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peratures where C* and 3° are negligible, and provides
no means of estimating these quantities at higher tem-
peratures. Consequently, in order to obtain values of
v we are obliged to retain our assumptions, which
have the virtues of generality and simplicity.

APPENDIX B: THEORETICAL CALCULATION
OF (3H?/dp)r

We obtain the following expression for (3H2/dp)r
using the theory described in Sec. 5:
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dInT,
dp

T W
X(2—~———):| . (B1)

Teh
From Eq. (17), we see that h< H2 and &' = (0H 2/3T) p.
It can be shown, using Eq. (B1), that when H.2 ap-
proaches its limiting behavior (i.e., Q is flattening off),

(0H 2/9p)r also approaches its limiting behavior with
R flattening off.

o0H 2 8aI'T 2
( ) = h[—-x(ve"— D+
T
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Critical-Field Ratio H,.;/H ., for Pure Superconductors Outside the
Landau-Ginzburg Region. I. T~0°K*}
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In this paper and a subsequent one (Paper II) we study the nucleation of superconductivity near a sample
surface at temperatures outside the Landau-Ginzburg region. We develop a generalized image method to
solve for the normal electron temperature Green’s function for a semi-infinite sample with a specularly
reflective plane boundary in an external magnetic field. Gor’kov’s linearized gap equation is then obtained
and studied for such a sample geometry. The pair wave function A is found to obey the Landau-Ginzburg
boundary condition at all T<T., even though this boundary condition was originally suggested only for
the Landau-Ginzburg region (i.e., when 7.— 7KT,). However, we also find that merely adding the boundary
condition to the differential equation appropriate to the bulk case does not give the correct solution to the
problem, except when Te—TKT.. At T=0°K, the integral gap equation is solved by a variational approach,
yielding the critical-field ratio Hc/Hc2>1.925. This should be compared with Saint-James and de Gennes’s
result, ~1.7, for T in the Landau-Ginzburg region. The small-T" correction to the ratio near 7=0°K is found
to be proportional to 7% InT" with a small coefficient. An upper bound is also found for the T=0°K ratio to
be 5.22, which is useful mainly in proving the existence of a ground state, so as to help justify the use of

a variational approach.

I. INTRODUCTION

HE phenomenological Landau-Ginzburg (L-G)
equation! is, because of its simplicity, a very
powerful tool for studying the various phenomena of
superconductivity.? It is well known,> however, that

* Work supported in part by the U. S. Air Force Office of
Scientific Research under Grant Nos. AF-AFOSR-735-65 and
AFOSR-68-1459, the U. S. Office of Naval Research (Contract
No. NOOO 14-67-A-0239-003), the U. S. Army Research Office
(Contract No. DAHC 04 67C 0023 under Project Defender), and
the University of Maryland Computer Science Center under
NASA Grant No. NsG-398.

t This paper and the subsequent one (Paper II) are based on a
thesis submitted by C.-R. Hu in partial fulfillment of the require-
ments for the Ph.D. degree in the Department of Physics and
Astronomy of the University of Maryland (unpublished). The
main results of Paper I were reported at the 1968 Annual Meeting
of the]American Physical Society [Bull. Am. Phys. Soc. 13, 109
(1968)].

t Present address: Department of Physics, University of
Tllinois, Urbana, Il

1V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.

20, 1064 (1950).
2 Many applications of the L-G equation are discussed in P. G.

except for extremely dirty superconductors® this equa-
tion is applicable in only a limited temperature range
near the critical temperature 7',, and for very pure
superconductors this limitation beco..ies rather restric-
tive. In order to extend the description of supercon-
ducting phenomena beyond the “L-G region” (the tem-
perature range in which the L-G equation is applicable),
it is necessary to use the microscopic BCS* theory or
Gor’kov’s’ generalization of it to space- and time-de-
pendent cases. A recent example of such an extension
is the elegant calculation by Helfand and Werthamer®
of the bulk nucleation critical field H ., for all impurity
concentrations and all temperatures below 7°.. The

de Gennes, Superconductivity of Metals and Alloys, translated by
P. A. Pincus (W. A. Benjamin, Inc., New York, 1966).

3 K. Maki, Physics 1, 21 (1964); 1, 127 (1964) ; P. G. de Gennes,
Physik Kondensierten Materie 3, 79 (1964).

4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108; 1175 (1957).

5L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl.: Soviet Phys.—JETP 7, 505 (1958)].

6 E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
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critical field H,. is the largest magnetic field for which
a localized superconducting region can exist deep inside
a bulk sample. A superconductor is classified as type
I or type II, according to whether H is smaller or
larger than the thermodynamic critical field H,. In a
type-I sample, localized interior superconducting re-
gions are thermodynamically unstable but H, still has
significance as a nucleation field. That is, it is the smal-
lest field for which the sample can be kept metastably
normal in a “supercooling” situation, when surface
effects are not important.

There is yet another analogous critical field of interest
for superconductors, called the surface nucleation
critical field, H.;. By using the L-G equation, Saint-
James and de Gennes (SJdG)” have shown that when
the magnetic field is parallel to the sample surface a
localized superconducting region can be present near
the surface (surface sheath) until the field reaches this
significantly higher critical value, H. They further
found the ratio H,/H,.» to be equal to 1.695 for any
given material. For all type-II materials and those
type-I materials for which H.>H, the surface sheath
will be present below H ;5. For those type-I materials for
which H ;< H,, the field H ; still has significance as the
smallest field for which the sample can be kept meta-
stably normal in a ‘“‘supercooling” situation, when the
field is parallel to a surface.

Although we may expect the above to remain qualita-
tively true even where the L-G equation is not accurate,
it is not clear if the predicted value of H,.; (or ratio
H 3/H ) is correct outside the L-G region. In fact the
experiments of Rosenblum and Cardona® and of
Tomasch® indicate a deviation of the ratio from the
predicted value of about 1.7. Suggestions that the devia-
tion is a strong-coupling effect (the experiments were
done on Pb) seem to have been ruled out by recent
investigations.’® We suspect the deviation to reflect the
fact that the samples were outside the L-G region.

The present paper is an attempt to extend the calcu-
lation of H., by SJdG outside the L-G region. Un-
fortunately, the presence of a boundary in the problem
sufficiently complicates matters that we have not been
able to emulate Helfand and Werthamer and find H .3
for all temperatures and impurity concentrations. We
have restricted ourselves to pure samples with a specu-
larly reflecting surface and only treated two limiting
temperature regions in detail. In this paper we consider
the low-temperature limit, 7~0, while in a subsequent

7D. Saint-James and P. G. de Gennes, Phys. Letters 7, 306
(1963). Extension of this work to superconductors in the dirty
limit at all temperatures below 7', are independently worked out
by Maki and by de Gennes. See Ref. 3.

8 B. Rosenblum and M. Cardona, Phys. Letters 9, 220 (1964);
13, 33 (1964).

9 W. J. Tomasch, Phys. Rev. 139, A746 (1965).

10 G. Eilenberger and V. Ambegaokar, Phys. Rev. 158, 332
(1967); E. D. Yorke and A. Bardasis, ibid. 159, 344 (1967). See
also, E. D. Yorke, Ph.D. thesis, University of Maryland, 1967
(unpublished), and University of Maryland Technical Report No.
664 (unpublished). :
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paper (Paper IT) we shift our attention to temperatures
only slightly below the L-G region to compute the first
few correction terms to the results obtained from the
L-G equation.

Our work is based on Gor’kov’s microscopic theory
of superconductivity.® In Sec. II we construct the
linearized gap equation (LGE) for our sample geometry
by introducing a generalized image method to solve
for the normal electron temperature Green’s function
appropriate for such a sample. In Sec. IIT we set up a
variational calculation of H. at T=0°K. In Sec. IV
the calculation of H.; is extended to small but non-
vanishing 7" by perturbation techniques. Section V con-
tains a conclusion and comments while two appendices
are devoted, respectively, to Gor’kov’s equivalent-
space-cutoff procedure!* and an upper bound calcu-
lation of Hc. This last is only of technical interest,
needed to show that the variational calculation is valid.

II. LINEARIZED GAP EQUATION

Since H s is the critical field for a second-order phase
transition, at which the pair wave function A(r)
vanishes, we can start with the linearized version of
Gor’kov’s gap equation (LGE)53:

A(r)=/K(r,r’)A(r’)dr’, 1)

with
K(r,r)=|MT XaGolt,)G_u(rY), (2)

and Go(r,r) being the normal electron temperature
Green’s function’® of “frequency” w= (2n+1)xT. For
a pure material in an external magnetic field with vector
potential A(r), G, satisfies

{iwt 2m)7'[V o AieA () P+ 1} Go,r) = 5(—1'), (3)

where u=er is the chemical potential, or Fermi energy.
We use units in which Z=c=kp=1, where kg is the
Boltzmann constant. The Green’s function should also
satisfy the symmetry condition

GHat)=G_,('1). 4

For a sample with boundaries, boundary conditions
(BC) are also needed to supplement Eq. (3). We shall
be interested in a semi-infinite superconducting sample
separated from a vacuum or an insulator by a specularly
reflective plane boundary. If its work function is on
the order of er, which is in turn >>T,, the microscopic

L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 37, 833 (1959)
[English transl.: Soviet Phys.—JETP 10, 593 (1960)].

12 See, for example, A. A. Abrikosov, L. P. Gor’kov, and I. E.
Dzyaloshinsky, Methods of Quantum Field Theory in Statistical
Physics, translated by R. A. Silverman (Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1963). This book also contains a good
introduction to Gor’kov’s microscopic theory of superconductivity.
We have mainly followed this book in the choice of notation.
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BC should bet?
Gw(r,rl) l ron bdry ™= 0. (5)
Another BC which has been used is
ﬁ : [V l'+ 1.e‘A(r) ]Gﬁ’ (r,l") l r on bdry ™ 0 y (6)

where 7 is a unit vector normal to the boundary. We
believe this to be less realistic than Eq. (5) but it leads
to the same kernel K and thus gives the same results
for H,; as when Eq. (5) is used [cf. remarks after Eq.
21)]. |

We shall use go,» and 8., to denote, respectively, the
normal electron temperature Green’s function for an
infinite sample, without and with an external constant
magnetic field H. Similarly, Go,. and G, will denote
the corresponding Green’s functions appropriate for the
semi-infinite sample of interest.

The expression for g, is well-known'®:

1

o) =goo(|1—0|)=——
i) =goullr=F ===

Xexpli(ippi’-l——ﬂ) |r—r'| ] , (D

UF

while g, has been found by Gor’kov!! to be

£ue) =gl exp| —ie / A@as], ©

to a very good approximation. (The integration path
is a straight line connecting 1’ and r.) To justify Eq.
(8), Gor’kov pointed out that go,., which satisfies Eq.
(3) with A=0, also satisfies

{iw+ 2m)7 [V +3ieH X (t—1') P4-p}
Xgo.w(l r"—r’l )= 5(!'—1") , 9

if the term quadratic in H can be neglected. This follows

since )
Vgo.o([1—1'|) < (t—1") LHX (r—1'),

so that terms in Eq. (9) linear in H vanish. But Eq. (9)
is just the result of inserting Eq. (5.3) into Eq. (3) for
g, and commuting the exponential integral to the left
past the differential operator, which verifies Gor’kov’s
expression. The approximation involved in neglecting
the terms quadratic in H is to ignore the curvature of
the electron orbits over distances of importance in the
problem. Equation (8) has been called the “s.emiclas-
sical” approximation® because only the magnetic vector
potential along the classical path of the electron con-
tributes to the Green’s function.

Without the external magnetic field, the Green’s
function Gy,., for a sample occupying the region >0
and satisfying the BC (5) at z=0, can be obtained by

13 For a discussion of boundary conditions, see C.-R. Hu, thesis,
University of Maryland, 1968 (unpubhshed).
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the ordinary image method:

Go,o(t1")=go,u(|t—1'|)—Rurgo,o([r—1'])
=g0,,,,([r—-r’[)-—go,o,(]r—-Rzrr’]), (10)

where the reflection operator R, changes 2/ to —z'.
Equation (10) clearly satisfies Eq. (3) with A set to zero
and the addition of a second source term in the un-
physical region, while the BC Eq. (5) and the symmetry
condition Eq. (4) are easily verified.

Abrikosov!* combined the two procedures above to
obtain an expression for the Green’s function in a semi-
infinite sample in the presence of a magnetic field as

Go(1,1")=Go,o(1,1") expl:~z'e / x-A(s)~ds]. (11)

2

Although this satisfies the symmetry condition and the
BC it is not correct since the terms linear in H no
longer drop out in the analog of Eq. (9). This is because
V:g0,o(|[t—=R.1’[) is no longer normal to HX (r—r')
everywhere.

The correct expression for G, is

Go(tr)=goo(|t—1'|) exp[—ie [r jA(s) -ds]

—go.o([r—R.r'|) exp[~ie / In'rA(s)-ds]. (12)

In Eq. (12),
r,r r1 r
Lo=[+];
44 r 11

each following a straight path, where 1, is the intercept
of the straight line connecting r and R,r’ with the
boundary surface. Explicitly, r; has the components

1= ((e2'+25)/(z+2), ' +92)/(a+7), 0). (13)

It is easy to see that the new path of integration in-
volved in the image term is nothing but the classical
orbit of an electron going from r’ to r, via a specular
reflection on the boundary surface.

To justify Eq. (12), we first notice that it clearly
satisfies the BC (5) and the symmetry condition (4).
To show that it satisfies Eq. (3), we must prove that
the image term in Eq. (12) satisfies Eq. (3) with the
image source. For this purpose, it is convenient to re-
write the image term by using the identity

I, r Rt/ r
f A(s)-ds=/ A(s)-ds,

r/
Rert/,r /Ryr’ r
=/ +[ ,
«/;' 1’ A,; r’

4 A, A. Abrikosov, Zh, Eksperim. i Teor. Fiz. 47, 720 (1964)
[English transl.: Soviet Phys.—JETP 20, 480 (1965)].

(14)

where
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and the vector potential has been extended into the
negative-z region according to the following conditions:

(a) H@p)=—H(R.x). (15)

(b) The gauge of A in the region 2<0 is so related
to that in the region z>0 that the vector potential A
itself is continuous across the boundary.

The proof of (14) is clear if one notices that the total
flux enclosed by the difference of the two integration
paths is always zero due to condition (a) and that the
validity of Stokes’s theorem is guaranteed by condition
(b).

Using Eq. (14), and the further simple identity

V,frA(s)-ds=A(r)——%5€(r,ro)X(r——ro), (16)
where B

3e(r,10)= 2/ H(ro+0(r—r,))0d6 an

is a weighted average magnetic field along the straight
line path, we find that we must prove the following
relation to be merely an identity, in order to conclude
that Eq. (3) is satisfied by Eq. (12):

{10)""‘ (Zm)_ll:v 1'+ %iegc(nRz’r’) X (l‘— Rz’r,)]2+ I‘}
Xgo,o(|t—Ro¥'|)=8(t—R,1').

As before we neglect the term quadratic in H while
a term linear in H vanishes identically. Due to the
spatial dependence of 3¢, however, there is an additional
term which did not appear in Gor’kov’s analysis, i.e.,

(4m)“1ie|:V rXGC(I'_,RZII")] : (l"'— Rz’r/)
Xgo.o([t—Rur']), (19)

but which turns out to be of the same order as the
neglected quadratic terms since € is slowly varying on
the scale of pr*, and can then also be dropped. Then
Eq. (18) reduces to the equation which gy, satisfies
and our proof is complete.

Before we go on to use Eq. (12), we would like to
make a few remarks about the range of applicability
of our generalized method of images.

In the first place Eq. (12) is independent of the choice
of gauge and also remains correct to the same degree
of accuracy if H is not constant in space, as long as H
does not vary over distances on an atomic scale.

Secondly, if Eq. (12) is replaced by the sum of the
direct and image terms instead of the difference, the
result is the Green’s function for the same problem with
the new boundary condition Eq. (6).

Finally the method can be extended to other geo-
metries for which the usual method of images is appli-
cable. When there are planar boundaries each image
term can be associated with a path from the source
point r’ to the field point r via one or several specular
reflections, and the integral phase factor for any term

(18)
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will follow that path. OQur expression for the Green’s
function has the appealing feature that it conforms to
our intuitive notion of the role of a propagator in
carrying information from the source point. There is a
contribution from each possible electron path and each
contributes a phase factor related to the potential along
its path.

Now that we have the proper Green’s function, the
corresponding kernel K of the LGE is found by using
Eq. (2). The resulting expression clearly satisfies the
BC:

K(t,x') | s=0=0, (20)

which in turn implies

A(l‘) |z==0=0- (21)

Now the kernel K contains four terms, the two
“direct” terms which vary on the scale of the BCS co-
herence length, £=vp/22T., and two “cross terms”
whose scale of variation is much smaller, pz—1. The
pair wave function A, however, should be slowly vary-
ing, as it is in the bulk case, except in a small region
near the boundary, 2o, where it has a rapidly varying
component.' Since we are interested in global proper-
ties of the superconducting states we find, such as the
critical field H 5, we can ignore the exact behavior of A
in the narrow surface region and consider an averaged
value (averaged over distances large compared to prt
but small compared to &j). This “smoothed?”’ pair wave
function satisfies Eq. (1) but with a “smoothed” kernel
from which the rapidly varying cross terms have been
removed:

K(t,t)=Fko(|r—1]) exp[ - Zie/;A(s) . ds]

i, r

+Eo(|r—R.Y'|) exp|:~2ie A(s)-ds], (22)

I

where

ko(lr—r'[)= N T X go.u(|t—r|)go~a(|t—r'|)

el (e o

We can also write

K@, )=k()+ R, Bk(r,),

(24

18 This rapidly oscillating component of the pair wave function
near a sample surface has been found by Falk for finite and semi-
1nﬁn§te superconducting slabs, and for semi-infinite supercon-
ducting and normal metals in contact [D. S. Falk, Phys. Rev.
132, 1§76 (1963)7]; by Leyendecker for the free surface of 2 normal
metallic slqb ba(;ked .by a superconductor [A. J. Leyendecker
Ph.D. thesis, University of Maryland, 1967 (unpublished)]; and
by Boyd in the vicinity of a tunneling barrier [R. G. Boyd, I”hys.
Rev. 167, 407 (1968)7. All have assumed that there is no applied
magnetic field. Boyd has restricted his attention to the neighbor-
hood of a second-order phase transition, as we do in the present
paper, but not Falk and Leyendecker.
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where

k() =ko(|t—1'|) exp[—Zie/rA(s)ds:'. (25)

Equation (22), or (24), is the sum of a direct term
and an image term and can be easily shown to satisfy

the BC:
DK (1) ] jmo=[V.+2i€A.(t) K (1,t') | .mo=0, (26)

which in term implies:
DA(Y) | 2=0=0.

It should be remembered that Eqgs. (26) and (27) are
actually the extrapolated behavior of the smoothed
kernel and the smoothed pair wave function, respec-
tively, from the region pr<<a<&,.

Equation (27) is exactly the BC proposed by Ginz-
burg and Landau to supplement the L-G equation,
which is a valid description of a supercondutcor only
when its temperature is very close to 7. We now find
that this BC can actually describe the behavior of the
pair wave function near a specularly reflective sample
boundary for all temperatures below T.. (It can also
be shown that this is still true even when the gap
equation is not linearized, and when the system is not
pure.)

We note also that should we have started with the
microscopic BC (6) instead of (5), and the Green’s
function appropriate to it, the microscopic kernel would
have differed only in the sign of the rapidly oscillating
terms so that the smoothed kernel would again be given
by Eq. (22), and from this point on the two calcula-
tions will coincide.

We now go back to the kernel Eq. (22), and write
down the corresponding LGE:

Alr)= ko([r—1'|) exp[— 2ie / rA(s)-ds:IA(r’)dr’

’

27

+ ko(|t—Ro1'|)
2'>0

Xexpl:——Zie / rl'rA(s>-ds]A<r')dr'- (28)

’

Without the second term and the limitation 2’>0 to
the integration range, Eq. (28) would be the corre-
sponding LGE for the infinite sample case, to which
Helfand and Werthamer® applied the operator identity

exp[—Zie /; jA(s)~ds:| exp[(t'—1)- V,JA(0) | =+

=exp[(t'—1)-D,JA(0) | o=+, (29)

where ®,=V,+2ieA(p), to convert the LGE into a
linear, homogeneous differential equation of infinite
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order. The equation was then solved by simultaneously
diagonalizing the two scalar operators .2 and

Du(=|H|7H-D). For our case, we can easily gen-
eralize Eq. (31) to nonstraight paths as

1 ds(r
exp| ~2i / AG)- Z( >er expL(T—1)- V,JA() o

L ds(r)
=T, exp[:— / dr
0 d’/"

where s(7) is the parametric equation of an arbitrary
given curve with s(0)=r’ and s(1)=r, and T, is an
ordering operation which requires operators character-
ized by smaller 7 to act first. (The generalization is
required because different components of ®, do not
commute.) We then can also convert our LGE, Eq.
(28), into a linear, homogeneous differential equation
of infinite order, which reads

m,,]aw)im, (30)

dl‘lko(l I‘*I"[) exp[(r’—r) 'gp]A(Q) [p-*—r

2’>0

Ar)=

+ dr’ko(|t—Ro1'|) exp[(t:—1)-D,]
2’>0
Xexp[ (t'—11)-D,]A(p) | =, (31)

or, after separating the bulk term and the surface
correction term,

dr'ko(|r—r'|)

2’<0

A= / dRE(R) exp[R-D,JAM)+

XeXp[(Rz’rl— r- gp]{exp[:(R#’r,"“Rz'l'l) ‘D]
- exp[(r’—Rz»rl) : Q,,]}A(g) l p=r. (32)

Without the second term on the right-hand side, Eq.
(32) is identical to the corresponding equation for the
infinite sample case found by Helfand and Werthamer,
which we shall refer to as Eq. (32’). With the extra
term in it, Eq. (32), as well as Eq. (31), now implies
that the exact BC, Eq. (27), is automatically satisfied.

Unfortunately, Eq. (31) or Eq. (32) can no longer
be solved exactly in the way Helfand and Werthamer
solved Eq. (32’), since they now involve three scalar
operators D,%, Dy, and D,(=7%-D,, where 74 is the
unit vector normal to the surface) which can no longer
be simultaneously diagonalized. Since, however, Eq.
(32) has the peculiar property that it contains the BC,
the possibility exists that it may be equivalent to Eq.
(32") with the BC Eq. (27) added as an independent
requirement. This possibility is worth examining since
an important feature of Helfand and Werthamer’s
solution® to the bulk nucleation problem is the dis-
covery that the nucleation pair wave function at all
temperatures is the same as that in the Landau-Ginz-



178 H c3d / H c?
burg region. It is therefore interesting to see whether
this is also the case here, which is likely to occur only
if the differential equation for the bulk case, Eq. (32'),
is recovered except for the addition of the Landau-
Ginzburg BC. This possibility can be ruled out, how-
ever, as is shown in Ref. 18, in Sec. III.

We have also considered the possibility of solving
Eq. (32) by a perturbational approach, using the solu-
tions of Eq. (32') with the BC Eq. (27) as a starting
point. This approach is not fruitful however, since a
divergence occurs in the zero-order calculation. The
divergence arises since Eq. (32') is equivalent to the
first term of Eq. (28) with no restriction on the region
of integration. But the zero-order solution with BC is
strongly divergent for z— — o, so that matrix ele-
ments of the zero-order kernel diverge as well. This
divergence also strongly indicates (but does not yet
rigorously prove) that the possibility mentioned in the
last paragraph is untenable.

To find the critical field, then, we have resorted to a
variational approach, as discussed in the next section.
Only the special case T=0°K is considered, as only in
this case can the integral equation be reduced to one
dimension.

III. VARIATIONAL CALCULATION
OF H;; AT T=0°K

The present calculation follows very closely Gor’kov’s
variational calculation of H,; at T=0°K.! QOur starting
point is Eq. (28) and we choose the constant magnetic
field to be in the y direction. We take the gauge

A(r)=H(z—2, 0, 0) (33)
with 2, variable, and then can limit our consideration
to those solutions A(r) which do not depend on x.'¢
To begin, we first reduce Eq. (23) to a simpler form by
temporarily ignoring the frequency cutoff.

ko([r—r'|)= [\ T(m/2x)*[|r—1'|

Xsinh2aTort r—r'| )T, (34)
At T=0°K, this expression becomes:
ko([r—r'|)= (4m) N[NV (O) [r—1'|=3,  (35)

where N(0)=mpr/27* is the electron density of states
per unit energy interval at the Fermi level. Equation

18Tn the gauge A(r)=(Hz0,0) we could consider pair wave
functions of the form A(r) =A.(y,2) exp(ékx). Identical equations
are found using Eq. (33) for A with A not a function of x if

=—2¢Hz. In the bulk case there is degeneracy in % or z. In
our case the nucleation critical field retains a dependence on 2,
which is roughly the “center of gravity” of the state, because of
the presence of the surface at z=0. H,; should then be the maxi-
mum value of these critical fields among all nucleation modes
characterized by — o <z <.
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(28) therefore becomes, with & (T)=vr/2xT,

CINN(0)TA(®r)
exp[—Zm' f A(s)-ds:]
= 4’7!' 0 T 1 -
S W e ey

exp[—Zwi / ' A(s)-ds:l

+
|t—R.r'|?sinh[|r—R.r'| /£&(T)]
XA)dr (for T=0) (36)

and

CIN N(O)TA@) = (4n)-t /

2’>0

{ [r—1'|3
Xexp[—Zri/ A(s) -ds:l-l— |[r—R, 1|3

X exp[— 2mi ft '“JA(s) . ds:l } A()dr

(for T=0). (37)

The r’ integrations in Eqgs. (36) and (37) are loga-
rithmically divergent since we did not introduce the
proper frequency cutoff in Eq. (34). Gor’kov,!* however,
has established an equivalent space-cutoff procedure
which can compensate the error. He first pointed out
the existence of the identity

CIA v (0) T

%D g in(uR, RA
— (ryg /' du /sm(u /W)Kl( ———o)dR,
0 u R?

UF

(38)

where Iny=C=20.577 is Euler’s constant, wp the Debye
frequency, and K(2) the first-order Bessel function of
imaginary argument, which behaves as z~! for small 2.
Letting wp — =, Eq. (38) becomes also logarithmically
divergent. Thus by substituting this expression into
Eq. (36) or (37) to eliminate |A|N(0), and then in-
troducing proper space-cutoffs on both sides of the
equation, we can get cutoff-independent finite results.
So much is given in Gor’kov’s original paper, but to get
the correct answer, he somehow chose to identify

R=2(r—r'), (39)

so that the same space cutoff |2—2'| > 8 could be used
on both sides of the equation. We use this identification
here and in Appendix A we show why Eq. (39) is neces-
sary and correct. Then Eq. (38) with wp—w, R—
2(r—r"), and with the space cutoff |3—2z’| > § introduced
can be simplified to give

CINN(O) T =—In(ee/20/h) (40)
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F1c. 1. The optimal variational value of the surface nucleation
critical field H.; as a function of the “center of nucleation”
parameter {o. The maximum of this curve is a lower bound to H .

where £g= (2eH)™'2, h= (2eH)(vr/27.)*= (&/Ex)?, and
€=0/tn. We can then change Egs. (36) and (37) to

(24
A® 1“(‘2;7';;)
__ 1 {exp[ —5ilt+H = %) (E-£)]
ar Jososrrisel Jo—¢/|? sinh(T]o—¢')
| ep{=FL )/ ) = 28001 (6— 80}
lo—Ryg'|? sinh(f| e~ Reg'|)
(for T5£0°K) (41)

A(e")do’

and

€€
29 (> )= (ary / (lo—e/|-
24/h 150,77 > ad

Xexp[—§i(¢+¢'—200) (5= &) I+ |o— Ry’ |2
Xexp{—3i[(£*+¢"2)/ ) =280 1(E—E)})A(e")dy’
(for T=0°K) (42)

where we have used the dimensionless variables
0= r/éHE (S:’?;{); KOEZO/EH, z= Y2 Wlth t= T/Tc) a’nd

N 1
| L%‘Hﬁ,

~

OPTIMUM STATE  ~~~__

1 1 L ) | 1 1 L 1
0.5
4= L2

F1c. 2. The width, omin, of the variational state giving the
largest Ho for a given value of ¢o. The open circles are rough
values with errors as indicated. The full circles show a refined
calculation used to pinpoint the optimum state. The dashed curve

shows the general trend.

4
1.0

C.-R. HU AND V. KORENMAN

178

have also carried out the path integrals with the vector
potential given by Eq. (33). As we pointed out there, in
this gauge, we can assume A(g) to be independent of £
but the explicit dependence on 2o (or {o) is clear in Egs.
(41) and (42). For calculating the surface nucleation
critical field H.3, we can limit ourselves to nucleation
modes which are also independent of 5 (or ¥). We can
then perform the %" and # integrations successively in

Eq. (42) to get

A( )I ( ee >
On 2/h
1 / {eXp[—%I§2—§’2~2§o(§—s")l]
k §1>0,15-8" [>e [e—¢]
exp[ =3[+ 25+ | ]
+ N ssrar,

e+l
(for T=0°K) (43)

which is a standard integral eigenvalue equation. The
equivalent reduction of Eq. (41) is not possible.

The eigenvalue for this equation is In(ee/24/%). We
are looking for the largest value of H(H.s) such that
there is a solution, and therefore the minimum eigen-
value. That there is a finite critical field is demonstrated
in Appendix B where we find a strict lower bound to the
eigenvalues of Eq. (43). The Hermiticity (here sym-
metry) of the kernel is easily demonstrated. We use a
variational technique to estimate and bound' the
lowest eigenvalue, choosing our trial wave function to
be a normalized Gaussian centered on the surface

A(§)= (4a/m)!* exp(—3af?),

where the width « and the parameter {o'® in the kernel
are to be varied. After some mathematical manipula-

tions, we then get

lng;)sm{ () et et

(44)

o 1/2 b
-(”“;) (V= 1) X Jagn), (45)

a

17 Strictly speaking, in order to show that the lowest eigenvalue
is bounded above by any matrix element of the kernel, and thus
that a variational value for this eigenvalue will be an upper bound
to it, one must first demonstrate that the eigenfunctions of the
kernel are a complete set. Separable kernels, for example, do not
provide a complete set of eigenfunctions. A direct proof of com-
pleteness for an arbitrary Hermitian kernel is rarely possible and
completeness is often merely assumed. On the other hand, a proper
variational formulation of superconductivity can serve us as well
as a proof of completeness. Two such treatments are those of G.
Eilenberger [Z. Physik 182, 427 (1965); 190, 142 (1966); Phys.
Rev. 153, 584 (1967)] and W. Silvert and L. N. Cooper [Phys.
Rev. 141, 336 (1966)]. The former, considered as a minimum
principle rather than a statement of stationarity, can be shown
to justify our upper bound calculation, while the latter, again con-
sidered as a minimum principle, implies the former. These varia-
tional treatments of superconductivity will be discussed elsewhere
by one of us (CRH) where it will be reconfirmed that they are
indeed minimum principles. We wish to thank Dr. D. Falk for
bringing the completeness question to our attention.
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where

®  exp(V2¢ou)—1 a?—1 at1
Jila,do)= / du————o—-—— expl:—-————uz:":l—erf(*———u)],

0 “w 20 (2a)12

V2Eo dy

a?—1 u a—1
Jola,do)= f — exp[—— u{”exp( —\/fg'ou)[erf<a”2§‘ ot )—erf( u)]
0o U 2a (2a)172 (2¢)12

— +\/2“ l: f( 1/2¢ 4 “ f ot “
exp( .(Ou) eri| a g-UI (Za)lm)"“er ((Za)uzw)]}r

a \2 r° exp(VZiom)—1
Js(a,$0)= (a—l— 1) f du exp[ —3(e+1)u?] erf[2712(a+1)1%],
0

u
V2o dyg 2a\ 172
Tiago)= —{exp[—%m—l)uz—vérouj(—) fTha—1), 4]
0 u T
1/2
—exp[—%<a+1)u2+v2';ouj(¥jr—l) a2t 1]
and *
2V2¢0 du 2a 1/2
o= —{exp[-%(a—1>u2~v2m3(—) fTha—1), @(@VZo—1))]
Vit U T
1/2
—expl Kk D)) et Du )}
Yo 4
with

b
fla,b)= / exp[—ax?]dx

T 1/2
-_—(‘-1—) erf(bv/a) for >0

a
=|a|~12 exp(|a|b?)F(b|a|1/?) for a<O

and the function

F(x)=exp(—x?) / ’ exp(x?)dx

being called Dawson’s integral.

Keeping {o=0 and only varying « to minimize the
right-hand side of Eq. (45) is particularly simple and
we obtain

62
@min=1.1350; 1 1n(—-—)§0.4145 ,
2vh

ch(g'o: 0)/H522 0.8729 y (fOI‘ T= OOK) (46)

where use has been made of the fact that at T=0°K,
hea=¢€2/4y,11¢ and the notation H.1(¢o) refers to the
critical field for nucleation of a state whose wave func-
tion is characterized by a particular value of {o.18

18 Using these bounds on H,y1(¢0) we can show that our LGE(34)
is not equivalent to the equation of Helfand and Werthamer, Eq.
(34') plus a boundary condition. The exact solution of Eq. (34’)
for 20=0 is a Gaussian centered at z=0, and for this case the BC
is immediately satisfied. Then Hci1($o) would be equal to Hes
and our variational calculation, using a Gaussian trial function,
would give the exact value. But we see in Eq. (48) that our best
variational result is 0.87H,z so the two equations cannot be the

For £0#0, we used the 7094 computer of the Uni-
versity of Maryland to carry out all of the integrals in
Eq. (45) for various values of a and {o. Minimizing the
eigenvalue with respect to «, we get the functional
dependence of H.11(fo) on {o which is shown in Fig. 1.
Further minimizing the eigenvalue with respect to {o
then gives us

amin=0.52,
(¢0)min=0.68,
£ In(e?/2v%)<0.0192,
and

Ho/Hw>1.925 (for T=0°K). 7

In Fig. 2 we have also shown the dependence of the
width parameter of the pair wave function, amin(¢o),
on the “center of nucleation” parameter {.19:%

We can now compare our results with the correspond-
ing ones in the L-G region. There the exact calculation

same. This also makes it highly unlikely that the nucleation wave
function found in the L-G region is the correct wave function also
outside that region.

19 That the parameter z gives the position of the center of
nucleation is rigorously true for the bulk nucleation cases, and
is only roughly true for the surface nucleation cases. In the L-G
region, it gives the point where the current density vanishes for
surface as well as for bulk nucleation modes, but for lower tempera-
ture cases, even this is perhaps no longer true since the current
density now depends on the pair wave function in a rather com-
plicated nonlocal fashion.

20 Notice that we have quantized the possible values of #=a/
(1+a) in numerical computation which gives the errors indicated
in the figure.
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by SJdG gives
(t0)min=0.768 s
H.3/H.=1.695 (for T.—T<KT,,exactresult).

It is better, however, to compare our results with
those from a similar variational calculation in the L-G
region using the same trial wave function as we have
used here,? which reads

Omin= 0.603 ’
(fo)min = O. 727 y

Hca/ch= 1.658
(for T,—T<«KT,, variational result). (49)

We therefore see that the variational critical field
ratio H/H. is roughly 16%, higher at T=0°K than
in the L-G region. Using this percentage increase and
the exact value of the ratio in the L-G region, we esti-
mate that the exact value for H.; at T=0°K will
probably be near 1.97H ..

In Appendix B, we find an upper bound for the value
of He3 at T=0°K: H,.3/H.<5.22, which, however,
does not help us very much in pinpointing the exact
value of Hs.

(48)

IV. EXTENSION TO SMALL BUT NON-
VANISHING TEMPERATURES

For T50°K, Eq. (41) should take the place of Eq.
(42). Again, with A(g) limited to Ar(¢) [the sub-
script T is added to distinguish it from the correspond-
ing quantity at T=0°K, Ao(f)] we can simplify the
equation slightly to get

Arll) ln(z\e/ehr)

——1 / [Ku.2(6,8)+ Ka.o(e,8) MGG, (50)
0,185 1>e

with To[A(E4¢—280) (6 —¢") (u2—1)1/2]
- ® oLz - > i “-

Ky z(6,8)=1 /1 d— u sinh(Z|¢—¢'| ) ’

and

Ka2(58")

, (51

) /wd Tof3[ = 2o+ = )1
. u sinh(7) ¢ —¢'| )
where J, is the Bessel function of order zero.
Following closely Gor’kov’s corresponding calcula-
tiOl’l for ch,u we let hTEho"f—ahT, K;,TEK¢,0+5K;'T

for ¢=1, 2, where kg corresponds to the value of H.;
at T=0°K as kr does at finite 7. We also define Ar({)

21 See, for example, Refs. 2, 14,
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=Ao({)+A(¢). Equation (50) can then be symbolically
written, to lowest order in Z, as

e @
MO (=44 [ sty +Kastes DO
20/ ho 0
— 315k do(6)—} / [6K 1,26,
)
+8Ks,r(¢,8) JA($)ds",  (52)
so that
ho‘13hr=/ / [8K1,7(¢,¢)+ 0K 2, 2(§,¢)JAK()
P X Ao(")dide
when
/ | 80(0) g =1. (3)
0
Symbolically, therefore,
ho‘l5h7= <5K1_T>+ <5K2,T> . (54)
Now for |¢+¢'—2¢0|>7,
2 exp[— 3|22 =255~ ]
8K, 2(5¢)=—— : . , (55)
3 [¢4+¢"—2¢0]
and for | (§*4§2)/ 4" — 250>,
2 exp[—3| 21— 2008+ 1]
Ko (¢, =—— : ; ,0 . (56)
3 @)/ () =26
Within the regions [¢+¢'—200SE, |0/

4+ —2¢0] S for Ky, 1, Ko, 7, respectively, the expan-
sion procedure is not valid and 8Kj,7, 6K,,r are there-
fore much more involved. However, it is not hard to
see that within these regions, 6Ki,r and 6K, are ~%,
so that the total contribution to /4 '6kr from these
integration regions are ~ 2. To the lowest order, which
is ~#2 Inf, we therefore have:

oo oexpl—1| ¢t 20— ]
(5K1,T>=_“‘/ / ,
3Jo Jo [5"*‘3"2(0[

XA*($)AG)dgds”

oo roexpl—3 |2 200( N1 ]
<5K2,T>= "“"/ / , ’
3Jo Jo 1@/ GHE)— 250
XA*()AQ)dsds’
where the integration regions are restricted as above.

Using our trial wave function, Eq. (44), we can then
get, to order 72 Inf:

b 8hr=w(\)# Ini+0(@*),

and therefore,

H3(T)/H 3(0) = 142\ 2 Ini+-0(#)

=1+w\)[4:(0) 2 Int4-0(),  (57)
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with

w(\)=4[exp(—A?) erf(\)+4rr—172
Xexp(—4A?) / (2—u?)1'2 exp(2\2u2)du]

and A={p/a. (Here I=F3=1h!"2.)
Our variational result gives A=20.49. A numerical
integration then gives w(A\)=21.39. We thus get, using

[7e3(0) 1= [42(0) (2e(0) / 7e2(0)) I
=~[1.93X¢e?/4y11=20.50:
H o3(T)/H 3(0)=21+0.70£2 Int+O(£2). (58)
Comparing this result with Gor’kov’s corresponding
result on H, at low temperatures'* (which can be

shown to be also the result of Helfand and Werthamer’s
calculation®),

H o(T)/H ;2(0) = 14-27.2? InZeo+0(7:0%)

=~1-+0.65£2 Int+0(22) (59)
(where Zso=th.1/%), we then obtain
H o3(T)/H o2(T)=21.93[140.05# Int+0(2)].  (60)

This is only a very rough estimation of the lowest-
order correction term for the ratio H./H, at small
but nonvanishing temperatures. However, it indicates
that the ratio H./H . has a vanishing slope with re-
spect to ¢ at £=0, and that the coefficient of the correc-
tion term is very small, which means that most of the
temperature dependences of Hcs and H.e cancel one
another in forming the ratio, leaving only a weak tem-
perature dependence. We therefore expect H.s/H.s to
be rather flat in the low-temperature region and not to
drop very much until 7" becomes a large fraction of 7.

V. CONCLUSION AND COMMENTS

Using a variational approach at T=0°K, we have
studied Gor’kov’s linearized gap equation appropriate
to a pure superconducting sample separated from a
vacuum or an insulator by a specularly reflective plane
boundary, in an applied magnetic field parallel to this
boundary. We found that the ratio of surface to bulk
nucleation critical fields, H,/Hs, -is roughly 14%
higher than that in the Landau-Ginzburg region, i.e.,
when T',— I'<T.. A perturbational calculation was then
made to find that for small but nonvanishing 7', the
percentage change of the ratio is roughly equal to 0.05
(T2/T2) In(T/T.), indicating that the ratio stays more
or less constant in the low-temperature region. In a
subsequent paper (Paper II), however, we shall show
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that the same linearized gap equation will also predict
that when the temperature is decreased just below the
Landau-Ginzburg region, the ratio H,/H., decreases
at a non-negligible rate, from the value ~1.7 valid
in the Landau-Ginzburg region. Combination of the
two results therefore indicates that this ratio cannot
be described by a monotonic function. Instead, it will
possess a minimum somewhere between 0 and T,.. We
suspect that the minimum will probably occur quite
close to T, so that the ratio is essentially larger than
1.7, for 0L T ST .. [Note added in proof. The conclusions
of Paper II are sensitive to the value of a certain ex-
pression which was incorrectly evaluated in the litera-
ture. Using the correct value, the minimum in H.s/H
disappears and H.s/H ., seems to increase monotonically
as T becomes smaller. See Paper II for a detailed
discussion. ]
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APPENDIX A: ON GOR’KOV’S EQUIVALENT-
SPACE-CUTOFF PROCEDURE

In this appendix we show that Eq. (39) is required
in Gor’kov’s equivalent-space-cutoff procedure. We con-
sider the special case 7=0°K and the simplest space
cutoff |r—r’| >4. The generalization of the proof to
finite T and to other space cutoffs such as |z—3'| > 6
(which we actually use) is then straightforward.

Gor’kov’s procedure accomplishes two things. First
the inconvenient limit of summation at finite wp which
should appear in Eq. (23) and which would then
modify Egs. (34) through (37) is replaced by the more
convenient spatial limitation |r—1’|>4. A value of &
can be found for which this replacement is essentially
exact, as we note below. In addition, however, it is also
convenient to eliminate the potential strength AN(0) in
favor of other parameters, and this is accomplished
by use of Eq. (38). In Eq. (38) one can let wp — if a
spatial cutoff at |R|=4¢" is substituted and again &'
can be found such that the substitution is essentially
exact. It is simplest, however, just to find the relation-
ship between ¢ and &’ which will ensure that the errors
in the two expressions will compensate one another
when AN(0) is eliminated. Equivalently, one can set
6=2¢" and find the appropriate relationship between R
in Eq. (38) and (r—1’) in Egs. (36) and (37) which will
lead to the same compensation.

Setting R=a(r—r’), letting wp—0, inserting the
spatial cutoff and eliminating AV (0) between Egs. (37)
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and (38) gives the equation
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= / dr'A(r")
2/>0,l r—1’|>8
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)

A(r)-——/ du[ sm(aulr—r’[/vp)Kl(aAolr— |
0 —r’[>8 lr-—r’|2 UF

expl:—Zei / :A(s)~ds:| exp[—Zei / mrA(s)ds]

: . . (A1)

|r—r'|3 |[r—R,r'|®

Each side of this equation differs from the corresponding exact expression. Let E; and E, be the “errors” in the
left- and right-hand sides of Eq. (Al). If we can choose « such that E;=E, then Eq. (A1) will be correct as it

stands.

Now for & sufficiently small we may include the spatial cutoff in the “correct” expressions introducing
negligible errors of order § since all the integrals converge. Then the ‘“‘errors” are

,sin(aul r—r'|/vp)

2d
El—A(I)‘-—“/ L “

TY50 Jap % Jir—111>8

2 sm(a
~A(r)- [ /
w Jwp r—-x'l>5

= —47A(r) In(aywpdvs?),

where one assumes wp>>Aq and wpdvF<K1, and

expl:—Zei /r ‘rA(s)-ds:,

E,=/ ar’A(Y’)
2/>0,|r—r’|>8

|[r—r'|?
—2wp
Xexpl: [r—r'|:|
F
exp[—2wpvr™ Yr—r'|]
~A(r) dr’
[r—1'1>3 [r—r'[2

= —4rA(r) In(2ywpdvr—1) (A3)

as the scales of variation of the integral phase factor
and A(r) are ~ & which is >vz/wp.

(IA()I 1‘—"1','
(=)
UF

|[r—1'|2

sin(ou|r—r'| /or)

T

(A2)

Comparing Egs. (A2) and (A3) we see that a=2 is
required to make Eq. (Al) correct. Further, as we
mentioned above, a particular choice, §=1vp/2vwp, will
make the individual “errors” vanish as well and would
be the correct choice for the cutoff if we were not
eliminating ANV (0) as well. Finally, we mention that for
the cutoff |z—2’| > 6 the appropriate value would be
d0=vp/2eywp, where e is the base of the natural
logarithms.

APPENDIX B: UPPER BOUND FOR
H.1:(¢)) AND H;

In this appendix, we show that for any given {,,
Eq. (45) implies the existence of a lower bound to its
eigenvalue In(3ees1/2), hence an upper bound to the
nucleation critical field H ;11({o). The largest one among
these upper bounds will then naturally give an upper
bound to H . We first cast Eq. (45) into the form

ee exp[—Z S]] =[] — 28 o(6 — s“’)l]
A(lED 1 =—3A([¢])
(¢ n(ZVh) (Isl o0 =47 1>e [¢—¢'|
—1/” exp[—3[¢[¢] f’|§"|—23'0(3‘—5',)IJ{A(II,D_A(IH))(R,
: —o0 ,g‘—KJI ) ’

which then implies

€ ® 00 . 0 _,_ N —2 0 ’
- =0 —0,[§=t!]>e
© exp[—F || =187 =260 —$") []

[AC[$)—=A[¢"]) [2dsds’.

+1

—00

[¢—¢|
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The second term is positive definite, so we have

ce *© *
1“(5%)2/_,““""“)'A('“)' 4 [ 1aqebia,
where

1(1¢] 5= —3 f &g —g |1

Xexp[—3[¢] =¢8] =250 —5)I]
=I1(I§‘|,§0)+Iz(|§'l,§'o),

while

L(l¢] o =—%f

-0

0

dn'|n—n'|~texp[— | n*—7"%|],
With 77=(|§.| _g.ﬂ)/\/?: 17'=(§"—§'0)/\/Z and

Iz<|r|,ro>=-%/ &1+
0

X{exp[—4|[¢]2—"=2¢0(| |+ |]
—exp[—3]|§[*4¢"2—26o([$ [+ [} -

The integral I:(|¢|,¢0) has been studied by Gor’kov.!
From this results, we get

L(J¢] 50 =% InGye)+2[(|n] — o)/ V2],
where
|z
B(x)=exp[—?] / exp[w7]e’ In[ (| 2] +)/

(2| —2")1d'>0, for all x.
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We therefore get

3 In(e?/2vh) > / L(¢] sl A ] % /

-0

la(ls])|2dg.  (B1)

-~00

Up to now, all the steps we have taken are in close
analogy with Gor’kov’s corresponding calculation on
H 5. However, because of the simpler integral equation
which Gor’kov worked with, he obtained % In(e?/2vk,)
>0 instead of our Eq. (B1), from which he concluded
he2<X heoUB, where the upper bound 7%,,UB is equal to
¢*/2y. For our present case, we first notice that for
£0<0, we have I32>0 for all {. This implies that we can
find 211UB(C0) < hoaVB for all p<0, which strongly
suggests (but does not prove) that no surface nucleation
modes with {,<0 are physically more favorable than
the bulk nucleation mode, a fact known to be true in the
L-G region. For {,>0, I is no longer positive definite.
But if a({o)>0 exists such that I,(|¢],¢0)> —a(to) for
all §, we can then have %1198 ({o) =3 (e2/v) exp[2a(to)].
That such a finite (o) does exist for any value >0
is assured by the fact that I.(|¢|,¢0) is defined and
continuous for all §, —w <{<w, and as |{|—w,
I,— 0. To estimate a(fo), however, we must employ
numerical method. We omit the details here but only
point out that (i) a(¢o) is continuous, and — 0 as {o—> 0
or ©, and (ii) a=mina({y) exists and is found to be
220.48 so that k< 2.61(e?/2y) =5.22k,,.

Comparing our procedure in getting this upper
bound for H .3 with Gor’kov’s corresponding one for H s,
we feel that our upper bound is looser than his, due
to our replacement of I5(|¢|,f0) by its minimum value.
Since Gor’kov’s upper bound for H, is twice as large
as the true value of H,., we expect that our upper
bound to H.; is more than twice larger than the true
value of H., indicating that most probably the exact
value of H s is somewhere around 2H .



