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Dielectric Properties of the Wlgner and Related Dipole Lattices*
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The low-density or Wigner limiting case of the electron gas is studied for its response to a longitudinal
electric field. The long-wavelength static dielectric constant is seen to be negative. Some curious features of
the dielectric function are explained by comparison of the electron "solid" with the classical Lorentz lattice,
of which the Wigner lattice is seen to be a limiting case.

I. INTRODUCTION

A. General

HE low-density state of the electron gas was erst
investigated by Wigner, "who pointed out that

in the presence of a uniform compensating background
of positive charge the electron gas, at sufliciently high
dilution, would form a regular lattice. This is because
as the density of the electron gas is reduced, the
Coulomb interactions dominate the kinetic energy of the
electrons so that a configuration of the lowest potential
energy, i.e., a regular array of electrons, is the favored
ground state. The compensating positive background is
assumed to be held rigidly fixed.

We begin with a review of the theory of oscillation of
a Coulomb lattice and its phonon spectrum. (By a
Coulomb lattice we mean a lattice of charges interacting
via Coulomb forces only. ) In Sec. II we discuss the
response of the Wigner lattice first to a space-and-time-
varying perturbing charge distribution and then to a
6xed point charge. We derive an explicit expression
for the frequency- and wave-vector-dependent dielec-
tric constant and discuss its properties. Section III is
devoted to relating the Wigner Electron "solid" to
the classical Lorentz model for an insulator. We show
that the Wigner lattice is a limiting case of the Lorentz
model and this helps to explain some of the puzzling
features of the dielectric function of the former.

B. Review of Lattice Vibrations

The vibration spectrum of a Coulomb lattice has
been studied by several/authors in the harmonic
approximation. ' 4 The theory has been adequately
summarized in Pines. ' For our purpose we consider a
lattice of electrons immersed in a Axed uniform sea of
positive charge. In its undisturbed state the ith elec-
tron is at R;. Let U; denote the 0.th Cartesian com-
ponent of a small displacement of the ith electron.
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If we let R =R~+U;, the Hamiltonian for the system
1s

with'

V(R;—R;) = =P V~e'"'( "' "&' (1.2)
(R;—R;i

Vg=4mp'ik'

We can write, in the harmonic approximation,

(1.3)

IJ=Q +-,' Q U; Ag PU;P.
i 2m i,i, ~, P

(1 4)

A;, p =p k k p Vke'"'"'

A;, P= —P P 0 kPV~e"(R' R~'.
k jAi

(1.6)

Equation (1.4) leads to the equations of motion

esU,'(t)PP A;; PU;P(t)=0
i P

(1 7)

Exploiting translational invariance we look for solutions
of the form

U; (t) =a(k,X) e~), p" ' ' "' ")') (1.8)

Here s|,q is an eigenvector belonging to k and the mode
X; a(k,X) is an amplitude factor. Substituting (1.8) in
(1.7) we obtain, after a little manipulation

ygg2(k g)g ~a —p {pA, appsk (R;—, R)')lq ~p (1 9)
P

If the A;; & are written out explicitly in terms of V& by
using (1.5) and (1.6) we obtain (cf. Ref. 5)

maP(k)X) e~),——XVj,k(k egg)

+x p f V,+K„(k+K„)((k+K,)'-&~j

—VK„K„(K„pg),)) . (1.10)

K„here refer to the reciprocal lattice vectors. X is the
number of electrons per unit volume. Use has been

'We choose normalization so that the total volume of our
system, 0= 1.

+-'K V(R' —R') —Z V(R'—R)j (11)
i 2m 'Hj iHj

where
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made in the derivation of (1.10) of the fact that, because
of the compensating background, VI, 0

——0. Finally, it
follows from (1.9) that oP(k, X) is an eigenvalue of a
3X3 matrix, for a given k. The diferent eigenmodes for
a given L are distinguished by the label X which takes
on the values I, 2, and 3.

From Eq. (1.10) one derives the well-known sum
rulc~

We write

(2.4)

Substituting this into the equation of motion (2.3)
and using the fact that diferent phonon modes are
lndcpcndcnt we find

P oP(k, x)=
X=z

=M
7

4s (k s),),)
u(k, X)= iepp-

k' m((a'(k, x)—(v'}
(2.5)

We may therefore write

4~ (k'~),) ~),),
U'= iepo—p

))." & m(a)'(k, x)—(d'}(1.12)

au„here is the electronic plasma frequency
In the long-wavelength limit (fi —+0) one can talk

of one strictly longitudinal mode for which 8),q~~k and
two transverse modes for which e~),J k. Labeling the where
modes by l and 3 one can show from (1.10) that

(2.6)

(2.7)

For small but finite k, the two transverse frequencies
are proportional to k. Using (1.11) the longitudinal
frequency then takes the form

cv'(k, f) =(0~'—u'k'.

Stabihty of the lattice demands that u' be positive. We
note that for a 6nite k in a general direction the longi-
tudinal mode does not necessarily lie in the direction of
the wave vector.

H. DIELECTMC PROPERTY

A. Response to a Longitudinal Electric Field

A knowledge of the frequency spectrum of the elec-
tron lattice enables one to discuss the frequency- and
wave-vector-dependent longitudinal dielectric con-
stant of the Wigner crystal. We imagine perturbing our
system by introducing a charge distribution of the
form

and U is independent of R;.
In the original configuration the electron charge

density of the system is

e p p ice'(r- )ac (2 g)

After the introduction of the perturbing charge dis-
tribution the new charge density is

(2.9)

=Z,eS P L(k+K ) Uoje*'«"+*)'-"'). (2.10)

The change in charge density to f(rst order in U is
clearly

p (r ]) p s~(k r-mt) (2.1)

In this expression k is not restricted to the first Brillonin
zone. From Poisson's equation the associated potential
C,xt(r, f) and electric field E,„(r(,f) are

C. i(r, t) = (4~/k') po(:""' ")
E.~i(r, t) = —'7C,,(r,t) = —i(4 k/k') poe'&"'-"') .

Evidently the driving force on the ~th electron of
charge —e(e) 0) is

F;(t)= eE, ,(R;,t) =—i(47rk/fi')epoe'&" "" "') (2.2)'-.
Denoting by U;(r) the displacement of the ith elec-

tron wc have the equation of motion

mO,'(()+g A;;.pU;p(r) =p;.(~).

Wc 6nd that the charge induced in the electron lattice
by a perturbing charge of wave vector k involves all
wave vectors (k+ K„). For the space-averaged or
"macroscopic" change in the charge density we select
out of the sum in Eq. (2.10) only the term with K„=O.
Labeling this part of l)p(r, t) by bp'(r, t) we have

f)p'(r t) =kX(k P)e'("'

Thc total space-avclagcd charge density at a point Is

7 This was first derived by W. Kohn and D. Schechter (un-
published) quoted, e.g., in J. 93rdccn g,nd D. Pines, Phys. Rev,
99, 1j.40 (I9$5}.
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(2.13)t .(r,t) = Le(k,~)j 't.*~(r t).

Comparing (2. &
~wi( .12) 'th (2.13)we arrive at the expression

Now the longitudinal dielectric constant e(,te) is
dined through

1 ce ' (k equi, )'

e(k,ea) k' & ate'(k, X)-es')

We now consider a few limiting cases.

(2.14)

Case I: Arbitrary k; High Freqmency (ei))te~)

so

(Oy
=1+ ~-'P (k eg),)'

e(k, (o) k'

= 1+tv„'/tee;

e(k, (a) = 1—te„'/ce'. (2.15)

- avelen th (k=0) dielectric constant of theFte. j.. The long-waveeng
Wigner lattice as a unc ion o

quency the lattice behaves like an electron plasma

that in this lim

e(o,e~) =1—es„' ebs.

A plot of e(0,~) against c0 is shown in Fig. 1.

(2.16)

Case III: Static Resportse (te= 0)

If in Eq. (2.14) we set co=0, then it readily follows
that

Case II:Iorig Waeelelgth (k =0); Arbitrary Frequelcy e&

As k —+ 0 the longitudinal mode points alongion h and
its fre uency approaches the plasma frequency. Thei s req

l to k. It follows from (2.14)transverse modes are norma. o
it

where co(k,l) is the longitudinal phonon frequency at
wave vector k. Using Eq. (1.13) in (2.20) we obtain

c (k,o):1—e~~'/a'k'.
(ek) 2 «reiy&

(2.21)

e(o,o) =—
This result has been quoted in the literature.

(2.22)

c (k,0)

1 f e(ko) a ainst k for small% is shown in Fig. 2.
From the preceding discussion we no e

let co~0 an —+d k —+0 then independent of whether
k/e~-+0 or u/k ~0 we always have

1 &o
' (k esp)'=1-

e(k,o) k' & (a'(k X)
(2.17)

ok /cup

But the sum rule of Eq. (1.11) shows that, for the
lattice to be stable, we need

a)'(k, ).)&ts„' (X= 1, 2, 3).
Combining Eqs. (2.17) and (2.18) we find that

(k e~~)'
&1—

e(k,o) k' & te„'

(2.18)

which implies that, for all k,

.(k,o)&o. (2.19)

The si n of the static dielectric constant of the elec-
1 ttice is surprising, especially w en one remembers

he result for the electron gas in the high den y
't e resu or

If k lies along a symmetric crystallograp icra hic direction
. ,2.14, thatand

'
all in magnitude it follows from Eq,

1/e(k 0) =1—e) '/(v'(k l) (2.20)

-2-

-IO—

-l4-

FIG. 2. The static-dielectric constant o 'gn
a function of wave vector k along a "good" crysta ograp ic
direction

' F. W. de Wette, Phys. Rev. 185, A287 (1964).
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The negativity of the static dielectric constant of the
Wigncr crystal does not necessarily imply a lattice
1nstabllxty. Thc complete 1ntcract1on bctwccn two
electrons in the signer lattice involves not just the
scalar dielectric constant def)ned in (2.1'/) but rather
a dielectric tensor e(k+K„;k+K„') as defined, for
example, in Adler. (Here k lies within the 6rst Brillonin
zone. ) In (2.14) or (2.1/) we have merely selected out
for special consideration the diagonal element of the
dielectric tensor with K„=K„'. The sign of such
individual element is no indication of the stability of
the entire lattice.

%C note that the only possible lattice instability in
our problem is phonon instability. This arises if there
exists a phonon mode with an imaginary frequency.
We investigated this possibihty by adopting an inter-
polation scheme. Based, on Clark's data, ' for the
phonon frequencies of a bcc Coulomb lattice in certain
preferred crystallographic directions, we derived an
interpolation formula for transverse phonon frequen-
cies, for small k in a general direction, with the help of
Kubic Harmonics. No imaginary phonon frequency was
found in any direction so that wc feel quite certai~
that the bcc Wigner lattice is stable.

%cmay, in fact., note that because of the stability of
the lattice, coupled with the sum rule (1.11),we found
in Eq. (1.13) that the longitudinal phonon frequency
decreases with k (111 'tllc Ilelg11bol'liood of k=0) Rnd

this decrease is responsible for the negative dielectric
constant.

B. Screening of a Static Point Charge

Consider a small point charge q placed at r. The per-
turbing charge density is

p„„(x)=qb(x —r)

(/ P e I(x-rrr)
k

The displacement of the ith electron, U;, can be
expanded as

U =g g(k y)e)r)gA'Rr
R,X

(2.2'/)

In equi1ibrium we have the condition

p A;;NSU;e= p; .
i.P

(2.28)

We substitute (2.2/) into (2.28) and use the ortho
norma11ty property of Cga to find

(2.29)

Consequently,
4s. (k e«1)e«),

U;=ie(/ P— pe (Rs-r)
I & k' e)e)s(k, X)

(2.30)

%e next turn to the problem of calculating the total
electrostatic potential at the point r'. The net potential
at r 1s

4 {r')=
f
r—r'f

—eg
f R;+U;—r'

f f R;—r'
f

4m 4g= (/ g e'~'(r ")——4rr/(/e'(/-P P
«.) x. fk+K„f'k'

(k s«),)L(k+K) s«),j
X e-er (r-r')eixr r' {231)

me)s (k,X)

For a given vector separation r—r' between the
point charge and the point of observation, (2.31)
depends on K„r', i.e., on the position of the point of
observation relative to the lattice. If we keep f—r'
fixed but move r' (and consequently r) over the entire
crysta1 so as to average over it

The potential at r due solely to the perturbing charge is Thus
(e'*'"),.=0 if K.WO. (2.32)

q 4x
C (x)= =g g —e'"'(*-'

fx—rf «k'

4rr «) ' (k ««),)'-
(C (r')).-=e &—1— —ale. (r-r')

(2 24) & k' k' & e&s(k, X)

The electric 6eM at the ith lattice point is

z...(R;)=—vc,„,(x) f. R,.

4rri(/ Q ——ke' '("*—')
& k'

(2.25)

' Stephen L. Adler, Phys. Rev. 126, 413 (1962).

Therefore, the external force on the ith electron is

4a
F;= eE r(R;)—=ie(/Q —ke'«'(R'-').

4m.
e-rIr (r—r')

ks e(k,0)
{2.33)

Tile fu11ctloI1 e(k,0) Is glvc11 111 Eq. (2.1/). Fol' sIIlall
values of k It bchavcs Rs —ce /Grks Lscc Eq {221)j
which is negative and removes the k ' singularity of
the unscreened, Goulomb potential. Furthermore,
e-'(k, O) has singularities at reciprocal lattice vectors
Ldue to the vanishing of the transverse «)s{k,X) at
such points) which will influence the asymptotic
behavior of (C (r') ), .A detailed study of the asymptotic
behavior did not seem worthwhile to us; but it is
quite clear that it is totally different from the simple,
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reduced Coulomb-like Geld produced by a point charge
in a conventional dielectric.

n(co =0)=e'/ma) g' (3.1)

Consider a general con6guration of the system with
the ith charge suffering a displacement U; so that the
4th dipole has a moment p'= —8U' The change ln
potential energy from the equilibrium cozkguration,
in which all U; s vanish, is easily seen to be

AVl, =~nuoomg U; U;
isa

P' P~'I Rol'~-s —3(P' &'J")(P'&")
+s

/R;;f'

vrhere
~ ~ ~~ ~

V

(3.2)

and the prime in summation denotes exclusion of terms
with i=j Equat. ion (3.2) may be rewritten as

AVJ, = 'mop'g-U U~+-' g' A; ~U U~ (3.3)
i,j,a„P

(3.4)

and it is identical with A;; & de6ned in (1.5).
Under the same electronic displacement the change

in energy of the signer crystal may be written as
$cf. Eq. (1.4)j
EVs ———,

' Q A;; ~U; U ~+~2 Q' A; ~U; U ~. (3.5)

Since
j,a, P j,l, a, P

III. WIGNER LATTICE AS LIMITING CASE
OP THE LOREHTZ MODEL

The Lorentz model for an insulator consists of a
lattice of point charges (—e) bound harmonically to
their equilibrium positions by a restoring force char-
acterized by the frequency ~p. Let m be the mass of
each point charge and E the number of lattice points
per unit volume. Because of the requirement of charge
neutrahty a stationary charge (+8) must be imagined
as residing at each lattice point. The displacement of
any negative charge, therefore, gives rise to a dipole,
and thus we encounter a conventional dipole lattice.
The static electric polarizability of each atom is

To 6nd the phonon frequencies in the Lorentz model
one has to diagonalize a potential matrix vrhich di6'ers
from the potential Inatrix for the %igner crystal only
in the diagonal elements, the diGerence being just a
constant. If Q(k, X) denotes the phonon frequency in
the Lorentz model for vrave vector h and polarization
X then in terms of &v(k, X), the Wigner lattice phonon
frequency, we have

o'(k, z) =~'(k,x)+~p, (3.9)

vrhere vre have dined

Cdp=MO —(0 /3 (3.10)

We see immediately from (3.9) and (3.10) that if
oro'&o&„'/V3, i.e. if the Lorentz lattice has weaker
restoring force than the %igner lattice, the long-vrave-
length transverse phonon frequencies become imaginary
and the lattice is unstable. Thus, the Wigner lattice
can be regarded as a Lorentz lattice just on the verge
of instability. In other vrords, if the natural frequency
Mp of a stable Lorentz lattice is slowly reduced, then
the limit when the lattice is just barely stable, vre get
the signer crystal. From here on we shall discuss a
stable Lorentz lattice in which &oP of (3.10) is a small
positive quantity.

The dielectric response of the Lorentz model can be
vrorked out in the same vray as in Sec. II for the %igner
crystal. In particular, the frequency- and vrave-vector-
dependent dielectric constant is given by

1 co~' (k eg),)'=1-
er, (k,a)) k' & PQ'(k, X)—a)'j

CO& (k egg)'=1— (3.11)
k' & pa)'(k, X)+esp —co'j

A few limiting cases of this expression are discussed
belovr.

with &vo
——&o~/v3. The reason for calling it a limiting

case vrill be discussed later. Of course, this assumes that
the moving charge in the Lorentz model is a single
electron, so that the mass m appearing in Eq. (3.1) is
the electronic mass.

Using (3.7) one may rewrite (3.3) as

EVL,=AVs+~~m(coo' —co~'/3)Q U; U; . (3.8)
i,a

A;; &=8 pm'~'/3, (3.6)

as can be easily shovrn by using Poisson's equation and
~ ~ Case I: Iong Wavelength (k=o); A-rbitrary Iireggency, &o

arguments of cubic symmetry, it follovrs that As P —+ 0,

EVs =-'Q —'mes 'U. U;+—' Q' A; sU U.~. (3.7)

Comparison with Eq. (3.3) indicates that the Wigner And
lattice is a special, limiting case of the Lorentz model

k. s~q= k for the longitudinal mode;
=0 for the transverse modes.
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FIG. 3. The dielectric constant of the Lorentz lattice in the long-
FIG. 4. The static dielectric constant of the Lorentz lattice as

a function of wave vector k.

It follows from (3.11) that

A plot of er, (0,co) against ~ is shown in Fig. 3.

Case II: Static ResPomse (co=0)

(k e|g)'

(3.12)

(3.13)

basically a special case of the Lorentz model for which
&o|——0 and Mp = (d „/A. In that case, in Fig. 3 for example,
the vertical dotted line moves to the left to coincide
with the ordinate. So the portion of the curve to the
left of the vertical dotted line disappears. In this way
one passes smoothly from the stable Lorentz model to
the limiting case of the Wigner crystal which is a lattice
of electrons on the edge of instability.

IV. CONCLUSION

er, (k,0) —+ 1—au '/(a'k' —(oP) (3.14)

A plot of e/. (lr, 0) against k for small k is shown in
Fig. 4.

Comparison of Figs. 3 and 4 with Figs. 1 and 2 helps
to explain some peculiar characteristics of the dielectric
constant of the Wigner lattice. Its most striking feature
is the fact that the static dielectric constant of the
Wigner lattice is negative for all k, including in par-
ticular the long-wavelength limit. This is very diferent
from the case of a normal insulator for which the long-
wavelength static dielectric constant is positive. How-
ever, a study of Figs. 1—4 shows that no basic contra-
diction is involved here. In many cases a dipolar in-
sulator can be represented fairly well by the Lorentz
model. As expected, we 6nd that in the Lorentz model
the static, long-wavelength dielectric constant is finite
and positive (=1+&v~'/&oP). The Wigner crystal is

We consider, in particular, the long-wavelength case
(ak«co„) when only the longitudinal mode contributes
to the sum over X. The frequency of the longitudinal
mode is given in Eq. (1.13). Using this in (3.13) one
easily finds that

In this paper we have discussed the longitudinal
dielectric property of the Wigner crystal. The most
striking feature of the result is the fact that the dielec-
tric constant for low k and small co is negative. We have
also pointed out that the Wigner lattice can be regarded
as a limiting case of the classical Lorentz lattice just
on the borderline of stability. The negative dielectric
constant, occurring in certain frequency and wave-
vector ranges (see Figs. 1—4) in both the Wigner and
Lorentz lattices, indicates the possibility of an e6'ective
attractive force between two conduction electrons
placed in such a lattice. One may speculate that this
fact may find application in analyzing insulators which,
when doped, become superconductors. "
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