S(S+1)m'

E(&p) =
LX+(co)]'+S(S+1)~'

The details of the derivation and solution of these
equations may be found in Refs. 4, 12, 6, and 11.

We have programmed an IBM7094 computer to
evaluate f+(&o). The real and imaginary parts of f+(pp)
are shown in Figs. 1 and 2 with S= ~ at 7=0'K. These
are compared with the old Nagaoka non-spin-Qip
solution, ' P~+(~), where

—I.O Piv+(M) = (co ih—p)/(cd+imp),

(10)Re{X+((o=0)}= 0,
which gives

Ray tcpt),
with 60 to be identiled as TE.. The Kondo temperature,

Fio. 1. The real part of the S matrix, P+(~), at T=O'K, as a T~, is determined from the relation
function of co. The dashed curve is the Nagaoka non-spin-Rip
solution and the solid curve is the exact solution of Bloom6eld-
Hamann.

while t(&v) is the non-spin-Rip t matrix. The Nagaoka
equations (1) are arrived at by assuming only the
electron-impurity correlations are of importance and
ignoring higher-order correlations, such as electron-
electron correlations.

The Nagaoka approximation' implies an equation for
the I, matrix which may be most easily written by first
de6ning the analog to the S matrix of scattering theory,
P(s&), as

f(p~) = 1 2vript(pi)— (3)

Then f(co) obeys the equation'"

T =De—'~~I'~I.

n=g(C'C ) (12a)

and
nag ——3P (Cii CgiS ).

1

(12b)

In addition we have taken 2D, the bandwidth, as 10 eV,
and y= —0.1; this gives a value for T~ of 3.28'K.

As a first step in calculating (CqttCq tS,) we need to
know the matrix elements nj, and ask, defined as

where

0'+( ) =X+( )/L +0'+( )j
ei+(~) =

o)' —-'

d&o' 4-(p/),
M pi'+ zrt—

X+(pi) =&+
07

dGO

Cp M +17)'

&=7 'I:1—S(S+1)(p~v)'],

~=v 'Ll+S(S+1)(p~v)'3.

(Sa)
and

(Sb)

dM
nk= —2 Im f(pp) P G~—~(a&),

2x'

dM

m~ ———4 Im f(pi) P I')),(co)—.
2m'

(13a)

(13b)

In the usual way these are related to frequency integrals
of the retarded electron propagator, Gj,~ (~p), and the

(4b) retarded electron-impurity propagator, I'zz. (&v):

Here f(pi) is the Fermi function, y= Jp/X the dimen-
sionless coupling constant, and the superscript on p~, X,
and f indicates the function involved is the boundary
value of a function holomorphic in one half of the com-
plex co plane; the symbol + means analytic in the upper
half plane. Equation (4) has been solved by Bloomfieid
and Hamann (BH)"; the solution is

and
ng —

p
= —(1/27r) Im{i'(pp) }, (14a)

npq —S(S+1)= (2/n'y) Re{i(pq)}, (14b)

After some straightforward manipulation (keeping in
mind that one may let f(co) + f(pi) pi in —all inte—grals
involving t(co) P) one obtains

—X+(s))
0'(~) =

/[X+(pp) jP+S(S+1)irP)il' IE(pp) I
if'

1 n lnI E(pp')
Ig exp I' d&'

2ÃZ g) (0 Q)

"D.$. Falk and M. Fowler, Phys. Rev. 158, 567 (1967

where i (p~) is given by

i (p~) =X+(pp) —X (pp)/0 (p~) .

(7) We have plotted these functions at T=0'K for S= p

in Figs. 3 and 4. On the same graph is plotted the
). Nagaoka non-spin-Rip result; it is seen that the approxi-
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FIG 2. The imaginary part of the S
matrix, P+(or), at T=O'K, as a func-
tion of co. The dashed curve is the
Nagaoka non-spin-Qip solution and
the solid curve is the exact solution of
Bloomfield-Hamann.
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D= 5eV y=-. f
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—I.O—

Im y+(e)

dM

3(CgttCQ'tS )— 2 Ilil f((0)I» (CD) .
2'

Employing the identity

(16)

mate Nagaoka results4 approach their noninteracting
values, zero and —-'„respectively, more rapidly as the
energy is increased than the exact solutions in HH. "

The primary purpose of this section is to compute
(Catty tS,). From the definition of I'~~ (u&) we have
the formal expression

P(&o) by means of (3), one has

Akk'
Ã 6k 6k'

f(~)-k
Im do

CO 6g+Lff'

X (~/4&)[ '—S(S+1)][1+0'()]

we rewrite (16) as

1 1
+— (J/21V)[mg —S(S+1)]. (21)

2 Ek—6k~

1
3(CgttCg tS,)= ——

or

By the definition of A». and B», (18) and (19), the
form found for I'» (a&), (16), implies the last term of (21)
will vanish in the sum A»+B». so we will drop it.

X ([G~,o(&)]—i—[G„o(&)]—i) I'», (&) (18) Then the definition of P2+(e&) as the complex conjugate
of pi+(eq) [Kq. (46)] (see BH), combined with the

(19) definition of X+(e~) [Eq. (Sa)] gives

where A» and Bkk are two subsidiary functions defined
such that Akk corresponds to the erst term in the
integrand of (18), while B». corresponds to the second.

Thus our explicit expression for A~I, becomes

A». ~— (J/4E) [mg. —S(S+1)]
g 6k—6k~

Akk~ ———
7I 6k—6k~

f(~)
IDl dpi

(d—6g+ Z7)

1 1—(ng. —2)
W &k—&k~ WP

X ((J/21V) [m~ —S(S+1)][1—~ipse(&o)] XRe(X (~~)—b —p2 (ek)), (22)

+2[n~, &]~(~)) (20) or, by the definition of p2 (ez), we get

If f(&u) ~ f(ra) ——', in terms multiplying t(o&) in the ~» ~1/(&~ &~)(v/2p)

integrand of (20), and t(&o) is then written in terms of X ( [m~.—S(S+1)](nj,——,')—m~[n~. —-',]}. (23)
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Fyo. 3.The matrix element nr,-) as a function of cr, at 7=0'K, for the Nagaoka and 31oom6eld-Hamann solutions.

The evaluation of B~g. foDovrs along the same lines.
The result 1s

Av+&~+= &/(a —~~ )(v/2u)

XIL .-ljE '-S(S+&)j
—Eeg ——,'1Emg —S(S+I))), (24)

&C»'Cat S*)= (v/6u)/(~~-~~ )
&& K»—HE~&.-S(S+&)j

—E&~ —2X~~—S(S+&)3 (25)

The functions nI, ——', and m& —S(S+I) are odd and
even in eq, respectively, since &+(~q) = EX+(—~q)1*,

and P+(~&)=@+(—e&))~. Thus if we write

(C»'Cv»*) = b/6u)M(~~, ~~ ),
vie have the relations

M(eg, eg )=M(rg. ,eg)

M is even under the interchange of k and k', and

M(—eg, —~g )=M(eg, ~g.), (27b)

M is even under inversion vrith respect to the origin,
In Figs. 5 and 6 we have plotted (C»tCq. qS,) holding

~g 6xed and positive, and varying ~l,. From the limiting
forms given in Appendix A, one may see that the

SLOOMFtKLO" HAMANN

NAOAOKA

.5' )' -.l
T~ 3.2 K

Fxo. 4. The matrix element
my —q as a function of erat T =O'K
for the Nagara and Sloom6eld-
Hamann solutions.
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Fro. 5. The matrix element (CqttCq tS,) at T=O'K as a function of sq with eq=0.03'K.

matrix element diverges logarithmically vrhen either eI,

or eI, are zero, i.e., on the Fermi surface. On the same
graphs me have plotted the results of the Nagaoka
approximate solution. ' %e notice the diBerence in the

symmetry of the tvro solutions. This occurs because the
function M(eq, eq) in the Nagaoka non-spin-Rip solu-
tion' is separable and proportional to Lms —S(S+1))
XLms —S(S+1)j; thus M (ea, ea )=M"(es, —es.).
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Fro. 6. The matrix element (CqttCq tS,) at T 0 Kas=a f'unction of sq with eq=0.54'K.



gAL&M. ~ LLpNpAU

{2S);(g—k') '~,p(r) =6 P (ClttCl'I

068

h,'bit such symIn etx'y
~

d es not ext SOlutlonThat t"e e
25) .

h ~allation o
b ious«oln .

ll exploit t c v
ls o

ll wc wl
bt in anes lm

n w"at o o . f „and~i, 'too
~ f nctlon

,0 as afunct .
chavior o

M(~i 'vi

d cillatory e.
~ 't -spin corre

n oS
—lm u'rl y

of the ra g
Th Pelectron-sp

f the matrx
en (C„ tC„,IS, y

becoIQCS

p( ) {-',pn)—
g

[ '
g cos(2V~)+Ssin @vs co

, D, ). (31). ..)„„jDM(DV ' .

Theform«ken y
f (31),inp»tlc". '

~;n which
tions jn t ceintegrand o . '

t re ion oft consider t R

ict ourselves
ts that we «s,

Thus we re
sugges

1vg)~ gvxy and sin 2cos~v~
uch thatto rcglOns

{32)

tant in that itto fun to,This corre a io r,
SpCClfiCS the Spin ls rl

s over k and
aroun d tile 1mpullty p

Convex' 1 Qlrting the sum
ir' and performing t e7

31
Then (31) yields

VV((VIr ' D//TIr. ——

dkk sinkr d 'DM(DV Dv')(r)=(-', )yn sin—'x dv v

tC .IS,). (29)d sk'IV' ink'r(Cll Ci, I, .
dv dv'VDM(DV, DV')+{g)xsln2$ dv 'v v

ka in computing p(r) forents used by Nagaok

function) RS I
his approxim

D t—Substituting ( in varla
d ensionless e

' v= 'ner ies v= '
'd h D(whic whe bandwl t,
(29) becomespotential),

dv sin[(1+v) I~'x]P(r) = (2)VN—,

v' . (33)dv'vv'DM(DV, Dv—' x' cos'x dv dv vv

v dv'vDM(DV, DV')x sln2$ dv dv v(.)

x =,— (27b). The thirdx =M{—x, —y,VRnls cs
ll ce we havels slTla Slnhile nonzero iterm, w i

+ (~)

and third terms o hon thesence of the second an
(33) makes this i

'
ht-hand side

k ' result for p(r .Nagaoka s res

1 v') I"
vvjDM(DV,v Dv'), (30)X d'V alii[ 1 'V

dv dv'vv'DM(DV, Dv')

t density of electronshe average densl
D I)

lon separ yto consi h ger this reg' isovere
v %V~ wregion ~v~, v VQQ1; Record g yln l t clc

contri
' r o

be neglected corn

em r v' —+0 (see p
of the we e lv

ement Rs v ox' v

treat e wthe reg'ion ivy, v

d .
of these strips unti . e 5(
Vx= &IV/D((1, (1+v '—

dv'DM(Dv, Dv')&
f
VIr[' dv

in (33) iso the first term inof this term too the ratio o

Ratio (4) ~

Vs'x' (&'1,

neglect g

sill x x
~ 1((x((D/TIr,P(r)= —faf sin'x x',

where x= pr, dr Rnd

dv dv'DM(Dv, DV') .a= (-,'yn) dv v

of s wc areue to the region oe inequality being due to
'

o
considering

Thus, in t e
'

o

(34



LO%' —TRM 9 ERA%'URE SP I N CORRP LATIONS

sgnv ln
I
Dv'/T»

I

d'v

where

sgnv
dv I(v),

ln'
I Dv/T»

I

This result is essentially the same as that of Nagaoka
[see Eqs. (4.19) and (4.20) of Ref. 4j.

We must now verify that the two excluded strips of
integration, Ivl &b', lv'I &8, do not materially alter the
result. Consider first the region in which lvl) h, but
lv'I &8; then using the limiting values displayed in
Appendix A we must deal with an integral of the form

(+~—2)
dv[sinx+ (-', vx) cosx] dv'

I v l)8 (Dv)

X[sinx+(-', v'x) cosxj Inl Dv'/T»l,

where m~ is to be evaluated at eI,=~a.
Noting that eq —~~ is an odd function of ~ and

ln
I
Dv'/T»l is even in v', we get for this integral

(ri.—k)
sin'x dr, dv' ln

I
Dv'/T»

I
.

Iv l)b

We thus obtain only a small correction, proportional to
8 In8, to the sin'x/x' behavior found previously. The
result for the region I

v
I
&6, v'

I
)b is the same.

The square defined by vl, lv'I&b«V» can be
handled by considering the limiting forms of M(x, y)
given in Appendix A since 8« U~&&1 we write
sin[(1+v)'I'x~~sinx so our result is proportional to
sin'x/x' and we must only make sure the remaining
coefEcient is Gnite.

The coefhcient involves the integral

for distances r from the impurity such that 1/kr«r«br
=vr—/T». For r)))N=nF/T» a similar argument yields
p(r) proportional to x ' times an oscillating function
of krr. (This is briefly explained in Appendix C.)

III. SINGLET-STATE VARIATIONAL THEORIES

The calculation of p(r) and (CqitCq iS,) in Sec. II
was performed in the context of the Nagaoka theory.
We now proceed to a calculation of (C~ttC~ tS,) and
p(r) using the ground-state wave functions of Heeger
and Jensen (HJ), ' and Kondo and Appelbaum (KA).'
These wave functions, the easiest to manipulate, have
provided the smallest (HJ) and largest (KA) value of
the binding energy for the spin-correlated state. The
many-body singlet of Yosida, whose energy lies between
these extremes, is not considered.

The 6rst variational scheme with which we shall deal
was proposed by Heeger and Jensen. r They represent
the impurity spin by Fermi operators which create
electrons in a single orbital d shell state localized on the
impurity. This is suggestive of the Anderson model with
a large intra-atomic Coulomb interaction U. The HJ
singlet is

pk
I4') =K Z —(C i'O' —C ~'dt')

~ V2
X g (U,+f,C,i'C, s') I0), (36)

where E is a normalization constant and pk, U~, and f~
are numbers to be determined variationally. The
operators d t create electrons of spin 0 in the localized
d state, while the Ci„t create conduction electrons of
momentum k, spin 0.

The results for pa, f&, Uz, obtained by minimizing the
energy in the state liP), are

5—e
I(v)= lnlDv/T»l ln l ( )+f I

—— =0 lkl &kr,

fk=(1—pg')'", lkl &kr

(3&)

where fq(x) is the Spence function" defined by

fg(x) =- dy.
and

(38)

One can then demonstrate that I(v) goes as ln'v as
v~ 0 and as ln

I 8&vl as v-+ &8. Thus the integrand,
ln-'vI(v), is well behaved at v=0 and diverges logarith-
mically at the end points, &b. The logarithmic diver-
gence is integrable and so the result is just some finite
number proportional to b. Consequently the contribu-
tion to p(r) is proportional to 8 and hence negligible.

We may thus conclude that, within the Nagaoka
picture, p(r), given by (34) is a reasonable description
of the electron-spin-impurity spin correlation function

' K. Mitchell, Phil. Mam. 40, 351. (1949).

k2-
2p~Hs (1+!~a I/~us)'

(39)

where p is the density of states at the Fermi surface, eI,

the energy measured relative to the Fermi surface, and
—&HE is the reduction of the ground-state energy

(40)

Since the density of states, p, is proportional to the
number of particles, E, divided by the Fermi energy,
the pairing function Pq' is proportional to 1/Ar; this is
because there is only one impurity and only one electron
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FIG. '?. The matrix element (ClttCI, tS) in the Heeger-Jensen ground state as a function of el, with eI, =0.54'K.
The function is zero for eq &0 and has a Gnite value at the origin.

is used in forming the singlet. The functions fq' and Uq'

are analogous to Fermi functions for electrons and holes,
respectively.

The matrix element (C~ttC~ tS,) is computed in a
straightforward fashion using (37). The result is

(CgttCg tS.)= (-,')pgpt (IIt—*lIg+fj,fi, ) (41)

plus terms of order 1/1P. Substituting the appropriate
quantities we get

(C|,t tCg. tS,)=-
gp«z 1+

I "I/«r 1+ I ~'I/~»

We note that k and k' must both either be above or
below the Fermi surface; however the process where k is
above the Fermi surface and k' below is not allowed. We
have plotted (CqttCq tS,) holding sq fixed and varying

e~ in Fig. /. The variation near eI, is much more rapid
than was the case previously in BH; part of the reason
for this is the scale of energies are very different, i.e.,
eH~&(T~. In addition we should point out that
(C~ttC, tS.) does not have the logarithmic divergence
that the BH result has as e~ or e~ —+0.

The calculation of p(r) follows from (29) and (44).
We 6nd

X(f~f~+ &~f7~). (42) 2

p(r) = —~
I—,Z LI(j)j'

2 eg )x'~-~

(43) where x=her, and I(j) is given byf;e(u, —Il I)

Ug 8(lkl —kg).
I(j)= 0;dl l sinlx

Il' —1I+~»/~~Thus (42) becomes

where

We shall ignore the deviation (of order 1/X) of fj, and
U& from unity in the regions de6ned and make the
approximations

(46)

(CgttCg tS,)=—
=0, l&1; = i, l&i.

a,—1, /&1. 0,— 0, l(1
gu«~ 1+I~~I/«~1+I~~ I/«r (47)

x(e(x,—I
l I)e(k,—I

l '
I)

+8(lkl —kz)8(lk'I —kp)}. (44) The evaluation of I(j) is straightforward. Since



178 LOW —TEM PERATURE SP I N CORRELATIONS 77i

(eHJ/ep)«'1 we get

I(1)=--', cos[x+xeHJ/2~p]
X (Si[2x+xeHJ/2ep] —Sr[xeHJ/2e p])

——', sin[x+xeHJ/2ep]
X(Cr[xeHJ/2ep) —Cr[2x+x~HJ/2ep]), (48)

spinors for the impurity and the operators a&,t create a
particle in the state) with spin o-. The a's are defined in
terms of the usual electron operators, CI„t, by means of
a, to be determined, cannonical transformation.

pro. '= Q pokCk',

and
p pikCkr ~

t— (55b)
1(2)=l sL*—* /2 ]

X (2r—(Sr[xkH J/2e p]+Si[2x—xcH J/2e p]))
+ 2 sin[x —xeHJ/2ep]

X(Ci[2x—x6HJ/2& p]—Cr[xeH J/2~ p]) . (49)

$HJ —VP/EHJ

so that, in this limit,

I(1) — (—2r/4) cosx
kyar 1«r«)HJ

(50)

fV JJX~H J
+ (-,') in~ sin2x, (51)

2~p

where lnyg=0. 577 is Euler's constant, and

We now want to consider these expressions for the range
of x such that 1&(x&&)HJkp where )HJ is some charac-
teristic length. We choose

) 2/2

Ok=
2p~& 1+

f ~k//~
(56)

The parameter e is then found by minimizing E and has
the same significance as in HJ, i.e.,

This wave function, as that in (36), attempts to
represent the spin condensed part of the ground state
by the operator ao while the Fermi sea, suitably
modified, is built up by the other a s. The variational
calculation then proceeds to find P,k and from it Pik
(they are not independent since the conditions of the
canonical transformation require Pk PokPik =0). The
form of Pok is determined only approximately by an
integral equation obtained by minimizing the expecta-
tion value of the Harniltonian with respect to the p's,
and is assumed from its large energy behavior to be

78x'2H J i
I(2) (ir/4) cosx—(-,') ln

~

sinx. (52)
k2p «r «)HJ 2ep with

8 lail&/8 I4&I-,-.=ay=0) —«A

~~—Dg—2I3I vI (57)
The lnx term multiplying sinx comes from the struc-

ture of the matrix element near the Fermi surface. Its
magnitude is monotonically increasing as x becomes
small and since (yxxeHJ/ep)«1, it is expected to
dominate the factor 2r/4 multiplying cosx. Upon
performing the required manipulations

9 &HE 1
p(r)

X/2

I4&=l~2( o 'P —
o
' ) ll ' 'i0&, (54)

where n and P are the usual spin-up and spin-down

7r' pg6Hsx
X —cos'x+ (-', ) ln' sin'x . (53)

i6 26@

It is relatively easy to see that p(r) ~x ' for x))$HJk p.
Since, for a fixed value of y, the T~ of the Nagaoka
theory is larger than eH&, the characteristic length,
)HJ~n p/eH J, is correspondingly longer.

The lowest ground state energy obtained in a varia-
tional theory to date has been in the work of Kondo and
Appelbaum. ' Although similar in concept to HJ, their
wave functions builds up the many body singlet by
using combinations of free electron operators.

The KA wave function is

We notice that for a fixed value of y this turns out to be
considerably larger than both eHJ and Tz. Since the
trial wave function, (50), does not provide that Pok

exactly satisfy the integral equation derived from this
formalism, the true energy —e could be even lower and
—exp is an upper bound:

We next compute (CkitCk 2S,& and the spin correla-
tion function, p(r). Using (54), the inverse of (55),
and (56), we find

(CkitCk. iS.)=— (58)
8p2KA 1+

~
&2

~
/kKA 1+

~
2k'

I /~KA

We notice that the form of (CkitCk. 2$,) in KA is the
same as that due to HJ, (44), to order 1/X, There is, of
course, the definition of e, which diBers radically in
magnitude in the two cases; but more significant is the
fact that the KA result (58) does not distinguish
between above and below the Fermi surface as does HJ,
(44). We have plotted (Ck22Ck. iS,& in Fig. 8 holding ek

fixed and varying e& . The range of variation here is over
a much larger energy range since e~))Tz, &HE. As with
HJ, the KA result has a finite value as 2k —+ 0. However
the distortion of the Fermi surface is so great in KA
that the density of states is now infinite there.
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Fro. 8. The matrix element (CqttCg, .tS,) in the Kondo-Appelbaum ground state as a function of e~ with ok=0.54'K,
The function has a finite value at eq

——0.

The calculation of p(r) follows directly from the HJ For x»$~r the asymptotic expansions of I(1)+I(2)
calculation. In this case, however, there are no 8 func- go to zero faster than x ', so that p(r) =0(1/x') when
tion restrictions. Consequently it is easy to get x»f~r.

IV. CONCLUSIONS
(9 ex~ 1

P(r) = —
I
~ —

I ~(1)+~(2)l',
k2 eg x'

(59)

where I(j ) are identical to those defined in (46) and (47),
except that 0K~ replaces &HE. Using the limiting values
given in (51) and (52) we conclude that

I(1)+I(2)
kg-1 «r «$ZA

Ps&KA—sin@ ln x,
26@

(60)

where $K~ is similar to $nq but EKED has replaced en Jy

Thus
fKA &F/&KA ~ (61)

&KA) 1 'Y@&KgX

p(r) ——m
I

—sin'x In' . (62)
kE-'««&(~A 2 $g f /2 26@

The characteristic length here is much less than fni
since

&K~= ~s/~K~= (~~/~nz)~ '"~'~«knz

We have thus shown the similarity of the spatial
dependence of the spin correlation function, p(r), in all
the theories considered. The dominant behavior of p(r)
is (sin'kyar)/(kyar)', a relatively long range function.
This behavior is independent of the specific theory. In
the singlet theories it is possible to evaluate p(r) exactly
and, in those cases, we have found a slowly varying
function of the form ln'(r/$) multiplying the (sin'kyar)/

(kyar)'

term. Apparently this comes from the detailed
structure of (C~itC~ tS,) near the Fermi surface and
our treatment of the Nagaoka theory is insensitive to
such details.

The characteristic length $ in each case has the form
vr/e, where s is chosen from the appropriate theory; in
this sense $ is theory independent. This length, in each
theory, corresponds to that distance from the impurity
beyond which p(r) changes its behavior and falls off
more rapidly. It may therefore be viewed as a measure
of the "size" of the spin compensated state. Since $ is
inversely proportional to the binding energy e we have
the inequalities

$~«$w«4z,
since

'4 After completion of this work we received a report from eKA)) ~w =—Tx))AH@ .
Heeger, Welsh, Jensen, and Gladstone in which they have obtained
essentially this form for p(r). We wish to thank them for sending ~ ~ 0

us their work prior to publication A. J. Heeger, I. g. Welsh That is, the size of the correlated ground Sty,te is gmaJJe
M. A. Jensen and G. Gladstone, Phys. Rev. 112, 302 I'1968). as the binding is greater.
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