
peratures where C- and P" are negligible, and provides
no means of estimating these quantities at higher tem-

peratures. Consequently, in order to obtain values of
y" we are obliged to retain our assumptions, which
have the virtues of generality and simplicity.

APPENDIX 3: THEORETICAL CALCULATION
OF (BHs/BP)r

We obtain the following expression for (BH,s/Bp)r
using the theory described in Sec. 5:

(
BH,2 8xl T,2 d lnTc

h —X(y'"—1)+-
Bp 7 V

T h'
2——— BI

From Eq. (17), we see that h ~ H, s and h' ~ (BH,'/BT) „.
It can be shown, using Eq. (Ii1), that when H.s ap-
proaches its limiting behavior (i.e., Q is flattening off),
(BH,s/BP)r also approaches its limiting behavior with
R flattening off.
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Critical-Field Ratio H.s/H. & for Pure Suyerconductors Outside the
Landau-Ginzburg Region. I. T =O'K*t'

Cary-RzN Hrrt Awu VrcToa KoasNMAst

Center for Theoretecat Physics anct the Department of Physscs and Astronomy,
Unf'uersity of Maryland, College I'ark, Maryland Z074Z

(Received 30 September 1968)

In this paper and a subsequent one (Paper II) we study the nucleation of superconductivity near a sample
surface at temperatures outside the Landau-Ginzburg region. We develop a generalized image method to
solve for the normal electron temperature Green's function for a semi-in6nite sample with a specularly
reflective plane boundary in an external magnetic Geld. Gor'kov's linearized gap equation is then obtained
and studied for such a sample geometry. The pair wave function d, is found to obey the Landau-Ginzburg
boundary condition at all T&T„even though this boundary condition was originally suggested only for
the Landau-Ginzburg region (i.e., when T,—T«T,).However, we also hand that merely adding the boundary
condition to the di8erential equation appropriate to the bulk case does not give the correct solution to the
problem, except when T,—T«T, .At T=O'K, the integral gap equation is solved by a variational approach,
yielding the critical-Geld ratio H, 3/H, g&1.925. This should be compared with Saint-James and de Gennes's
result, ~1.7, for T in the Landau-Ginzburg region. The small-T correction to the ratio near T=O'K is found
to be proportional to T' lnT with a small coefficient. An upper bound is also found for the T=O'K ratio to
be 5,22, which is useful mainly in proving the existence of a ground state, so as to help justify the use of
a variational approach.

I. INTRODUCTION

HE phenomenological Landau-Ginzburg (L-G)
equation is, because of its simplicity, a very

powerful tool for studying the various phenomena of
superconductivity. ' It is well known, 2 however, that

*Work supported in part by the U. S. Air Force Once of
Scientiic Research under Grant Nos. AF-AFOSR-735-65 and
AFOSR-68-1459, the U. S. Ofhce of Naval Research (Contract
No. NOOO 14-67-A-0239-003), the U. S. Army Research OQice
{Contract No. DAHC 04 67C 0023 under Project Defender), and
the University of Maryland Computer Science Center under
NASA Grant No. ¹G-398.

t This paper and the subsequent one (Paper II) are based on a
thesis submitted by C.-R. Hu in partial ful6llment of the require-
ments for the Ph.D. degree in the Department of Physics and
Astronomy of the University of Maryland (unpublished). The
main results of Paper I were reported at the 1968 Annual Meeting
of the American Physical Society t Bull. Am. Phys. Soc. 13, 109
(1968)j.

f Present address: Department of Physics, University of
Illinois, Urbana, Ill.' V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).' Many applications of the L-G equation are discussed in P. G.

except for extremely dirty superconductors' this equa-
tion is applicable in only a limited temperature range
near the critical temperature T„and for very pure
superconductors this limitation beco..Jes rather restric-
tive. In order to extend the description of supercon-
ducting phenomena beyond the "L-G region" (the tem-
perature range in which the L-G equation is applicable),
it is necessary to use the microscopic BCS' theory or
Gor'kov's' generalization of it to space- and time-de-
pendent cases. A recent example of such an extension
is the elegant calculation by Helfand and %erthamer
of the bulk nucleation critical Geld H, 2 for all impurity
concentrations and all temperatures below T,. The

de Gennes, Superconductivity of Metals and Alloys, translated by
P. A. Pincus (%. A. Benjamin, Inc., New York, 1966).

3 K. Maki, Physics 1, 21 (1964); 1, 127 (1964);P. G. de Gennes,
Physik Kondensierten Materie 3, 79 (1964).' J. Bardeea L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (195 l.

eL P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 54, 755 (19581
I English &ansi. : Soviet Phys. —JETP 7, 505 (1958)g.

6 K. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
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critical field H, 2 is the largest magnetic field for which
a localized superconducting region can exist deep inside
a bulk sample. A superconductor is classified as type
I or type II, according to whether H, 2 is smaller or
larger than the thermodynamic critical field H, . In a
type-I sample, localized interior superconducting re-
gions are thermodynamically unstable but H.2 still has
significance as a nucleation field. That is, it is the smal-
lest field for which the sample can be kept metastably
normal in a "supercooling" situation, when surface
effects are not important.

There is yet another analogous critical field of interest
for superconductors, called the surface nucleation
critical field, H,3. By using the L-G equation, Saint-
James and de Gennes (SJdG)r have shown that when
the magnetic field is parallel to the sample surface a
localized superconducting region can be present near
the surface (surface sheath) until the field reaches this
significantly higher critical value, H, 3. They further
found the ratio H„/H, s to be equal to 1.695 for any
given material. For all type-II materials and those
type-I materials for which H,3)H, the surface sheath
will be present below B,3. For those type-I materials for
which H,3&H„ the field H, 3 still has significance as the
smallest field for which the sample can be kept meta-
stably normal in a "supercooling" situation, when the
field is parallel to a surface.

Although we may expect the above to remain qualita-
tively true even where the L-G equation is not accurate,
it is not clear if the predicted value of H.s (or ratio
H, s)H„) is correct outside the L-G region. In fact the
experiments of Rosenblum and Cardona' and of
Tomasch' indicate a deviation of the ratio from the
predicted value of about 1.7. Suggestions that the devia-
tion is a strong-coupling effect (the experiments were
done on Pb) seem to have been ruled out by recent
investigations. ' We suspect the deviation to reflect the
fact that the samples were outside the L-G region.

The present paper is an attempt to extend the calcu-
lation of H, s by SJdG outside the L-G region. Un-
fortunately, the presence of a boundary in the problem
suKciently complicates matters that we have not been
able to emulate Helfand and Werthamer and find H, 3

for all temperatures and impurity concentrations. We
have restricted ourselves to pure samples with a specu-
larly reQecting surface and only treated two limiting
temperature regions in detail. In this paper we consider
the low-temperature limit, T~O, while in a subsequent

~ D. Saint-James and P. G. de Gennes, Phys. Letters 7, 306
(1963). Extension of this work to superconductors in the dirty
limit at all temperatures below T, are independently worked out
by Maki and by de Gennes. See Ref. 3.

B. Rosenblum and M. Cardona, Phys. Letters 9, 220 (1964};
13, 33 (1964).' W. J. Tomasch, Phys. Rev. 139, A746 (1965).' G. Eilenberger and V. Ambegaokar, Phys. Rev. 158, 332
(196/}; E. D. Yorke and A. Bardasis, ibid. 159, 344 (1967). See
also, E. D. Yorke, Ph.D. thesis, University of Maryland, 1967
(unpublished), and University of Maryland Technical Report No.
664 (unpublished).

paper (Paper II) we shift our attention to temperatures
only slightly below the L-G region to compute the first
few correction terms to the results obtained from the
L-G equation.

Our work is based on Gor'kov's microscopic theory
of superconductivity. ' In Sec. II we construct the
linearized gap equation (LGE) for our sample geometry
by introducing a generalized image method to solve
for the normal electron temperature Green's function
appropriate for such a sample. In Sec. III we set up a
variational calculation of H, 3 at T=O'K. In Sec. IV
the calculation of H, 3 is extended to small but non-
vanishing T by perturbation techniques. Section V con-
tains a conclusion and comments while two appendices
are devoted, respectively, to Gor'kov's equivalent-
space-cutoff procedure" and an upper bound calcu-
lation of H, 3. This last is only of technical interest,
needed to show that the variational calculation is valid.

A(r) = E(r,r')A(r')dr',

(2)

and G„(r,r') being the normal electron temperature
Green's function" of "frequency" &o=(2n+1)AT. For
a pure material in an external magnetic field with vector
potential A(r), G„satisfies

jiro+(2m) '$V,+ieA(r)]'+p)G (r,r')=8(r r'), (3)—

where p= e& is the chemical potential, or Fermi energy.
We use units in which A=c=k~=1, where k~ is the
Boltzmann constant. The Green's function should also
satisfy the symmetry condition

G *(r,r')=G (r',r). (4)

For a sample with boundaries, boundary conditions
(BC) are also needed to supplement Eq. (3). We shall
be interested in a semi-infinite superconducting sample
separated from a vacuum or an insulator by a specularly
reQective plane boundary. If its work function is on
the order of ep, which is in turn &)T„ the microscopic

I L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 37, 833 (1959)
I English transl. :Soviet Phys. —JETP 10, 593 (1960)j."See, for example, A. A. Abrikosov, L. P. Gor'kov, and I. E.
Dzyaloshinsky, 3fethods of QNantum Field Theory in Statistical
Physics, translated by R. A. Silverman (Prentice-Hall, Inc. ,
Englewood Cliffs, N. J., 1963). This book also contains a good
introduction to Gor'kov's microscopic theory of superconductivity.
We have mainly followed this book in the choice of notation.

II. LINEARIZED GAP EQUATION

Since H, 3 is the critical field for a second-order phase
transition, at which the pair wave function &(r)
vanishes, we can start with the linearized version of
Gor'kov's gap equation (LGE)'.
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where

r

V, A(s) ds= A(r) ——,'I!(r,ro) X (r—ro), (16)
Io

1

X(r,ro) =—2 H(ro+0(x —ro))ede
0

is a weighted average magnetic 6eld along the straight
line path, we 6nd that we must prove the following
relation to be merely an identity, in order to conclude
that Eq. (3) is satisfied by Eq. (12):

(in»+ (2m) '[V,+-', ieR(r, R;r') X (x—R;r')]'+1»)
Xgo, (I r—8;r'

I )= 8(r—8;r') . (18)

As before we neglect the term quadratic in 8 while
a term linear in II vanishes identically. Due to the
spatial dependence of 3!,however, there is an additional
term which did not appear in Gor'kov's analysis, i.e.,

(4»»»)
—'ie[V, XX(r,R;r')] (r—R;r')

Xgo, (Ir—R, r'I), (19)

but which turns out to be of the same order as the
neglected quadratic terms since K is slow1y varying on
the scale of px ', and can then also be dropped. Then
Eq. (18) reduces to the equation which go, satisfies
and our proof is complete.

Before we go on to use Eq. (12), we would like to
make a few remarks about the range of applicability
of our generalized method of images.

In the first place Eq. (12) is independent of the choice
of gauge and also remains correct to the same degree
of accuracy if 8 is not constant in space, as long as 8
does not vary over distances on an a,tomic scale.

Secondly, if Eq. (12) is replaced by the s»»»»» of the
direct and image terms instead of the difference, the
result is the Green's function for the same problem with
the new boundary condition Eq. (6).

Finally the method can be extended to other geo-
metries for which the usual method of images is appli-
cable. VVhen there are planar boundaries each image
term can be associated with a path from the source
point r' to the field point r via one or several specular
reQections, and the integral phase factor for any term

and the vector potential has been extended into the
negative-s region according to the following conditions:

(a) H(r)= —H(R,r).

(b) The gauge of A in the region s(0 is so related
to that in the region s&0 that the vector potential A
itself is continuous across the boundary.

The proof of (14) is clear if one notices that the total
Aux enclosed by the difference of the two integration
paths is always zero due to condition (a) and that the
validity of Stokes's theorem is guaranteed by condition
(b)

Using Eq. (14), and the further simple identity

will follow that path. Our expression for the Green's
function has the appealing feature that it conforms to
our intuitive notion of the role of a propagator in
carrying information from the source point. There is a
contribution from each possible electron path and each
contributes a phase factor related to the potential along
its path.

Now that we have the proper Green's function, the
corresponding kernel K of the LGE is found by using
Eq. (2). The resulting expression clearly satisfms the
BC:

Z(x,r') I,=( ——0,

which in turn implies

(20)

(21)

+ko(lr —8;r'I) exp 2ie —A(s) ds, (22)
r'

where

ko(lx x'I)—=

Ilail

& Z go, (Ir—r'l)go, (lr —r'I)

»»»~' 1
2 exp — Ir r'

I
.—(23)2~) lx r'I a—

Ke can also write

E(x,r')= k(r.,r')+ &—;Hk(r, r'), (24)

This rapidly oscillating component of the pair wave function
near a sample surface has been found by Falk for 6nite an
in6nite superconducting slabs, and for semi-infinite supercon
ducting and normal metals in contact LD. S. Falk phys
132, 1576 {1963)j; by Leyendecker for the free surface of a normal
metallic slab backed by a superconductor pA. J. LeyendeckerPh.D. &hesis, University of Mary1and, 1967 {unpuMiahedlg an~d
by Boyd in the vicinity of a tunneling barrier LR. Q, Boyd physRev. 167, 407 (j.968)j.All have assumed that there is no appliemagnetic'GeM Boyd has restricted his attention to the neighbor
hood of a second-order phase transition, as we do in the present
paper, but not Falk and Leyendecker.

Now the kernel K contains four terms, the two
"direct" terms which vary on the scale of the BCS co-
herence length, $o= »»x/2»rT—„and two "cross terms"
whose scale of variation is much smaller, px '. The
pair wave function A, however, should be slowly vary-
ing, as it is in the bulk case, except in a small region
near the boundary, s«$o, where it has a rapidly varying
component. "Since we are interested in global proper-
ties of the superconducting states we find, such as the
critical 6eld II,3, we can ignore the exact behavior of 6
in the narrow surface region and consider an averaged
value (averaged over distances large compared to px '
but small compared to $o). This "smoothed" pair wave
function satisfies Eq. (1) but with a "smoothed" kernel
from which the rapidly varying cross terms have been
removed:

r

E(r,x') =ko(lr r I) exp 2ie A(s—)»is
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k(r, r')=ko(Ir —r'I) exp —2' A(s) ds
fC

order. The equation mas then solved by simultaneously
diagonalizing the two scalar operators S,' and

(25) SII(—= IVI 'H 2)). For our case, we can easily gen-
eralize Eq. (31) to nonstraight paths as

Equation (22), or (24), is the sNIII of a direct term
RQd RQ llTlagc term Rnd can bc cRslly showQ to sRtlsfy
the BC:

$~(r,r') I, 0=—[V,+2k', (r)]E(r,r') I,=,=0, (26)

which in term implies:

(27)

It should be remembered that Eqs. (26) and (27) are
actually the extrapolated behavior of the smoothed
kernel and the smoothed pair wave function, respec-
tively, from the region pr '((s(($0.

Equation (27) is exactly the BC proposed by Ginz-

burg and Landau to supplement the L-6 equation,
which is a valid description of a supercondutcor only
when its temperature is very close to T,. We now find
that this BC can actually describe the behavior of the
pair wave function near a specularly reQcctive sample
boundary for all temperatures below T,. (It can also
be shown that this is still true even when the gap
cquRtlon ls not linearizcd, Rlid when thc system ls not
pure. )

We note also that should we have started with the
microscopic BC (6) instead of (5), and the Green's
function appropriate to it, the microscopi c kernel would

have di8ercd only in the sign of the rapidly oscillating
terms so that the smoothed kernel mould again be given

by Eq. (22), and from this point on the two calcula-
tloQs will coincide.

We now go back to the kernel Eq. (22), and write
down the corresponding LGE:

ds(I)
exp 2—is A(s) — —dr exp[(r' —r) v ]d,(y) I, ,

0 dT'

ds(I )=T, exp — d .p, h(y)I, „{30)

wllel'c s(I ) ls thc pRIRInc'tl'Ic cquatl011 of Rll Rlbltl'Rl'y
glvcll clll'vc with s(0) =I and s(1)=r Rnd T ls Rll

ordering operation which requires operators character-
ized by smaller I to act first. (The generalization is
required because different components of 8, do not
comlnute. ) We then can also convert our LGE, Eq.
{28), into a linear, homogeneous differential equation
of infinite order, which reads

z'&0

+ dr'ke(I r—E;r'I) exp[(r, r) g—) ]
z'&0

Xexp[(r' —rl) %),]&(y) I,=„(31)
or, after separating the bulk term and thc surface
cori cctlon terms

a(r) = dRko(E) cxp[R Z,]h(r)+ dr'ko(Ir —r'I)

&exp[(E;rI—r) %&,](exp[(E;r'—E, rl) P ]

g(r) = k,(Ir—r'I) cxp —2js A(s) ds &(r')dr'
z'&0 W

+ k0{lr—&"r'I)
zl) 0

&&exp —2' A(s) ds A(r')dr'. (28)

Without the second term and the limitation s'&0 to
the integration range, Eq. (28) would be the corre-

sponding LGE for the infinite sample case, to which

Helfand and Werthamer6 applied the operator identity

r

exp 2is A(s)—ds exp[(r' —r) Vp]h(y) I, ,

where P,=V,+2ieA(y), to convert the LGE into a
linear, homogeneous diBerential equation of infinite

Without the second term on the right-hand side, Eq.
(32) is identical to the corresponding equation for the
in6nite sample case found by Helfand and Werthamer,
which we shall refer to as Eq. (32'). With the extra
term in it, Eq. (32), as well as Eq. (31), now implies
that tile cxac't BC Eq. (27) ls Rutolllatlcally sRtls6cd

Unfortunately, Eq. (31) or Eq. (32) can no longer
be solved exactly in the way Helfand and Werthamer
solved Eq. (32'), since they now involve three scalar
operators X),', &II, and $„={IIE„whree Il is the
unit vector normal to the surface) which can no longer
be simultaneously diagonalized. Since, however, Eq.
(32) has the pecuhar property that it contains the BC,
the possibility exists that it may be equivalent to Kq.
(32') with the BC Eq. (27) added as an independent
requirement. This possibility is worth examining since
an important feature of Helfand and Werthamcr's
solution' to the bulk nucleation problem is the dis-
covery that the nucleation pair wave function at all
temperatures is the same as that in the Landau-Ginz-
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burg region. It is therefore interesting to see whether
this is also the case here, which is likely to occur only
if the differential equation for the bulk case, Kq. (32'),
is recovered except for the addition of the Landau-
Ginzburg BC. This possibility can be ruled out, how-

ever, as is shown in Ref. 18, in Sec. III.
We have also considered the possibility of solving

Eq. (32) by a perturbationsl approach, using the solu-
tions of Eq. (32') with the BC Kq. (27) as a starting
point. This approach is not fruitful however, since a
divergence occurs in the zero-order calculation. The
divergence arises since Eq. (32') is equivalent to the
ffrst term of Eq. (28) with no restriction on the region
of integration. But the zero-order solution with BC is
strongly divergent for s —+ —, so that matrix ele-
ments of the zero-order kernel diverge as well. This
divergence also strongly indicates (but does not yet
rigorously prove) that the possibility mentioned in the
last paragraph is untenable.

To find the critical field, then, we have resorted to a
variational approach, as discussed in the next section.
Only the special case T=O'K is considered, as only in
this case can the integral equation be reduced to one
dimension.

III. VAMATIONAL CALCULATION
OF H, 3 AT T=O'K

The present calculation follows very closely Gor'kov's
variational calculation of H.2 at T=O'K."Our starting
point is Eq. (28) and we choose the constant magnetic
field to be in the y direction. We take the gauge

A(r) =H(s —sp, 0, 0)

with so variable, and then can limit our consideration
to those solutions h(r) which do not depend on x."
To begin, we ffrst reduce Eq. (23) to a simpler form by
temporarily ignoring the frequency cutoB.

kp([r —r'[) = [X[T(its/2or)'L[r —r'['
Xsinh(2+Toe-'[r —r'[)) '. (34)

At T=o'K, this expression becomes:

kp([r —r'[) = (4tr) '[h[N(0) [r—r'[ ', (35)

where E(0)=ttsPr/2n' is the electron density of states
per unit energy interval at the Fermi level. Equation

'PIn the gauge A(rl=(Hs, o,ol we could consider pair wave
functions of the form A(r) =~7,(y,s) exp(ikx). Identical equations
are found using Eq. (33) for A arith 6 not a function of x if
k=——2eHzO. In the bulk case there is degeneracy in k or so. In
our case the nucleation critical Geld retains a dependence on ~,
which is roughly the "center of gravity" of the state, because of
the presence of the surface at s=o. H,3 should then be the maxi-
mum value of these critical fields among all nucleation modes
characterized by —~ CIp (~.

(28) therefore becomes, with )p(T) =vr/2wT,

LIMNI X(O)j-t~(r)

exp —2pi A(s) ds

")o .
I
r—r'i ' sinhL [r—r'[/to(T)]

exp —2xz A(s) ds

and

Ir—R"r'[s»nh[. [r—R"r'I/to(T)].

X&(r')dr' (for TWO) (36)

[:I~ I&(0)j '~()=(4 )-'
z'+0

[r—r'[-s

Xexp —2ori A(s) ds + [r—R;r'[-'

Ilp I
Xexp —2xz

It
A(s) .ds h(r')dr'

(for T=O). (37)

=(4orsygo) '
"n dl sin(NR/pr) t'Rhp)

(38)
p I R' Epr)

where lnp= C—0.577 is Euler's constant, co& the Debye
frequency, and E&(s) the ffrst-order Bessel function of
imaginary argument, which behaves as 2' ' for small 3'.

Letting a&n ~~, Eq. (38) becomes also logarithmically
divergent. Thus by substituting this expression into
Eq. (36) or (37) to eliminate [X[X(0), and then in-
troducing proper space-cutoffs on both sides of the
equation, we can get cutoff-independent finite results.
So much is given in Gor'kov's original paper, but to get
the correct answer, he somehow chose to identify

R=2(r—r'), (39)

so that the same space cutoff [s—s'[ )5 could be used
on both sides of the equation. We use this identification
here and in Appendix A we show why Kq. (39) is neces-
sary and correct. Then Eq. (38) with son —+~, R —+

2(r—r'), and with the space cutoff [z—z'
[ )8 introduced

can be simplified to give

(4o)

The r' integrations in Eqs. (36) and (37) are loga-
rithmically divergent since we did not introduce the
proper frequency cutoff in Eq. (34). Gor'kov, "however,
has established an equivalent space-cutoG procedure
which can compensate the error. He first pointed out
the existence of the identity

LIVIA (0)j-t
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have also carried out the path integrals with the vector
potential given by Eq. (33).As we pointed out there, in
this gauge, we can assume 5(e) to be independent of g

but the explicit dependence on so (or I'o) is clear in Eqs.
(41) and (42). For calculating the surface nucleation
critical field II,3, we can limit ourselves to nucleation
modes which are also independent of rf (or y). We can
then perform the ri and $ lnteglatlons successively 1n

Eq. (42) to get

0.5
0

I I I I I I I I I I I

0.5

&,=cg
I.O

Fzo. I. The optimal variational value of the surface nucleation
critical Geld B,11 as a function of the "center of nucleation"
parameter fo. The maximum of this curve is a lower bound to H,3.

where err—= (2') 'l' h—= (2sH)(os/2s. ,)'= ($o/(lr)', and
e=—8/$rr. We can then change Eqs. (36) and (37) to

ee
~(e)»l&

t'&0, I g-g' I &e

-pL :(&—+f' 2f.)-(S r')5-

I e—e'I '»»(I
I e—e'I)

exp( —,'IL(I s+f's)/0-+I') —2f,5(p—g'))
~(e')~e'

Ie—~r e'I'»»(&le —&I e'I)

(for TWO'K) (41)

f' se
~(e)»l I= —(4~) ' (le—e'I '

&2v'&& I &o.ir-r i&.

&&-pl —' (I+I'—2I o)(~-e)5+ le-&I e'I-'

xm {—-', I'LO'+f")/(g+t') —2t o5(»—(')) )&(e')de',

(for T=OoK) (42)

where we have used the dnnensionless variables
e—= r/br =—(&,rI,I'), I'o—=so/bl, f= fh 'l' with I= T/T. , and

ss ) n+1) 1/2

s» I&» I
L(2n)'"+(n+1)'"5

2'& 2n )
( n ) lls II

in(V2 —1)—Q J'(n, I o),
In+1/

(45)

-pt. .'If—' t"-2fo-(I- f') —l5
I &o ir-I'i&c

expt ,' l—l'—+t'-s 2f—o(t+f'') l5
~(f')df',

ll-+I'I

(for T=O'K) (43)

which is a standard integral eigenvalue equation. The
equivalent reduction of Eq. (41) is not possible.

The eigenvalue for this equation is in(eo/2+8). We
are looking for the largest value of Z(P, s) such that
there is a solution, and therefore the minimum eigen-
value. That there is a 6nite critical field is demonstrated
in Appendix 8 whel'e we find a strict lower bound to the
eigenvalues of Eq. (43). The Hermiticity (here sym-
metry) of the kernel is easily demonstrated. We use a
variational technique to estimate and bound'7 the
lowest eigenvalue, choosing our trial wave function to
be a normalized Gaussian centered on the surface

~(I-)= (4 / )'l"m(-! I'), (44)

where the width n and the parameter t'o" in the kernel
are to be varied. After some mathematical manipula-
tions, we then get

«0 ~ i ~ ~

.' "--i 1'l-l.
I J

0.5—

I I I

OPTIMUM STATE
I

I.O

FIG. 2. The width, 0!Ij~ of the variational state giving the
largest II,11 for a given value of go. The open circles are rough
values with errors as indicated. The full circles show a reGned
calculation used to pinpoint the optimum state. The dashed curve
shows the general trend.

«7 Strictly speaking, in order to show that the lowest eigenvalue
is bounded above by any matrix element of the kernel, and thus
that a variational value for this eigenvalue will be an upper bound
to it, one must Grst demonstrate that the eigenfunctions of the
kernel are a complete set. Separable kernels, for example, do not
provide a complete set of eigenfunctions. A direct proof of com-
pleteness for an arbitrary Hermitian kernel is rarely possible and
completeness is often merely assumed. On the other hand, a proper
variational formulation of superconductivity can serve us as well
as a proof of completeness. Two such treatments are those of G.
Eilenberger PZ. Physik 182, 427 (j.965); 190, 142 (1966); Phys.
Rev. 153, 584 (1967)1 and W. Siivert and L. ¹ Cooper LPhys.
Rev. 141, 836 (1966)). The former, considered as a minimum
principle rather than a statement of stationarity, can be shown
to justify our upper bound calculation, while the latter, again con-
sidered as a minimum principle, implies the former. These varia-
tional treatments of superconductivity will be discussed elsewhere
by one of us (CRH) where it wiH be reconGrmed that they are
indeed minimum principles. We wish to thank Dr. D. Falk for
bringing the completeness question to our attention.
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where

exp(V2f'ou) —1
Jt(n, f o)—= du exp—

0 I
n' —1 // n+1

u' 1—erfl u
1

2n k(2n)'/2 j

~2(n, f 2) =
~2«dg—exp—I

Q Q ) n 1—
Q' exp( —v2f'ou) erf n' 'f'o+

l

—erf — u
l

20,' (2n)1/2 j . (2n) t/2 j
u ) n+1—exp(+%2fou) erf nt/sfo+ — --

l

—erf u
l

(2n)'/2/ (2n)'" I
r n )'/2 " exp(v2t'ou) —1

&2(n, i.o) =—
I expl —. 2'(n+1)Q'] erf1 2 '/'(n+1)'"Q]y
uz+ il 2 Q

+&' dg r2n) '/2

J4(n, f o)=— —expl —2(n —1)Q' V2f—ou]l —
l fL2(n —1),u]I &wi

/2

—expl ——,'(n+1)u'+@2'f'ou]l
1

erf1 2—'/2(n+1)'/'u]
I n+1/I

ro(neo) —=

' '&o dl r2nq 1/2—expt' ', (n —1-)u'—v2io—u]l
'—

1 f1:2'(n—1), (u(2~f 2 u))—'"]
ego

) 2/2

—expl —2(n+1)Q2+V2f'ou]1
l

erfL(22(n+1)u(2V2i o
—u))

En+ ii

f(a,b) = expL —axs]dx

rw )t/2
erf(bga) for a&0

&4ai

' ' exp(l al b')P(b
I al in) for a&0

and the function

F(x)= exp( —xs) exp(gs)dx

For i'o/0, we used the 7094 computer of the Uni-
versity of Maryland to carry out aH of the integrals in
Eq. (45) for various values of n and i o. Minimizing the
eigenvalue with respect to 0., we get the functional
dependence of H tt(i'2) on go which is shown in Fig. 1.
Further minimizing the eigenvalue with respect to f'o

then gives us

0, ; =0.52,

(fo); =0 68, .

2 ln(es/ah) &0.0192,

being called Dawson's integral.
Keeping t'o Oand ——only varying n to minimize the

right-hand side of Eq. (45) is particularly simple and
we obtain

or

n;,= 1.1350; —', lnl
l
&0.4145,

&2&bi

B.tt(f'o= 0)/H. s&0.8729, (for T= O'K) (46)

where use has been made of the fact that at T=O'K,
h, s

——e'/ky, "' and the notation B,tt(go) refers to the
critical Geld for nucleation of a state whose wave func-
tion is characterized by a particular value of i'o

2 Using these bounds on Hy J $(l'2) we can show that out LGE(34)
is not equivalent to the equation of Helfand and Werthamer, Eq.
(34') plus a boundary condition. The exact solution of Eq. (34')
for z0=0 is a Gaussian centered at z=0, and for this case the BC
is immediately satis6ed Then H, n(io.) would be equal to H, 2

and our variational calculation, using a Gaussian trial function,
would give the exact value. But we see in Eq. (48) that our best
variational result is 0.8M', 2 so the two equations cannot be the

B,s/Z, 2) 1.925 (for T=O'K). (47)

ln Fig. 2 we have also shown the dependence of the
width parameter of the pair wave function, n;„(is),
on the "center of nucleation" parameter f'o. '2 m

We can now compare our results with the correspond-
ing ones in the L-6 region. There the exact calculation

same. This also makes it highly unlikely that the nucleation wave
function found in the L-G region is the correct wave function also
outside that region.

"That the parameter z0 gives the position of the center of
nucleation is rigorously true for the bulk nucleation cases, and
is only roughly true for the surface nucleation cases. In the L-G
region-, it gives the point. where the current density vanishes for
surface as well as for bulk nucleation modes, but for lower tempera-
ture cases, even this is perhaps no longer true since the current
density now depends on the pair wave function in a rather com-
plicated nonlocal fashion.

"Notice that we have quantized the possible values of et=a/
(1+a) in numerical computation which gives the errors indicated
in the Ggure.
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with

ur(1~) =—-'Lexp( —X') erfP,)+4'. "'

)&exp(—4X') (2—I')'" exp(21''I')dlj

and 7 =fogn (H. ere t=t.g
=—th, q' '.)

Our variational result gives )—0.49. A numerical
integration then gives ro(li)=1.39. We thus get, using

I:h ~(0)r'= Lh.2(o)(h.3(0)/h. 2(0))l '
—L1.93&(e'/4y] '—0.50:

H„(T)/H„(0)=1+0.70t' lnt+0(t ). (58)

Comparing this result with Gor'kov's corresponding
result on H, 2 at low temperatures" (which can be
shown to be also the result of Helfand and Werthamer's
calculation' ),

H,2(T)/H, 2(0) = 1+—,t,2' lnt, 2+0(t~2 )
=1+065t' lnt+. 0(t')

(where t,~= th, m
't'), —we then obtain

H, a(T)/H, 2(T)=1.93[1+0.05t' lnt+0(t') j. (60)

This is only a very rough estimation of the lowest-

order correction term for the ratio H, ~/H, m at small

but nonvanishing temperatures. However, it indicates
that the ratio H,3/H, 2 has a vanishing slope with re-

spect to t at t=0, and that the coef5cient of the correc-
tion term is very small, which means that most of the
temperature dependences of H, 3 and H, 2 cancel one

another in forming the ratio, leaving only a weak tem-

perature dependence. We therefore expect H, 3,/'H, 2 to
be rather Qat in the low-temperature region and not to
drop very much until T becomes a large fraction of T,.

V. CONCLUSION AND COMMENTS

Using a variational approach at T=O'K, we have

studied Gor'kov's linearized gap equation appropriate
to a pure superconducting sample separated from a
vacuum or an insulator by a specularly reRective plane

boundary, in an applied magnetic field parallel to this

boundary. We found that the ratio of surface to bulk

nucleation critical fields, H, a/H, 2, is roughly 14%
higher than that in the Landau-Ginzburg region, i.e.,
when T,—T&&'T,.A perturbational calculation was then

made to find that for small but nonvanishing T, the

percentage change of the ratio is roughly equal to 0.05

(T'/T 2) ln(T/T, ), indicating that the ratio stays more

or less constant in the low-temperature region. In a
subsequent paper (Paper II), however, we shall show

that the same linearized gap equation will also predict
that when the temperature is decreased just below the
Landau-Ginzburg region, the ratio H, a/H, 2 decreases
at a non-negligible rate, from the value I.7 valid
in the Landau-Ginzburg region. Combination of the
two results therefore indicates that this ratio cannot
be described by a monotonic function. Instead, it will

possess a minimum somewhere between 0 and T,. We
suspect that the minimum will probably occur quite
close to T„so that the ratio is essentially larger than
1.7, for 0& T& T,. $1Vote addedin Proof. The conclusions
of Paper II are sensitive to the value of a certain ex-

pression which was incorrectly evaluated in the litera-
ture. Using the correct value, the minimum in H, I/H, m

disappears and H,z/H, 2 seems to increase monotonically
as T becomes smaller. See Paper II for a detailed
discussion. j
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APPENDIX A: ON GOR'KOV'S EQUIVALENT-
SPACE-CUTOFF PROCEDURE

In this appendix we show that Eq. (39) is required
in Gor'kov's equivalent-space-cutoG procedure. We con-
sider the special case T=O'K and the simplest space
cutoff

~
r —r'~ )8. The generalization of the proof to

finite T and to other space cutoffs such as ~z—z'~ )b

(which we actually use) is then straightforward.
Gor'kov's procedure accomplishes two things. First

the inconvenient limit of summation at 6nite co~ which
should appear in Eq. (23) and which would then

modify Eqs. (34) through (37) is replaced by the more
convenient spatial limitation ~r—r

~
)b Avalue of .h

can be found for which this replacement is essentially

exact, as we note below. In addition, however, it is also
convenient to eliminate the potential strength liÃ(0) in

favor of other parameters, and this is accomplished

by use of Eq. (38). In Eq. (38) one can let &o& ~~ if a
spatial cutoff at ~R~ =8' is substituted and again ti'

can be found such that the substitution is essentially
exact. It is simplest, however, just to find the relation-

ship between 8 and 8' which will ensure that the errors
in the two expressions will compensate one another
when XÃ(0) is eliminated. Equivalently, one can set
5= b' and find the appropriate relationship between R
in Eq. (38) and (r—r') in Eqs. (36) and (37) which will

lead to the same compensation.
Setting R=n(r r'), lettin—g own —+~, inserting the

spatial cutoB and eliminating liN(0) between Eqs. (37)
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The second term is positive definite, so we have We therefore get

( ee
I(li I Zo) I ~(l 1 I) I

'«
&2~hi

I ~(li I) I'« 2»(e'/2v&) & In(lf I za) I ~(lf I)I'«

where

&«xpC —
2 IV I f I

—f'I 1'I —21'08'—t') l]

while

Ii(IIlto) 'l,f =d~—'Iv —~'I '~xVL' —lv' —~"Ij,

with q= (I f'I —10)/K2& q = (1 1 p)/—K2, and

&&(expC —l

Ilail'

—P—21'o(lfl+f') I]
—expC —-' I I

t'I '+1"—2f o(If'I+1') I])

where

4 (x)=—expC —x'] expCx"]x' lnC(l xl+x')/

(I xl —x')]dx'&0, for all x.

The integral I&(l f I,fo) has been studied by Gor'kov. "
From this results, we get

Up to now, all the steps we have taken are in close
analogy with Gor'kov's corresponding calculation on
II,2. However, because of the simpler integral equation
which Gor'kov worked with, he obtained -', 1n(e'/2yh, n)

&0 instead of our Eq. (Bl), from which he concluded
h,2&h,&"~, where the upper bound h, 2U~ is equal to
e'/2y. For our present case, we first notice that for
fo& 0, we have I2& 0 for all t' This.implies that we can
find h,uun(10)&h, n"n for all $0&0, which strongly
suggests (but does not prove) that no surface nucleation
modes with $0&0 are physically more favorable than
the bulk nucleation mode, a fact known to be true in the
L-G region. For 1'0)0, Iq is no longer positive definite.
But if a(t'0)&0 exists such that I2(lt I,io)& n(lo—) for
all t, we can then have h.iP (1 0) = ', (e'/y-) expC2n(f'0)].
That such a finite n(l 0) does exist for any value fo) 0
is assured by the fact that I2(li l, t'o) is defined and
continuous for all f, —~&i'&~, and as It I

+~, -
Ig-+ 0. To estimate n(1'0), however, we must employ
numerical method. Ke omit the details here but only
point out that (i) n(fo) is continuous, and ~0as t'0~0
or ~, and (ii) +=minn(f'0) exists and is found to be—0.48 so that k,g& 2.61(e'/2y) =5.22k„.q.

Comparing our procedure in getting this upper
bound for H, g with Gor'kov's corresponding one for B,2,
we feel that our upper bound is looser than his, due
to our replacement of I2(l f I,fo) by its minimum value.
Since Gor'kov's upper bound for II,2 is twice as large
as the true value of H,2, we expect that our upper
bound to II,3 is more than twice larger than the true
value of B,3, indicating that most probably the exact
value of H, g is somewhere around 2H, 2.


