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The effect on the isotropic spin density of the (h,h') dependence of the exchange coupling J(h,h') between
a localized magnetic moment and conduction electrons predicted by Ruderman-Kittel-Kasuya-Yosida
(RKKV) theory is determined quan. titatively. Spherical local moments are employed, viz. , Gd(4f ) and
Fe(3d') (which are taken as representative of rare-earth and transition metal moments, respectively). The
conduction bands are described by simple orthogonalized plane waves appropriate to a "free-electron"
metal with k the wave vector of the incident electgon and k' that of the scattered electron. We find that a
Q-dependent couphng (where Q—=

~
h—h' () has some Iustlficatlon when dealing with a Gd local moment but

has considerably less justification for Fe. Both the (h,h') and the Q-coupling schemes yield a "main" spin-
density peak which is more diffuse than that yielded by coupling approximations traditionally applied to
RKKY theory. Spin-density results were obtained. which are appropriate to the outer reaches of a lattice
site and to the nuclear site of either the local moment or neighboring atoms (these involve inclusion of
core s terms in the spin density). These results suggest that spin distributions obtained by neutron. diGraction
and those inferred from hyperhne Geld measurements may differ signi6cantly.

I. INTRODUCTION

'HE response of conduction electrons to the ex-
change interaction with localized impurity spins

appcRIS to plRy an lncrcRslngly important lolc ln thc
cxplanRtlon of various phcnoIQcQR observed lQ metals
and dilute alloys. This so-called s-d exchange interaction
has been the object of extensive investigations, ranging
from the well-known case of dilute alloys such as
Pd-Fc 'to tllc val lc ty of observations (Icsls tRIlcc lllnllII1R,

NMR, Mossbauer CGect, susceptibility, and specidc
heat) attributed to the existence of a Kondo bound
state. The basic starting point often taken for more
detailed theoretical treatments is the familiar Ruder-
man-Kittel-Kasuya-Yosida (RKKY) model. ' The s-d
exchange-coupling integral J(k,k') between the local-
ized magnetic electrons and conduction electrons is
commonly assumed to be constant, or at best only a
function of the magnitude of the wave-vector difference
Q=

~

k' —k~ between incident and scattered conduction
electrons. In low order, this assumption. leads to an
induced conduction-electron spin density whose Fourier
transform p(Q) is simply related to X(Q), the zero-
frequency magnetic susceptibility of thc conduction
elcctl'oils, by J(Q), I.c.,

(Similar assumptions are made concerning the Coulomb
terms entering some of the more advanced theories. )
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We have previously described investigations' (hence-
forth referred to as I) of the behavior of the exchange
integral J(Q) over a range of Q values for the illustrative
case of a local moment which consists of the half-6llcd
shell of Gd'+(4f') and conduction electrons which are
treated as orthogonalized plane waves (OPW's); com-
parison was made with the traditional assumptions
about the nature of J(Q) as used in RKKY theory.
Thc rcsultlQg splQ dcQslty of thc conduction clcctI'oQS,
with and without the exchange enhancement' of the
susceptibihty X(Q), was found to be severely affected
by the assumed form of J(Q). Use of the actual com-
puted exchange coupling was shown to appreciably
reduce qualitative disagreement between theory and
experiment. As we found, 2 it is only by nuInerical
accident that a local-moment —conduction-electron cou-
pling can be qualitatively described by a Q-dependent
J. Assuming that J(k,k')= J(Q) allows one to apply
knowledge of the magnetic susceptibility to the prob-
lem(s) at hand, but unfortunately the actual respomss
of the metal to the local moment is more complicated.
Exchange coupling is, after all, a nonlocal interaction.

In this paper, we inspect the CGect of the actual
(k,k') dependence of J(k,k') on the spin density pre-
dicted by RKKY 'tlleol'y. (Ill oui' view 'tile quail'tltRtlvc

changes so introduced are as important as some of the
higher-order refinements of expressions, such as Eq.
(I), which have been introduced so as to bring theory
and experiment into better agreement. ) Following the
original development of RKKY theory, we deal with
the bands of a "free-electron" metal which are de-

~ R. E. Watson and A. J. Freeman, Phys. Rev. 152, 566 (1966),
henceforth denoted as I.

3 For example, P. A. Wolf'f, Phys. Rev. 120, 814 (1960);129, 84
(1963);B.Giovannini, M. Peter, and J. R. SchrieGer, Phys. Rev.
Letters 12, 736 (1964).
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scribable in terms of plane waves or simple OP%'s. In
this case, the coupling associated with a spherical local
moment takes the obvious form

J(k,k') =Q Pz, (coso)Fr, (k,k'),

where Q is the angle between k and k' and F is a function
of only the magnitudes of k and k'. Equation (2) is not
readily approximated by a J(Q). Unfortunately, a
theory acknowledging this (k,k') coupling is both com-
putationally unpleasant and yields results which are
in a much less convenient form than Eq. (1).Despite
this(, k,k ) results are of interest in their own right and
for two other reasons as well.

First, many experiments (most notably hyper6ne
interaction measurements) sample the conduction-
electron spin density in the interior of an ion core where
the core character assumed by the conduction electrons
affects the measured spin-density distribution. This is
rigorously dealt with in a (k,k') treatment4 of the
density and results appropriate to the Fermi contact
interaction at nuclear sites will be obtained in this
paper. These will be compared with simple plane-wave
density predictions which are relevant to the full spin-
density behavior in the outer reaches of a signer-Seitz
cell. The results suggest that spin distributions ob-
tained by neutron diffraction and those inferred from
hyperGne Geld measurements may differ signiGcantly.

Second, the effective exchange coupling, associated
with interband mixing, "assumes roughly' the form
of a single I.&0 term of the type seen in Eq. (2), in
which case Eq. (1) becomes entirely inappropriate.
Such interband mixing mill bc inspected in a subsequent

paper; the computational machinery necessary for this
is identical to that employed in the present paper.

We here limit consideration to spherical local mo-
ments and results are reported for the polarization
induced by a Gd(4f') and an Fe(3d') local moment.
These results are assumed to be typical of the isotropic
polarization appropriate to the rare earths and to the
iron series elements, the moment being in the interior
of the "ion core" in the former case and in the "ex-
terior" in the latter. Many features of the results of I
for Gd, where J(k,k') was approximated by a J(Q),
which was then employed in Eq. (1), will be seen in
the more exact estimates of J'(k, k') obtained here. The
same J(Q) approximation will be shown to be less
justiGcd for Fe-moment —conduction-electron coupling.

4 For a spherical local moment these core terms can be incor-
porated into the Fz, of Eq. (2l. Kaplan has attejnpted LPhys. Rev.
Letters 14, 499 (1965)j to incorporate them into the g(Q) of Eq.
(1).At best, this can be only crudely done and our results dBFcr
froIQ his. Some reasons fox' this will be obvious 1n Sec. H.

~ P. Vf. Anderson and A. M. Clogston, Bull. Am. Phys. Soc.
2, 124 (1961); J. Kondo, Progr. Theoret. Phys. (Kyoto) 28,
846 (1962); S. Koide and M. Peter, Rev. Mod. Phys. 36, 160
(1964).

6 R. E. %'atson, S. Koidc, M. Peter, and A. J. Freeman, Phys.
Rev. 139, A167 (1965).

IL THE MODEL

In traditional RKKY theory, the spin density arises
from the spin repopulation associated with the Pauli
susceptibility and from the lowest-order perturbation
mixing of unoccupied Bloch orbital character q~ into
the occupied, Bloch states q~, i.e.,

J(k,k')
0'a+~ Fa++~ Z (3)

whcI'c ky ls thc Fcrml wRvc vccto1 thc 6g s arc con-
duction-electron orbital energies, the & subscripts (and
the W of the sum) refer to spin parallel and antiparallel
to the local moment of spin 8, and

drldTspk (rt)lPj(rl)

J(k,k)
p~(r)=+~K Z

kM k~~0 g1
—qj r

where ~ again refers to majority Rnd minority spins
and the odd symmetry (in k and k') of the energy
denominator has been used to extend the k' summation
over all k space. '

The total spin density is

Assuming J to be a function of Q and substituting
plane waves for the ts, one may obtain Eq. (l), apart
from numerical constants.

Neither the assumption of a J(Q) nor a plane-wave
yk is appropriate to the problem at hand. Central to
both these matters is the form of yk appropriate to a
"free-electron" band in a metal with ion cores present,
namely, a single, or linear combination, of OPVPs. A
single OPW, when Rt sltc R 1n thc IRttlcc, hRs thc foITQ

ps(r) —= EsWs(r —R)e*~ "
QV

XFi"(e,q) &r"(6,q s), (7)

where the average is over the unpaired 1ocal-moment
orbitals f;.For a spherical moment and simple OPW's,
J(k,k') has the form of Eq. (2). Keeping contributions
linear in J, thc Pauli and mixing terms together yield
the familiar expression
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where V is the atomic volume associated with a lattice
site (to which we will normalize results). Such a single
OPW will be employed throughout this paper. For a
spherical core, is independent of ns and is of the form

- )'(r) = j((kr) —P S (sR„g(r),
n, l

where j& is a spherical Bessel function, R„&(r) is the
radial function of the nl core shell, and

S„&&—= j&(kr)R„~(r)r'dr

-50—

-40

-20

-to

—l.5

I.O

—0.5

es acz

is the overlap between the radial part of the plane wave
and the core radial function. The OPW normalization
factor (again for spherical cores) is given by

+lo- Vli, (Gd)

k, O.u.

the volume normalization having already been incor-
porated into (7). For spherical cores, the Wq, a, and
1V& are functions only of the magnitude of k which is a
great computational convenience.

Insertion of the p into Eq. (4), for an assumed
spherical moment, readily shows that the J.th com-
ponents L,

~ and l,~' of the OP%'s are associated with
the Lth term in the exchange coupling [Eq. (2)]. In
turn, inserting Eq. (2) into the density expression,
carrying out the angular integrations and evaluating
the density at a nuclear site r=E., one obtains, apart
from constants,

Fr, (k,k')
k'dkk "dk' — j (IRk)

Xjz, (k'R)Ws(0)W&. (0)X&X&. . (11)

Therefore, only the 1.=0 term contributes to the spin
density at the nucleus at the local moment's site
(R=O). This implies that interband mixing will not
signi6cantly affect the Fermi contact interaction at
this site since effective interband exchange coupling
involves a single 1.&0 term in low order. ' The various
I. partial waves of the disturbance are driven by the
exchange coupling involving OPW components of the
same I.. Once away from the origin, all partial waves
contribute to the contact interaction.

Now the Pauli exclusion principle, as expressed in
the antisymmetry of a Hartree-Fock function, requires
either that the conduction electron q be orthogonal to
the occupied core states or that their nonorthogonality
be explicitly accounted for when the expectation values
of physical quantities such as J are evaluated. Both
lead to the same quantitative predictions. In other
words, the employment of OPW's yields the correct
results for a "free-electron" metal with cores present.

FIG. 1.The nuclear-site core-density factors S'&(0) for Gd and Fe
Lace Eq. (12lg. Also, the core renorrnalisation factor Ns' for Gd.

The use of OPW's can be justi6ed in a second way:
OPW's supply a basis for constructing conduction-
electron eigenfunctions of the crystal potential (this
point of view was important to the development of
OPW energy band theory). Given these observations
it is quite clear that the sums of Eqs. (7), (8), and (10)
should span the closed shells of the ion cores with
appropriate e and l when one in turn evaluates equa-
tions such as (4) and (5). It is less clear what should
be done to account for the Pauli principle in the case of
only partially occupied shells like the 3d and 4f in Fe
and Gd, respectively.

The OPW q-Gd(4f') exchange coupling was de-
scribed in detail previously in I. J'(k, k') consists almost
entirely of L=0 and 1 terms [see Eq. (2)] which com-
bine in such a way as to be mell approximated by a
J(Q). Orthogonalization to the closed 5s and 5p shells
of the ion (which lie exterior to the open 4f shell)
strongly affected the quantitative character of J(k,k')
and was essentiaP to the success of the J(Q) 6t. A
similar 6t does not work for the coupling of an Fe d5

moment. Here, L=O, 1, and (to a lesser degree) 2
terms' are signi6cant.

The cp explicitly entering the spin-density expression
[Eq. (5)] are also affected by core character. Let us
consider two cases: (1) the density for an interstitial

7It should be noted that a J(h,k') calculated for Gd in the
incorrect way using plane wave q's is not well approximated by
a J(g) (seer).

8 The L=2 term for Fe was evaluated including orthogonal-
ization to all orbitals of the open 3d shell. Such a treatment is
convenient but not rigorously correct since orthogonalization is
properly done to occupied orbitals alone. Perhaps the best choice
of treatment is to simultaneously treat the 3d-plane-wave (inter-
band) mixing; we will not do this here. Our choice of orthogonal-
ization does not a6'ect the qualitative character of our results.
The I=3 term for Gd similarly includes orthogonalization with
all orbitals of the open 4f shell. This has no visible eGect on the
Gd results.
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e an ' nd the J(Q) approximation thereto.Fe and Gd employing J(k,k') an t e a

They were evaluated for plane-wave q p.

I; Q.U.

(c)

'
ion where the traditional plane-wave approxi-

r—R)=s'"&' R&j should apply, and
(2) the density at a nucleus for whic

Ws(0) = (l—P S„esca„e(0)j, (12)

where the sum now spw s ans core s shells.
The Ws(0) for Gd and Fe, which are p o e in

1 are seen to osci a e. i'll t lt is quite clear, since they are

e E' of Fig. I and the exchange integrals were
+ LR. E. Watson, Technical Report No.evaluated with free Fe'+ R. . a son,

of the magnitude of k, that a product
db Q-d mdO' 5' annot be well represent y

h t otb yion i.e., this core c arac
. N th t the spin density mayinserted into q.o E . l) . ote a

erel affected if a node in I, abe severe y
h the 6rst node occurs ata possi ''yibilit for Gd, w ere t e rs

Gd cur at smaller k since1.3 a.u. The g, nodes or occu
Fe. The square ofit has a spatia y giall lar er s core than e.

' for Gd (evaluated withthe normalization constant EI, or e

ublished) and Gd'+ 1A. J. Freeman and
2058 lt962)1 ion wave functions.R. E. Watson, Phys. Rev. 127, 2
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an atomic volume appropriate to Gd metal) is also
plotted. It falls o6 slowly, has little structure, and, as
will be seen, affects little but the normalization of the
spin-density response.

F =I.O

III. SPIN DENSITIES: COMPARISOÃ BETWEEN
J(Q) AND J(k)k') RESULTS

Spin-density results employing computed J(k,k')
and J(Q) as estimated (see I) therefrom are plotted in
Fig. 2 for plane wave q~. For Gd, plots are shown for
kg =0.5 and 1.0 a.u. and for Fe for k~ ——1.0 a.u. Note
that a typical "free-electron" metal has kp lying
between 0.5 and 1.0 a.u. The Gd J(Q) densities are
those already reported in I; the Fe J(Q) and the
associated density results are from new calculations
obtained in the same way. The J(k,k') results were
obtained by numerical integration of Eq. (5) omitting
the k dependence of the E~'s. The singularity in the
integrand (where k~k~, k'~kg) was dealt with
analytically. Although the densities are seen to oscillate,
we are well inside the asymptotic region at the largest
r shown. ' These results "are for normalized q A, , except
for the omission of the S~'s.

Since both the J(Q) and J(k,k') estimates treat the
Pauli or J(0) term in the same way, the predicted total
spin density is identical for both. As expected, the
kp ——0.5 a.u. results for Gd show the best agreement
between densities since it appears' that the J(Q)
approximation is best here. The strongest differences
occur for the Fe results; in particular, a change in the
structure of the density curve occurs at small r. Results
for Fe at smaller k~ (not plotted here) show better
agreement. Characteristic oscillations, with periods

1/k p, occur at the large (but still small) r values for
all results (this behavior is typical though we are not"
in the asymptotic, i.e., very large r, region for which
the oscillations are normally derived). In all cases the
J(Q) and J(k,k') results differ as to the phase of the
oscillations. For k~ ——1, the J(Q) predictions, for either
local moment, overestimate the amplitude of these
oscillations by an order of magnitude (while main-
taining the correct total spin). Discrepancies in phase
and amplitude of this sort have severe implications for
any quantitative estimate involving a sum or scan over
lattice sites such as one does, for example, when
evaluating "wipe out" numbers or solvent Knight
shifts appropriate to NMR.

' That is, the immediate k-space region about the singularity
in the integrand of Eq. (5) plays but a minor role in the results.
The traditional asymptotic analytic derivation of the oscillations
is appropriate to radial distances many times those plotted
here."Signiicant di6erencing occurs in the course of integration for
all but the smallest r values. Due to this, some uncertainty must
be attached to the results for the larger r shown. We believe that
large r density amplitudes and nodes to be better determined than
is required for purposes here. However, they are not accurate
enough to determine a power law for the amplitude of the outer
oscillation s.

0.5225

x IO

, t t I I t
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r, O.u.

(a}

0.5I6- Fe, kp =0.5

0.258
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IV. CORE EFFECTS ON SPIN DENSITIES

Spin-density results employing the plane wave
Wq(r —R) and the Wq(0) appear for Fe in Fig. 3 (Eq
factors have again been omitted). Note that the contact,
or IV&(0), density plots imply the presence of an Fe
(or similar 3d) atom centered with its nucleus at the r
value in question. This is clearly physically impossible,
except at the origin, until one is out at some distance
corresponding to a typical nearest-neighbor lattice
spacing, i.e., 4 or 5 a.u. Results are nevertheless plotted
at smaller r because they are indicative of how the
actual density differs from the plane-wave prediction
due to the presence of core terms in the yj, . The curves
differ in shape out to a distance of 5 or 6 a.u. Outside
this region they oscillate, differing only in amplitude.
The ratios of the W&(0) to the plane-wave density
amplitude are quite accurately given by the square of
Wqr(0) (i.e., evaluated at k~) as might be expected.
The results at the origin, which correspond to the
Fermi contact density at the local moment's own
nucleus, are considerably enhanced when the core terms
are accounted for.

Similar behavior, with one important exception, is
seen for the Gd results plotted in Fig. 4. Here the
contact density induced by the Gd moment at another

I t I

2 5 4 5 6 7 8 9
r, Q. U.

(b)

FIG. 3. Normalized Fe spin-density results, labeled "without
8'q" for interstitial regions (i.e., for plane-wave qI }.1Vq renormal-
ization factors are omitted.
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nuclear site a distance r away is obtained for either a
Gd or an Fe atom at that site. These may be taken as
typical of the response to the polarization induced at
neighboring lanthanide and 3d atom sites by a Gd
impurity. We again see variation in the shape of the
distributions out to 5 or 6 a.u. , and amplitudes which
scale roughly as PV&~(0)]s, but now there also are small
variations in the phase of the outer oscillations. The
more pronounced changes, seen here, are associated
with the more rapid fall off of the Ws(0) for Gd seen in
Fig. 1.

The spin distributions seen in Figs. 3 and 4 are more
dif'fuse than their traditional RKKY counterparts. The
Grst node of the traditional RKKY function is indicated
by an arrow on the plots and, as a general rule, this
falls well inside where the present spin distributions
node. Whereas the traditional results almost always go
negative before near-neighbor nuclear sites are reached,
the present results indicate that near neighbors may
lie inside the "main peak" of the distribution. It should
be further noted that the atomic 4f and 3d spin densities
have gone almost to zero at a radius of 2.5 to 3 a.u. ;
thus, the induced spin density, residing in the main
peak of the density distribution, may be signiGcantly
more diffuse than the local moment which causes it,
giving it the potential of being seen experimentally.

(b)

FIG. 4. Normalized Gd spin-density results, labeled "without
8"f," for interstitial regions (i.e., for plane-wave qI,) and for
nuclear sites Lemploying the W&(0)7. Es renormalization factors
omitted.

The conduction-electron spin density at the local
moment nucleus has, in each case, become large and
positive when core s terms were accounted for. While
it is possible that it is negative for some special case, it
appears that the possibility of very small or negative
contact densities (i.e., antiparallel to the moment spin
direction) are much less likely than we suggested in I.
We might note that the ratios of the densities at the
origin to those appropriate to near-neighbor distances
are still much smaller than those predicted by tra-
ditional theory. In other words, a substantial hyperGne
Geld induced, and seen, at a neighboring ion site need
not imply one several orders of magnitude larger at the
nucleus of the local moment.

Whether at a local moment site or in the neighboring
region, core s terms cause the spin density at a nuclear
site to be considerably larger than that appropriate to
plane waves (which presumably has some relevance to
the spin behavior in regions between atoms in the
crystal). This enhancement is crudely given by
LWsr(0)]s. Now it is frequent practice to take an
experimental hyperGne Geld, obtain a contact density
from it, and in turn infer the strength of the local-
moment —conduction-electron coupling. It is clear, how-
ever, that the omission of this enhancement factor
(plus any ill assumptions concerning the shape of the
spin distribution) can yield misleading estimates for
this coupling.

V. OPW NORMALIZATION EFFECTS

All the results reported have been obtained omitting
the 371, which account for the additional normalization
due to core orthogonalization Lcf. Eq. (10)j. Results
with and without these terms appear in Fig. 5 and
were obtained for Gd with an atomic volume appro-
priate to Gd metal. The spin density has simply been
scaled by roughly a factor of lV&~' (the fourth power
occurs since the normalization appears in both the
exchange integral and the spin density). Otherwise,
the density distribution has been only slightly distorted
by the weak effects associated with the small variation
seen for E~ in Fig. 1.As a general rule, little more than
a scaling should be expected from this normalization
factor. Exceptions might occur for cases where an atom
is inserted into a lattice volume which is small compared
with ion core "size" for then SA, would vary more
violently I again see Eq. (10)j.

VI. CONCLUSION

We have concentrated in this paper on presenting
spin-density results obtained with the actual J(k,k')
local-moment —conduction-electron exchange integral
appropriate to the illustrative cases of Gd and Fe
moments. We have not made detailed comparison with
experiment. There are several obvious reasons for this
which should be mentioned at this time.
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Pure metals, or intermetallic compounds whose con-
stituent atoms have local moments, are, in general, not
describable in terms of free-electron bands. This is
obviously true for transition metals, but holds also for
the rare earths which are, in fact, transition metals too.~
As a result, the model we employ can make little con-
tact with experimental reality for these systems. "One
might hope that the present model and, hence, our
results are relevant to the case of a local moment as an
impurity in a free-electron metal. Unfortunately, there
are diKculties here too. For example, the local-moment
atom will amost inevitably be a charge impurity and
the resulting charge screening should affect the spin-
density response. Also, the q», for the random alloy,
will not form an orthogonal basis set and additional
terms should be included in the spin-density description.
The rli@culty in relating free-electron predictions to
experiment is thus considerable. We have considered
the model here because, with rare exception, it is this
model (or slight variations thereof) which is employed
and compared with experiment. Insight into what the
model uctgally predicts in low order is thus useful in
itself and a necessary erst step before asking what
actually happens quantitatively in these metals.

Despite the difhculties, there are a number of quali-
tative features of our results which are relevant to
experiment. We see that the bulk spin density as
measured by neutron magnetic scattering need not be
faithfully reQected in the density distribution seen by
nuclei in a hyperfine measurement. Correlation of the
two may thus be diflicult. The presence of core effects
in metals is widely recognized elsewhere, but somehow
it has been almost overlooked4 and its implications
ignored for the s-d interaction. As in I, we see the range

'~ For example, J. O. Dimmock and A. J. Freeman, Phys. Rev.
Letters 13, 750 (1964).

'3 Results have been obtained, and further work is underway to
obtain the susceptibility for the "real" bands of transition metals
at a number of institutions I e.g., G. Allan, %. M. Lomer, R. D.
Lowde, snd C. G. Windsor, Phys. Rev. Letters 17, 933 (1968)g.
These eGorts will eventually involve considerations similar to, but
diGerent from those described here.

I.806-

Gd, kF = I 0
WITHOUT N„---- WITH Nk

0.905

O
xlo

I
-0.903- i r

I

0 I

FIG. S. Normalized Gd spin-density results obtained with and
without the Xf, core renormalization factors and for plane-wave
Pk.
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of the "main peak" of the induced spin distribution to
be signiicantly greater than that yielded by more
traditional estimates of the RKKY model. Near-
neighbor sites are, more likely than not, to lie within
the mean peak. Exchange enhancement of the response, '
of course, further increases this "range. " In addition,
we have seen that the amplitude and phase of the near
oscillations are sensitive to details of the coupling.
Lower amplitudes are obtained with J(k,k') than with
the J(Q) approximation. This result and questions
regarding the range of the main peak would suggest that
the frequent usage of asymptotic density expressions in
what are near neighbor regions is at best doubtful and
at worst simply wrong. Hence, much more needs to be
known of spin-density distributions before one can
safely infer such quantities as exchange constants from
experiment.


