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The theory and experimental measurement of the satellite reflections appearing about the normal Laue-
Bragg reflections in holmium are discussed. These reflections arise from the asphericity of the 4f charge
density as distinct from the core charge density. In holmium metal the 54! and 6s% valence electrons are
believed to enter the conduction bands, leaving a tripositive ion core approximated by the configuration
575. The 4f shell lacking four electrons is screened from the crystalline environment by the filled 552 and 5p°
shells. Because of the unpaired electrons in the 4f shell, the ions have a magnetic moment which between 20
and 132°K tends to align them in a flat spiral with a propagation vector % lying along the hexagonal axis
of the crystal. This tendency of the ions to order into such a spiral, coupled with the aspherical charge density,
induces periodicities in the scattering of the structure containing the first three even harmonics of . These
periodicities produce x-ray satellite reflections about all allowed reflections except (000-L) at =42, =4, and
=+6%. At a nonzero temperature the jons are disordered to the extent that they are distributed amongst
states with magnetic quantum number M and inner quantum number J=8. Using the molecular-field
approximation suggested by Nagamiya to describe this disorder, it was found that past observation of
neutron satellite intensities of Koehler ef al. were explained. The theory was then used to calculate the
average x-ray scattering factor from the scattering factors for the various ionic states M whose computation
rests upon parameters derived by Blume e? al. from recently determined Hartree-Fock wave functions. The
agreement with experimentally observed values of the scattering of the first satellite pair about the (224-0)
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reflection discussed in the paper is excellent.

INTRODUCTION

HE theory and experimental measurement of the
satellite reflections appearing about the normal
Laue-Bragg reflections in holmium are discussed. These
reflections arise from the asphericity of the 4f charge
density as distinct from the core charge density.
Holmium is a rare-earth metal, the 4f shell lacking
four electrons of being filled. The 652 and 54! electrons
are believed to enter the conduction band leaving a
tripositive ion core. However, the 4f shell is deeply
embedded in the ion’s interior! and is screened from
the crystalline environment by the filled 55 and 5p°
shells so that the configuration of the ion core is approxi-
mately described? by the spectroscopic state /3. Because
of the unpaired electrons in the 4f shell, a magnetic
moment results. Measurements of the magnetic sus-
ceptibility of holmium in the paramagnetic region give
values for the total effective magnetic moment of
10.6up 3 to 10.9up,** while measurements of the satu-
ration magnetization give values between 10.0up ¢ and
10.34u5.5 These values are in good agreement with the
values g[J(J-+1)]/2=10.6up for total effective mag-
netic moment and g/ = 10.0uz for the component of the
magnetic moment along the z axis of the ion for the
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spectroscopic state 575, J is the inner quantum number
equal to 8, and g is the gyromagnetic ratio given by
the Landé formula

LD LEAD+SE+D) S
' 27 (J+1) 4

for L=6 and S=2 for the spectroscopic state 5/s.
Holmium has a hexagonal close-packed structure
and the magnetic moment is found in three magnetic
phases.” Above the Néel temperature of 131.4°K the
structure is paramagnetic with the magnetic moments
oriented at random. Between the Néel temperature
and the Curie point of 19.4°K, it is antiferromagnetic
with the average moment aligned in the basal planes
of the structure, but, as one proceeds from one basal
plane to the next, the direction of the average moment
rotates. This angle of rotation varies from nearly 51°
per layer at the Néel point to precisely 30° per layer
at the Curie point. The configuration is that of a flat
spiral with a propagation vector = normal to the basal
planes of magnitude equal to the reciprocal of the
wavelength of the spiral. Below the Curie point the
structure is ferromagnetic with a conical spiral having
a moment of 1.7up perpendicular to the basal planes
and a component 9.7up in the basal planes. The turn
angle remains fixed at 30° per layer. Koehler et al.?
have reported a tendency for the moments in the basal
plane to bunch preferentially around the easy directions
of magnetization at 4.2°K. However, this paper is
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devoted entirely to the diffraction phenomena observed
from holmium in the antiferromagnetic state, with
primary emphasis on the position and intensity of the
x-ray satellites. Nevertheless, the variation of the
intensity of the neutron satellites with temperature is
given a theoretical explanation because of its relevance
in confirming the theory necessary for explaining the
x-ray satellite intensities.

Koehler” observed neutron satellites from a single
crystal of holmium and has given the explanation for
their production and position in the neutron case.’
Because the magnetic scattering amplitude is a vector
quantity related to the magnitude and direction of the
ion’s magnetic moment, the rotation of the mean
moment in the holmium structure introduces an addi-
tional periodicity in the structure, in this case not
commensurate with the lattice periodicity. This addi-
tional periodicity, that of the spiral, produces neutron
satellites at =~ about all allowed nuclear reflections.
It was first suggested by Blume!! that because of the
aspherical charge density’s orientation relative to the
ion’s magnetic moment, there should be an additional
periodicity in the x-ray structure as well, and that
x-ray satellites analogous to the neutron satellites
should be observable.

Preliminary calculations assuming a fully ordered
antiferromagnetic state and a single determinantal
wave function for the ion with the 4f shell filled ac-
cording to Hund’s rule predicted three x-ray satellites
about all reflections except (000-L) at the distances
+2, 44, and £6+. However, the predicted integrated
reflections were all exceedingly small, ~10~1 even for
the most favorable satellite pair about the (224-0)
reflection, indicating stringent experimental conditions
for their detection. Experimental observation of the
satellites at 77.4 and 27.3°K at their expected positions
confirmed their existence. However, their intensities
were found to be considerably less than the preliminary
estimates. In an attempt to rationalize this discrepancy
the effect of magnetic ordering using the molecular field
theory of helical spin configurations as suggested by
Nagamiya'? was considered. In this theory the mean
magnetic moment is given by the Brillouin function
whose argument involves the mean moment and the
ratio of the Néel temperature and temperature. The
mean moment as a function of temperature was found
by the solution of this equation. The neutron scattering
amplitude is directly proportional to this mean moment
and the scattering factor observed by Koehler et al.?
is in excellent agreement (see Fig. 3) with this solution.
Since the molecular field theory was in such good
agreement with these neutron results, it was decided
to adapt the theory to the evaluation of the x-ray
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scattering factor. In this case this amounted to finding
the wave functions for all states M of the I multiplet
with J=8, computing the scattering factor for each
state M, and then weighting the scattering factor for
each state M by the Boltzmann factor appropriate for
the state. These scattering-factor calculations ulti-
mately rest on the nonrelativistic Hartree-Fock wave
functions including exchange determined by Freeman
and Watson® for a large number of tripositive rare-
earth ions. However, Blume, Freeman, and Watson®®
have tabulated all the radial integrals and other form-
factor data from these wave functions, and the data
for Ho*+ was interpolated between Dy*+ and Er*t from
their tables. The final theoretical intensity for the x-ray
satellites is in good agreement with experiment. The
theory predicting the position and intensity of the x-ray
satellites is developed and measurement of the satellites
is described.

THEORY

We can think about the problem of the production
of x-ray satellites as a three-part problem. The first
part involves the determination of the scattering of
x radiation by an ion with a nonspherical charge density
and characterized by the inner quantum number J and
the magnetic quantum number M as the angle between
the ionic z axis and « is varied. Here « is the difference
between the incoming and scattered wave vectors. The
second part of the problem consists in determining the
interference effects from the structure when the ion is
quantized such that the direction of the z axis, and
hence the scattering, varies periodically throughout
the structure with the turn angle described by the
propagation vector <. Finally, we must take into
account that as the temperature is raised the number
of states M that can be occupied increases and the
scattering from each of these M states must be weighted
by the appropriate Boltzmann factor to find the correct
coherent scattering from the structure at a given tem-
perature above absolute zero.

If the wave function of an ion is represented by an
antisymmetric combination of N one-electron spin
orbitals such as

p1(rua(rs) - - - pi(rn)
Y(rrys  ory)=N-102 M2 (”1)#2("’2)' < +uz(7s) , (1)

i ()t (7))

the approximate form of the coherent scattering from
an ion with such a representation is'

Sion= ZZ: Wntmims () | €% | ¥ty (7))
= 2 fnlmxm.(“):

nlmims

@)

13 M. Blume, A. J. Freeman, and R. E. Watson, J. Chem. Phys.
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X rays (G. Bell and Sons, Ltd., London, 1958), Chap. 3.
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where the faimm,(x) are the diagonal matrix com-
ponents of ¢** with respect to the one-electron spin
orbitals gnimm,(r) in Eq. (1). If linear combinations of
functions such as in Eq. (1) are used to obtain a better
representation of the ion, then the coherent scattering
from this representation will be the sum of the scattering
from each term as in Eq. (2) weighted by the magni-
tudes squared of the coefficients used in the repre-
sentation, or the occupation numbers. The coherent
scattering from the crystal will appear then as if the
ions in the structure were actually distributed amongst
the stationary states used in the representation. If we
let T'nimm,2(M) be the sum of the occupation numbers
of all the determinantal wave functions containing the
one-electron spin orbital gy im;m,(r) in the representation
M, we can write the scattering factor as

fidn= Z Pnlmzm.z(M)fnlmlm,(K) . (3)

nlmimg

The sum in Eq. (3) is over all the one-electron spin
orbitals used in the representation. Since the deter-
minantal wave functions that we will be dealing with
differ only in the 4f spin orbitals the I's will be unity
for all spin orbitals other than those of the 4f shell.

Freeman and Watson! have recently obtained “con-
ventional” Hartree-Fock wave functions for the rare-
earth ions. In the conventional treatment the one-
electron spin orbitals are assumed to be separable into
products of radial functions R:(r), spherical harmon-
ics'® YVim(6,4), and spin functions with only one R,:(7)
per shell; i.e., the Rni(r) are dependent only on the
total quantum number # and the azimuthal quantum
number , and are independent of the magnetic quantum
number m; and spin quantum number #,. With these
assumptions the fpimm,(x) in Eq. (2) reduce to the
evaluation of

00 4x
Futmima ()= / / €| Rus() |2 Vim (6,0) 2
e Xr2drdQ. (4)

With the aid of the expansion formula for the imaginary
exponential®

er=dmr 3 i*fu(kr)V k()Y 1o*(8) ®)
kg
Eq. (4) becomes

Futmm () =4 3 * / 26| Roa() |22
k,g 0

% / Vi) Vi0(®) | Vims(#) %02 (6)

15 See, e.g., M. E. Rose, Elementary Theory of Angular Mo-
mentum, (John Wiley & Sons, Inc., New York, 1957), p. 240.

16 See, e.g., A. Messiah, Quantum Mechanics I (North-Holland
Pyblishing Co., Amsterdam, 1964), p. 359.
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In Egs. (5) and (6), # and & symbolize the polar angles
of r, the electron position vector, and x, the diffraction
vector. The jx(xr) are the usual spherical Bessel func-
tions. The angular integrations in Eq. (6) are expedited
by expressing | ¥1,,(#) |2 in terms of linear combinations
of spherical harmonics. The coefficients of expansion,
or Gaunt’s coefficients, are easily expressed in terms of
the 3-5 symbols!? such that one can write

(—1)m(24-1) v=az
- ll 1/2
o =, @Y

v=0

|V imi(F) | 2=

! ! N/l 1 I
x( )( )Yz'o*(f)- @
my; —my 0/\0 0 O

The second 3-j symbol vanishes unless 2/4-I" is even,
so that with the aid of Eq. (7), Eq. (6) reduces to

L=l

Frtmm, ()= (= 1)™(204-1) (4m)'2 LZ_;O (—DPEL+1)~

l I 2L\y! ! 2L
x( )o o o)
my — My 0 0 0 O
X{(Fer(®))n1¥ 220(8), (8)
where

(o ()= / |Ru() |2z Ger®dr. ()

Blume et al.,* using the recently determined con-
ventional Hartree-Fock wave functions,! have tabulated
the scattering factors and values of (faz(x))ss for the
4f shell for most of the rare-earth ions. Values for Ho®*+
can be interpolated easily from their values for Dy**
and Er3*, Expressing the spherical harmonics in terms
of their argument, cosf, where 0 is the angle between x
and the z axis of the ion, Eq. (8) can also be written as

p=l L=l

fnlmxm.(“)= 20 LZ=0 Amipo{Far(k))nr cos??d.  (10)

The coefficients A m;00 are always unity. Further, they
have the property that

mi=l

> zAm'Lp=21+1 (L=0, p=0)
m‘u—
(L520).

These results follow from a theorem due to Unséld
regarding the angular dependence of wave functions,
namely, that the square of the magnitudes of all the
angular wave functions corresponding to a given /
value is a constant (2/+1), independent of orientation.!8

(1)
=0

17 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooster?
The ji-j and 6-j Symbols (Technology Press, Cambridge, Mass.’
1959), p. 9.

13 S’ee, e.g., J. C. Slater, Quantum Theory of Atomic Specira
(McGraw-Hill Book Co., New York, 1960), Vol. I, p. 182.
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TABLE I. The coefficients A m 1, used in Eq. (10) for the scattering factors of the one-electron wave functions of the 4f shell.
L 0 p=0 2 3 o 0 1 =2 3

L 2
IMk EZTRN
0 1 +4/6 +54/88 +500/528 0 0 0 +630/88 +31500/528
1 1 +3/6 + 9/88 —375/528 1 0 0 +105/88 —23625/528
2 1 0 —63/88 +150/528 2 0 0 —735/88 -+ 9450/528
3 1 —5/6 +27/88 — 25/528 3 0 0 +315/88 — 1575/528
=1 p=3
\Z ©0 1 2 3 ‘\L 0 1 2 3
EZIRN [
0 0 —12/6 —540/88 —10500/528 0 0 0 0 —23100/528
1 0 — 9/6 — 90/88 + 7875/528 1 0 0 0 +17325/528
2 0 0 +630/88 — 3150/528 2 0 0 0 — 6930/528
3 0 +15/6 —270/88 + 525/528 3 0 0 0 + 1155/528

Thus in Eq. (3) for spin orbitals other than those in-
volving the 4f shell, faimm,(x) can be replaced by
{§0(k))n1. The coefficients Amz,, for the 4f shell are
listed in Table I. Equation (11) is a useful check on
the coefficients listed in the table.

Restricting ourselves to linear combinations of deter-
minantal wave functions of the °7 multiplet in which
J and M are good quantum numbers, we can write the
scattering factor of the ion as

Ju= 2 Taimm? (M){Jo(€))m:

nlmime

FE S S Tamm () dmaal jon ()

mims L=1 p=0

Xcos?g, (12)
The first sum of {fo(k))a:1s the usual total ion scattering
factor fme+ without aspherical effects, and the second
sum contains the aspherical effects.

We now consider the combination of determinantal
functions necessary to describe the ion with a good
inner quantum number J and magnetic quantum
number M. It turns out that the single determinantal
function for ®I5 given by Hund’s rule® has good quan-
tum numbers J=8, M =8, L=6, S=2, M=6, and
M s=2. The determinant is as in Eq. (1) with the last
10 rows containing the one-electron spin orbitals
Wnimm, () With =4, =3, and the values (m,m,) of
(+3,+3), (+2,+3), (+1,+3), 0+3), (=1, +3),
(_2; +%)’ (—3; +'217): (+37 _%): (+2; —%)’ and
(41, —1). The other functions of the 87 multiplet for
other values of M1, and M ¢ were found by successively
operating on this determinantal function with the step
down operators (L,—%Ly)op and (S,—iS,)op and suc-
cessively renormalizing.?® Then those linear combi-
nations of these resulting linear combinations of deter-
minantal functions for which M+ M g= M were made,
the coefficients of combination being the Clebsch-
Gordan coefficients.?? The Clebsch-Gordan coefficients
produce normalized wave functions with good quantum
numbers J and M, and in this case L and S also. As a

19 See Ref. 18, Vol. I, pp. 285 and 304.
% See Ref. 18, Vol. II, Chap. 20.

result of these operations a series of determinantal
functions for each value of M was found: for |M|=8,
1 function; |M|=17, 5; |M|=6, 12; |M|=5, 21;
|M| =4, 33; |M|=3, 47; |M|=2, 59; |M|=1, 67,
and for M =0, a series of 70 determinantal functions.
From the coefficients in these series the sum of the
occupation numbers Tszmm, (M) were found and are
listed in Table II. The steps outlined leading to Table
II become tedious and as an expediency a program was
written to carry out the procedure on a CDC-6600
computer. An alternative approach to the method of
calculation presented in this section exists using the
techniques developed by Racah. The reader is referred
to the relevant formulas given by Wybourne? on p. 165.
Equation (12), along with the results of Table II,
allows us to infer that those combinations of deter-
minantal functions describing a particular state M of
the ion will produce a scattering factor having an
angular variation depending only on even powers of
cosf. In the case of a spiral arrangement of the ions,
cosf varies throughout the structure in a periodic way.
It is this dependence of the scattering upon cosf which
determines the number of x-ray satellite reflections,
and is considered next.

The next consideration is that of expressing the
angle 6 between « and the z axis of the ion as a function
of the position of the ion in the crystal. The approach
is similar to Koehler’s for neutron scattering by helical
spin structures. For a spiral, such as in holmium, we
define a coordinate system where the direction of the
spiral axis is defined by its propagation vector =, the
angle between = and « is ¢, and the z axis of the ion
rotates around = at the constant angle 5. The angle
between x and z is, of course, 6. The angle included
between the sides & and ¢ of the spherical triangle b,
¢, 6 we call the angle of rotation a;;. The angle of rota-
tion depends on the position of the sth ion in the jth
cell of the structure through

ai=2mz- (rit1,)+¥,
where ¢ is an arbitrary phase angle. Thus we can write

(14)

(13)

cosf= cosb cosc+sinb sinc cosa;.



736 D. T. KEATING 178

TABLE II. Sum of the occupation numbers, Tusmm 2 (M), for the holmium ion in the state with inner
quantum number J =8 and magnetic quantum number M.

Taz_sm,2 (M)

Mg Taziamg (M) Taziom2(M) Tagyimd (M) Tagom 2 (M) Taz_1m2 (M) Tas_om,2(M)
M=8
+3 1.0000000  1.0000000  1.0000000  1.0000000 1.0000000  1.0000000 1.0000000
—1 1.0000000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000
M=17
+3 1.0000000  1.0000000 10000000 09375000 09375000 09375000 0.9375000
-3 1.0000000 1.0000000 0.2500000 0.8125000 0.0625000 0.0625000 0.0625000
M=6
+1 1.0000000 1.0000000 0.9000000 0.9750000 0.8750000 0.8750000 0.8750000
-3 1.0000000 0.7500000 0.4000000 0.6750000 0.4250000 0.1250000 0.1250000
M=5
+3 1.0000000 0.9464286 0.8714286 0.9303571 0.8767857 0.8125000 0.8125000
—3 0.9642857 0.5535714 0.6714286 0.4482143 0.6660714 0.2589286 0.1875000
M=4
+3 09890110 08626374  0.8989011  0.8302198  0.8972527  0.7719780  0.7500000
-1 0.8928571 0.4972527 0.7939560 0.4049451 0.7131868 0.4395604 0.2582418
M=3
+1 0.9553571 0.7905220 0.9141483 0.7520604 0.8804945 0.7664835 0.6909341
—1 0.8028846 0.5556319 0.7616758 0.5254121 0.6469780 0.6126374 0.3447802
M=2
3 0.8924825 0.7576174 0.8700050 0.7411339 0.8074426 0.7887113 0.6426074
3 0.7159091 0.6634615 0.6679570 0.6926823 0.5766733 0.7340160 0.4493007
M=1
+3 0.8011364 0764231 07675699 07848776 07036713 08138112  0.6145105
—3 0.6499126 0.7600524 0.6058566 0.8056818 0.5736014 0.7875874 0.5673077
M=0
+3 0.6888112 07867133  0.6496503  0.8272727  0.6200790 08111888  0.6153846
—3 0.6153846 0.8111888 0.6209790 0.8272727 0.6496503 0.7867133 0.6888112
M=—1
+ 0.5673077 07875874 05736014  0.8056818  0.6058566 0.7600524  0.6499126
- 0.6145105 0.8138112 0.7036713 0.7848776 0.7675699 0.7644231 0.8011364
M=-2
+3 04493007 07340160  0.5766733  0.6926823  0.6679570 0.6634615  0.7159001
—3 0.6426074 0.7887113 0.8074426 0.7411339 0.8700050 0.7576174 0.8924825
M=-3
+1 0.3447802 0.6126374 0.6469780 0.5254121 0.7616758 0.5556319 0.8028846
—1 0.6909341 0.7664835 0.8804945 0.7520604 0.9141483 0.7905220 0.9553571
M=-—4
+1 0.2582418 0.4395604 0.7131868 0.4049451 0.7939560 0.4972527 0.8928571
—3 0.7500000 0.7719780 0.8972527 0.8302198 0.8989011 0.8626374 0.9890110
M=-35
+3 0.1875000 0.2589286 0.6660714 0.4482143 0.6714286 0.5535714 0.9642857
—3 0.8125000 0.8125000 0.8767857 0.9303571 0.8714286 0.9464286 1.0000000
M=-6
+ 0250000 01250000  0.4250000  0.6750000  0.4000000  0.7500000  1.0000000
—3% 0.8750000 0.8750000 0.8750000 0.9750000 0.9000000 1.0000000 1.0000000
=7
+3 00625000  0.0625000  0.0625000  0.8125000  0.2500000 10000000 10000000
—3 0.9375000 0.9375000 0.9375000 0.9375000 1.0000000 1.0000000 1.0000000
M=—8
+3 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 1.0000000 1.0000000
—3 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Since we can always write ion at the site ¢5:
3 3 g=2p
q=2p fM (‘Lj) = fHo”+ Z Z Z Z P43m1m,2(M)
cos?Pf= Z qu COSqa;j, (15) mimg L=1 p=0 ¢=0
=0 .
* X AmizpBpo(faz(k))as cosqaij, (16)

we can write Eq. (12) for the scattering factor of the where the coefficients By, are tabulated in Table IIT,
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Tasie III. The coefficients By, used in Eq. (16). Boo=1 and Be=0.

3

\< 1 2
q
0

+ (cosb cosc)?+% (sinbd sinc)?

1 -+2(cosb cosc) (sind sinc) —+4(cosb cosc)?(sind sinc)
~+3(cosb cosc) (sind sinc)3

2 ~+3(sind sinc)? -3 (cosb cosc)?(sind sinc)?

~+3 (sind sinc)4

3 0 -+3(cosb cosc) (sind sinc)?

4 0 +1(sinbd sinc)*

5

6

=+ (cosb cosc)*+3(cosb cosc)?(sind sinc)?
+2(sind sinc)*

~+ (cosb cosc) 8+ (cosb cosc)?(sind sing)?
-+ (45/8) (cosb cosc)?(sind sinc)4+(10/32) (sind sinc)®

6(cosb cosc)®(sind sinc)
-+15(cosb cosc)3(sind sinc)3
-+ (30/8) (cosb cosc) (sinb sinc)s
~+18 (cosb cosc)*(sind sinc)?
-+ (cosb cosc)?(sind sinc)*

+ 35 (sinb sinc)®
~+5(cosb cosc)3(sind sinc)?
+(15/8) (cosb cosc) (sind sinc)®
-+ (15/8) (cosb cosc)?(sind sinc)*
+6/32(sinb sing)®
+ 3 (cosb cosc) (sind cinc)®

~+ 35 (sinb sinc)s

In addition, Beo=1 and Bo,=0. If we set

S % Lammd () AmnBrel o)

mimg L=1 p=0

=fmw  (¢=0)
=2fu, (g#0), (17)
we may write the scattering factor in Eq. (16) as
a=+6
Jfu (@)= qg._s [faqt0(g) fror]
Xexp[2mwigz- (ti41;)+igp]. (18)

If all the ions are in the state M, the amplitude of the
coherent scattering E from a holmium crystal is

E=65 & (urti@)ue)
Xexplig+2mi(s+43): (e, (19)

where &_is the amplitude scattered from a Thompson
electron and x is written as 2ws, where |s| =2\"1sind,
A being the x-ray wavelength and 6 being half the
scattering angle, not to be confused with the previous
6. Multiplying E by its complex conjugate yields the
expression for the Laue-Bragg scattering

q=6
Iz=1I, ;_6 lqu+5(9)fH0’+|2
X| X exp[2mi(s+gm)- (ri41;)][2

q=6
~NI.R? ZG | farq+8(q) fror|?
=

X8((s+gx)- ai— H)X8((s+gz)-a;—K)

Xd((s+g7)-a,—L). (20)

In Eq. (20), N, is the number of unit cells in the crystal,
I, is the intensity scattered by a Thompson electron,
aj, a2, and a; are the vectors defining the unit cell, and
the integers H, K, and L are the Miller indices. R is the
geometrical structure factor defined as

R= Z exp[ 2wt (s+¢=)-1i]. (21)

From Eq. (20) we see that the Laue-Bragg maxima
occur when

s=Hby+Kby+Lbs—gr=Buxr—qz,  (22)

where by, bs, and b are the vectors reciprocal to aj, as,
and az. The normal Laue-Bragg scattering is associated
with ¢=0. In case none of the far, is zero there are then
satellite reflections at Byxr=|q| =, with ¢=1, 2, 3, 4,
5, and 6, or six satellites in the direction of the spiral,
in this case the bs direction. When holmium is in the
ferromagnetic state at 7'<19.4°K, examination of
Table III shows that B,, is nonvanishing for all g¢;
thus in the ferromagnetic state a maximum of six satellites
can be expected. In the antiferromagnetic state, 19.4°K
<T'<131.4°K, because of the flat spiral cosb=0 and
B, is nonvanishing only for even values of ¢. In the
antiferromagnetic state only three satellites can be expected.
Further, when x and = are parallel, sinc=0, and all
By, vanish, except B o, and no satellites will occur around
the (000-L) reflections in either the ferromagnetic or
antiferromagnetic state. Figure 1 illustrates a portion of
the reciprocal space of antiferromagnetic holmium in
the vicinity of the (224-0) reflection, solid circle, with
the three satellite pairs the open circles, at the posi-
tions 42, =4, and +6+. If we assume the antiferro-
magnetic state but fill the 4f shell of the ions according
to Hund’s rule®® then the I'sgmm,2(8)’s in Table II are
to be used in calculating the f3,’s in Eq. (17). Assuming
sinc=1, and cosb=0 the square of the scattering factor
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F1c. 1. Arrangement of satellites, open circles, about the (224-0)
reflection, solid circle, in the holmium reciprocal lattice. The
sgacing between satellites is 27, The B; axis lay in the plane of
the diffractometer. The length of .S was determined by the counter
position, 26, and the crystal was step scanned through the angle w.

of the first three satellite reflections, fs?, fs?, and fze?
are plotted as a function of 2x~!sind in Fig. 2. The
position of the (224-0) reflection is indicated also. The
intensity of the satellites is proportional to these jf?
values. We note that the effects from the aspherical 4f shell
are most pronounced not at small scattering angles but
at intermediate angles. The satellites are extremely
weak compared to the normal Laue-Bragg reflections.
At the (224-0) reflection where fp?=1.96X1073,
fro+=1.26X10% so even at this favorable position
the ratio of the Laue-Bragg reflection to the first
satellite pair is ~641000:1. There is also an effect
from the aspherical 4f shell on the intensity of the
normal Laue-Bragg reflections through the factor fumo
in Eq. (20). However, fmo is so small compared to
fro that experimental investigation of the effect is
not feasible. It was on the basis of these results plotted
in Fig. 2 that the choice of the (224-0) position and
preliminary estimates of the satellite intensity were
made.

The measured x-ray satellite intensities were found
to be much less than those calculated from the fs,
which assumes that all ions are in the state M=J on
the basis of Hund’s rule. This suggested that thermal
disordering was inducing ionic states with M<J.
Koehler ¢t al.® observed a pronounced decrease in the

0.002
0001 |—
- +6 —
_ M
0 | I 1
o 0.4 0.6 1.2 1.6 2.0

IS] =2(sin8) /2

Fi16. 2. The values of f:?, f:% and f¢ versus |.S|=2X"1sing for
the 4f shell filled according to Hund’s rule with sinc=1, Note
that f,? is approximately a maximum at the (224-0) reflection.
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intensity of the neutron satellites in holmium as the
temperature was raised. This can be understood if we
write for p, the scalar part of the magnetic scattering

amplitude®
p=(*v/2me*)gJof(x), (23)

where €2/mc? is the scattering length of a Thompson
electron, v is the neutron moment in nuclear magnetons,
f(x) is the magnetic form factor,” and ¢ is the fraction
of the full moment J that is effective at a temperature
T. At 77.5°K Koehler et al.% used a ¢=0.722:0.04 for
the effective moment. Thus the intensity of neutron
satellites provides an excellent check on ¢.

Nagamiya? has considered the effect of finite tem-
peratures on screw structures of the type that we are
considering with the approximation of the Weiss
molecular field, and with this it is possible to calculate
(J)=Jo. The theory of screw structures assumes that
within each plane of the structure the angular momenta
of the ions are coupled ferromagnetically with an
exchange constant V,, between adjacent layers with
an exchange constant ¥, and between nth layers with
Va, etc. The direction of quantization in any particular
layer is the same, and twice the number of pairs inter-
acting in the same way are included in the exchange
constants. The energy is assumed equal to the dot
product of the moments and the exchange constants.
The angle between moments » layers apart is nwras,
where @3 is the cell edge normal to the basal planes in
holmium. The energy of the system is then

—3NT*V (1), (24)

where

V(r)=2 V.costnras (25)

and N is the number of layers. The total energy is the
sum on all spins; hence the factor % in Eq. (24) so as
not to count the same pair twice. A minimum in the
energy corresponds to a maximum in V(7). If V(r)is a
maximum for r=0 or as the system will show ferro-
magnetism or antiferromagnetism, respectively. If
neither of these is the case, the system will have a screw
structure with a propagation vector 7 which maximizes
V(7). In Eq. (24) J is normally the maximum com-
ponent of angular momentum along the direction of
quantization. The effect of a finite temperature is
included by replacing J by the thermal average (J)=Jo.
The so-called Weiss field consistent with this energy®
is — (gug) Yo V(7). A single ion with the component M
of angular momentum in the direction of quantization
will interact with the Weiss field with an energy
—MJoV (7). The probability that such an ion will have
the component M is given by the appropriate Boltz-
mann factor, and the expectation value for M,Jo, will

2 See, e.g., Ref. 12; in M, Blume, Phys. Rev. 130, 1670 (1963).
2 See, e.g., R. Brout, in Magnetism, edited by G. T. Rado and
H. Suhl (Academic Press Inc., New York, 1965), Vol. IIA, p. 43.
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F16. 3. The square of o, the fraction of J effective at the tem-
perature T versus 7. The Brillouin dependence of ¢ is found by
solving for self-consistency, Eq. (28). The ordinates on the left
are for ¢% and those on the right are for |Fo|? the structure
factor for the neutron satellite pair about (000.2). The points are
the measurements of Koehler ef al.

be found from the equation of self-consistency,

M=J M=y
Jo= Y MeMIVDIET) Y oMIcV(DIkT
M=—7 M=y
=JB(J%V(r)/kT), (26)

where B(J%sV (7)/kT) is the Brillouin function. When
o becomes vanishingly small at the Néel temperature
T, Eq. (26) requires that

Ty=J(J+1)V(s)/3k. (27)

Substituting for V(7) in terms of the Néel temperature
in Eq. (26) we can write

o=B@JoTn/(J+1)T). (28)

In Fig. 3 we have plotted o? as a function of temperature
along with the measurements of the structure factor for
the (000-2) satellite of Koehler et al.® In the figure,
values on the left ordinate are for ¢® and on the right
for |Fop;|2. The agreement above ~20°K is excellent.
The lack of agreement below 20°K can be ascribed to
the ferromagnetic transition at 19.4°K. This agreement
with the neutron results were so encouraging that the
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Fi16. 4. Plot of (f.)? for the first x-ray satellite pair about the
(224-0) reflection versus temperature using the far's of Table
IV weighted according to Eq. (29). The decrease with temperature
is much more rapid than the neutron case of Fig. 3. The two
points shown are the experimental x-ray values.

average x-ray scattering factor was evaluated from

M=J M=J
fq= Z que3MaTN/(J+l) T/ Z e3Ma'TN/ (J+H)T

M=J M=J

sinh[ 36T x/2(J+1)T]
" sinh[3(2J+1)oTn/2(J+1)T]
M=J
X Y fu lMoINIGHIT  (29)

M=J

Figure 4 is a plot of (f2)? for the first satellite pair about
the (224-0) reflection versus temperature. The far’s
of Eq. (17) were calculated using the values (72(x))ss
=0.196, (74(k))4r=0.0505, and (js(k))sy=0.0110 inter-
polated from the values given by Blume ef al.*® For
evaluating the coefficients By, of Table III the angles
b and ¢ were taken to be 90.0° and 86.53°, respectively.
The values of fas for the first satellite pair about the
(224-0) reflection for the holmium ion in the state with
inner quantum number J=8 and magnetic quantum
numbers M are listed in Table IV. These fa’s were
then weighted according to Eq. (29) to determine (f).
The decrease of (f)? with temperature is much more
pronounced than for the neutron case and is due to the
almost quadratic dependence of the fa2 upon M in
contrast to the linear dependence of the neutron scat-

TaBLE IV. Values of fus from Eq. (17) for the first satellite pair about the (224-0) reflection for the holmium ion
in the state with inner quantum number J =8 and magnetic quantum numbers M.

|M| 8 7 6 5

4 3 2 1 0

S -+0.0439 -+0.0298 +0.0183  4-0.00679

—0.00516

—0.0167 —0.0264 —0.0329 —0.0352
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tering amplitude on M. The two points in the figure are
the experimental values and their determination is
discussed in the next section.

The treatment leading to Egs. (28) and (29) im-
plicitly assumed that V(7) is independent of the tem-
perature or ¢, and has the value determined by the
Néel temperature in Eq. (27). Experimentally’ the
turn angle varies over the range 30°<wra;<51°
between the Curie and Néel temperatures. However,
V(r) will remain very nearly stationary if either ¥V,
is the dominant interaction energy in Eq. (25) or if
Ve/V1=—0.62055, Vs/V1=+40.26790, ViV
=—0.07307, and V;/V1=+0.00970.

EXPERIMENT

A single crystal of holmium was obtained on loan
from the Ames Laboratory. The crystal had been grown
in the solid phase by the strain-anneal method. Im-
purities were Ca<500 ppm, Fe<20 ppm, Ta<500
ppm, Si<50 ppm, C<L60 ppm, Mg<10 ppm, Cr<50
ppm, Ni<50 ppm, O=335 ppm, H=32 ppm, and
N =24 ppm. (ppm is parts per million by weight.) The
crystal was faced upon (112-0) and after suitable
metallographic polishing and etching the crystal proved
to be free of inclusions and parasite crystals. Back-
reflection Laue photographs were of excellent quality
and orientation. The position of the neutron satellites
at 77.4°K reported by Koehler” were confirmed for
this crystal by measuring the positions of the (112-0)
and (224-0) neutron satellite pairs from the crystal.

The crystal was mounted inside a modified Materials
Research Corporation model X-86 GC cryostat with
the (112-0) face aligned on the vertical w axis of the
Picker diffractometer. The hexagonal axis was aligned
normal to the w axis or in the horizontal plane of the
diffractometer. Monochromatized Cu Ke radiation was
obtained from a doubly bent LiF crystal after Schwartz
el al® with TM=MF=1143 cm, FF’'=34.00 cm.
Curved tantalum slits were inserted between 7" and M
and at F, such that AM was the generatrix of the area
illuminated on the LiF crystal. The monochromator
eliminated fluorescence problems with the possible
exception of that from the holmium Lj;; level at
1.5368 A which could be excited by the radiation
passed by the monochromator window along with Cu
Koy (1.5406 A) and Cu Ko (1.5444 A). The Dunlee
DZ-1BH high intensity tube was normally operated
at 40-kV constant potential and 26 mA. The most
intense beam was found at 2° take-off angle for which
the projected focal spot was 0.52 mm wide and 1.50
mm high. This large focal spot size and abberations in
the LiF monochromator prevented good vertical
focusing and when the vertical height of the beam was
set at 6 mm at F, the horizontal focus, the beam at F”/,

% 1. H. Schwartz, L. A. Morrison, and J. B. Cohen, in Advances
in X-Ray Analaysis, edited by W. M. Mueller, G. Mallet, and
M. Fay (Plenum Press, Inc., New York, 1964), Vol. 7, p. 281.
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the counter slit, was still about 5 mm high. This ge-
ometry was chosen to that the approximate line focus
at F was symmetrically refocused at F” by any
(HH2H -0) reflection of the holmium crystal. In order
to investigate a satellite reflection, the crystal had to
be turned out of this symmetrical focusing condition
through the angle w as in Fig. 1. However, asymmetrical
focusing? could be achieved keeping FF” constant by
making the ratio FF'/F'F"=sin(0—w)/sin(6+w). The
diffractometer was mounted upon a milling machine
which allowed such changes to be made accurately.
Intensities taken in the asymmetrical condition were
corrected to the symmetrical condition®® by multi-
plying by 1—tanw/tanf. Since the satellite reflections
were expected to be as sharp as the normal Laue-Bragg
reflections, but extremely weak, it was imperative that
the peak to background be kept at a maximum con-
sistent with an over-all high counting rate. This meant
that the volume element defined by the various di-
vergences should be comparable to the dimensions of the
Laue-Bragg reflections from the holmium crystal includ-
ing its mosaic spread. To this end experiments were
carried out at room temperature to maximize the Laue-
Bragg peak to the background in the vicinity of the
satellites. The final slit arrangements chosen were: inci-
dent focal slit 7, 0.50 mm wide by 6.0 mm high with a
0.16° horizontal divergence, receiver slit "/ 0.48 mm
wide by 10.0 mm high followed by a 4° antiscatter slit
and 2° vertical soller slits. The monochromatized beam
was monitored after passing through slit F and the air
path length to both monitor and counter detectors was
the same. Scintillation detectors with pulse-height selec-
tion were used on both channels. Hamner solid-state
electronics and semi-automated control of w or 26 axis
were employed.

Scans at 77.4°K through the (224-0), (224-2), and
(224-2) reflections confirmed the lattice constants
reported by Darnell.?6 Using the values of © determined
by Koehler et al.,” a search program was carried out in
the vicinity of both the (112-0) and (224-0) reflections
for the first satellite pairs. The diffractometer was
programmed to step scan o through an arc which in-
cluded the first satellite pair for various settings of |s|
(see Fig. 1). The values of |s| were determined by the
counter position 2. Figure 5 is the average of 10 w
scans through the first satellite pair about the (224-0)
reflection at 77.4°K (liquid N,) after the optimum
counter position for the Cu Ka; component was found.
The background of 8200 counts represents a counting
rate of ~4.8 counts/sec. The satellites at (112-0) were
also detected but the peak to background was much
inferior to that at (224-0). From the lattice constants?®

% A, Guinier, X-Ray Crystallographic Technology (Adam Hilger
Ltd., London, 1952), p. 101.

% R. J. Weiss, in X-Ray Determination of Electron Distributions,
edited by E. P. Wohlfarth (John Wiley & Sons, Inc., New York,
1966), Vol. VI, p. 109.

26 I, J. Darnell, Phys. Rev. 130, 1825 (1963).
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Fic. 5. The average of ten scans through the first satellite pair
about the (224-0) reflection at 77.4°K (liquid Ny) for the optimum
counter position of the Cu Key component.

and neutron value” of = the position of the same satel-
lite pair at 27.3°K (liquid neon) for the Cu Ka; com-
ponent was computed. Figure 6 is the average of ten
wscans at 27.3°K. The satellites are closer to the (224-0)
reflection in agreement with the neutron results. The
intensity of the satellites is much larger than at 77.4°K.
The background is approximately 79, less than at
774°K and this is ascribed to a reduction in the
thermally scattered x rays in the neighborhood of the
(224-0) reflection.

The integrated reflection from a crystal is a pure
number given by*

Ew
e f R@)d), (30)

0

where R(w) is the fraction of the incident power P,
reflected at the angle w, and E is the total energy re-
flected when the scan rate is @. In Eq. (30) the counter
slits are assumed to be large enough so that any fraction
of the incident power reflected by the crystal is de-
tected. However, because of the unfavorable peak to
background for the satellites, the horizontal width of
the counter slits had to be kept too small to satisfy

this condition. Nevertheless, by incrementing the
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Fic. 6. Same as for Fig. 5 but at 27.3°K (liquid neon).
27 See Ref. 14, p. 45.
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counter by amounts A2 corresponding to the angle
subtended by the receiver slit at F”, repeating the «
scans and adding them together, the condition of a
large counter slit could be fulfilled. Actually, advantage
was taken of the close proximity of the satellites to the
(223-0) reflection to employ the following scheme. At
reduced power levels, 16 kV and 4 mA, the optimum
counter position for the Cu Kex component for the
(222-0) reflection was found, and an w scan with the
counter at this position similar to those through the
satellites in Figs. 5 and 6 was made. The counter was
then incremented in steps of A26 on both sides of this
optimum setting and the w scans added together to
obtain the integrated reflection. It was found that the
integrated reflection was 2.44 times larger than the
scan made at the optimum counter setting for the Cu
Koy component. The optimum scan through the satel-
lites was then multiplied by this factor to determine
their integrated reflection.

The main beam power was measured by scanning
the counter, with the same slit arrangement, through
the beam with the cryostat slightly displaced so that
the beam missed the crystal but was still attenuated
by the windows and radiation shields. This measure-
ment was made with five nickel foils in the beam that
reduced it by a factor of 52.2. The main beam power
was then calculated to be 1.97X10° counts per monitor
count. The reflected power of 6.62 counts per monitor
count for the (224-0) reflection gives an integrated
reflection of 3.37X10~5. The integrated reflection for
an ideally imperfect crystal in reflection geometry is

Ew ( 2 )2 N2\3 /1+cosz20m cos220>
Py B 2u sin20\ 1+4cos?20,,
X R2| f| 2628 im0 A2

=1.14X1077| f| 26 2BI(sH/N?

mc?

(1)

for the (224-0) reflection, where the Thompson cross
section (e2/mc?)?="7.94X 102 cm?, the number of unit
cells per unit volume N,=1.60X10% cm™3, the x-ray
wavelength A=1.54X10% cm, the linear absorption
coefficient?® u;=1.12X10% cm™, the monochromator
scattering angle 26,,=45.022°, the crystal scattering
angle is 26, and the geometrical structure factor for
the (224-0) reflection R=2, f is the atomic scattering
factor, and B is the Debye parameter. Equation (31)
was used to compute the integrated (224-0) reflection
at 77.4°K. For this temperature a value of B=0.275
X 10716 ¢cm? was interpolated from those values tabu-
lated for gadolinium.?® The value of f was computed
from

f= faor+Af+iAf",
28 International Tables for X-Ray Crystallography, edited by

C. H. MacGillavry, G. D. Rieck, and K. Lonsdale (Kynock Press,
Birmingham, 1962), Vol. III, Sec. 3.

(32)
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where fm.s+=35.5 was interpolated from the values of
Blume et al.,* Af’ the real part of the dispersion cor-
rection is listed variously as —13.028 or —10.5% and
the imaginary part of the dispersion correction
Af”=3.0.2 Depending on the value assumed for Af’
the integrated (224-0) reflection calculated from Eq.
(31) is either 4.92X10~% or 6.06X10~5, The fact that
the observed integrated reflection was less than this is
attributed to primary extinction.?% If the holmium
crystal had ideally perfect regions of approximately
3-5 p thickness, the discrepancy between the measured
and computed value is satisfactorily explained.®

Fortunately, the satellite reflections are so weak that
the crystal could be considered as ideally imperfect
and free of extinction. The dispersion corrections to the
fuds in Eq. (17) are negligible since the incident
radiation frequency was 2000 times larger than the
Nvyy and Nvyr absorption edges associated with the 4f
electrons.® The reflected powers of the two satellites
at 77.4°K when multiplied by the factor 2.44 were
6.95X10~¢ and 6.73X10~% counts per monitor count
for the positive and negative satellite, respectively.
The corresponding reflected powers of the two satel-
lites at 27.3°K were 16.7X107% and 17.8X107% counts
per monitor count, respectively. The corresponding
integrated reflections at 77.4°K are 3.52X10~* and
3.42X107. Using the Debye parameter B=0.275
X106 cm? these values correspond to values of
(f2)=0.0192 and 0.0189, respectively. The theoretical
value using the fir,’s of Table IV weighted according
to Eq. (29) is 0.020. The corresponding integrated
reflections at 27.3°K are 8.50X 10 and 9.04X 1071,
Using the Debye parameter’® B=0.145X10"1¢ cm?
these values correspond to values of (f,)=0.0286 and
0.0295, respectively. The theoretical value is 0.0398.
The values of {f2)* corresponding to these values are
also shown in Fig. 4. It should be mentioned, perhaps,
that the theoretical curve of Fig. 4 assumes that the
angle ¢ remains constant at 86.53° while in fact this
angle changes slightly with temperature because of the
change in ¢ with temperature.”

BT, R. Saravia and S. Catichaellis, Acta Cryst. 20, 927 (1966),

3 See Ref. 14, Chap. 6.

3 See Ref. 25, Vol. VI, p. 44.

32 In order to estimate the possible effect, assume that the 4f
electrons’ contribution to the atomic absorption coefficient varies
inversely as the cube of the frequency of the incident radiation
frequency w, and that wy is the N absorption edge for the 4f
electron. Then if the oscillator strength of the 4f electrons is taken
as unity, Af'~ (wn/w)?In|(wn/w)?—1| and Af"~x(wn/w)? or
4.0X107¢ and 0.7 1076, respectively; see Ref, 14, p. 149. These
small corrections are, of course, applicable to the (jo(x))ss and
not to the aspherical terms. However, it seems reasonable that
the corrections to the fag’s are of similar magnitude.
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CONCLUSIONS

The scattering of x rays as a function of both the
magnitude and direction of x by the nonspherical 4f
charge density in the holmium ion characterized by
the inner quantum number J = 8 and magnetic quantum
number M was derived. It was then shown that when
the direction of quantization z of the ions is that of a
flat spiral so that the angle between z and x varies
periodically, that three x-ray satellite reflections appear
with spacings in multiples of 4-2«, where =« is the
propagation of vector of the spiral. However, in order
to achieve agreement with experiment it was necessary
to assume that at a finite temperature the ions are
disordered to the extent that they are distributed
amongst the various states M. The nature of this
distribution was determined using the molecular-field
approximation. This theory of the disorder explains
quite well past observations of the change in neutron
satellite intensities with temperature. These results
were so encouraging that the theory was used to com-
pute the average x-ray scattering factor (f.) from the
scattering factors fare of the various states M whose
computation rest upon parameters derived from
recently determined Hartree-Fock rare-earth wave
functions. The agreement with experimentally observed
values of (fs) for the first x-ray satellite pair about the
(224-0) reflection discussed in the paper is good.

Note added in manuscript. A recent communication
by Jennings® sites a possible error in using the polar-
ization factor in Eq. (31). Using Jenning’s experimental
value of k,=0.772 in place of c0s26,=cos45.002° and
assuming no extinction in the satellite reflections
reduces the polarization factor of Eq. (31) by ~8%,.
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