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increases by about 5% for each percent Zr. It is argued
that such mass increases may indicate crossing of a
small and a large mass band as Zr is added. The model
used predicts superconductivity at very low carrier
concentrations in 3% Zr-doped specimens.
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The thermal expansion of some type-I superconductors (indium, lead, tantalum, and tin) is discussed
thermodynamically in terms of Gruneisen functions, which describe the volume dependence of the entropy.
The Gruneisen functions for the normal and superconducting states can be taken to differ only in their
electronic components, y'" and y". Values of y'" obtained from thermal-expansion measurements in the
normal state are shown to be more reliable than values obtained from critical-field measurements on super-
conductors, because the magnetic data are not accurate enough in the limiting low-temperature region
determining y'". The values of y" for the four metals all appear to be negative, unlike y'". Theoretical
values of y" calculated using the BCS theory for weak coupling and the similarity principle are consistent
with experiment for all the metals except lead. The disagreement for lead is probably due to its particularly
strong electron-phonon coupling. According to the theory, the values of p" depend through dlnT, /d lnV on
the volume dependence of the electron-phonon interaction, as well as on properties of the normal state. The
experimental evidence for signihcant changes in lattice properties is discussed; such a change appears to be
established for indium but not for lead.

j.. INTRODUCTION

S INCE superconductivity occurs only at very low
temperatures, the thermal expansion of supercon-

ductors is very small. However, experimental tech-
niques developed in the last ten years are sufFiciently
sensitive to measure such small thermal expansions,
and data are now available down to about 2'K for a
variety of metals in both the normal and supercon-
ducting states. In this paper, we analyze and discuss
measurements for some type-I superconductors.

As is usual, we discuss thermal expansion in terms of
the thermodynamic G'rm'neisem functions (defined in
Sec. 2). These are dimensionless parameters of the order
of unity, which are often slowly varying functions of
temperature, unlike the thermal expansion itself. A
further advantage is that they are related to the strain
dependence of the entropy, which is simpler to discuss
theoretically than the thermal expansion. The strain
dependence of the entropy is in turn a quantity funda-
mental to the discussion of the strain (and stress)
dependence of thermal properties.

Since the normal-to-superconducting transition is
fundamentally an electronic e6ect, we shall be con-
cerned principally with Griineisen functions for the
electronic contribution to the entropy in each state.
For the normal state, the electronic Gruneisen function

~ Present address: Division of Pure Chemistry, National
Research Council, Ottawa, Canada.

has been measured by two methods, magnetic and
thermal expansion, but these have often given con-
Qicting results. The origin of such discrepancies is
discussed in Sec. 3. Numerical values of Gruneisen
fUnctlons for the SUpel condUctlng state of indium
lead, tantalum and tin are presented in Sec. 4, and the
theoretical interpretation of these results is considered
in Sec. 5.

2. GRUNEISEN FUNCTIONS AND
THERMAL EXPANSION

Be6nition of GxQneisen Functions

The volume coeflicient of thermal expansion P can
be expressed, using thermodynamic formulas, as'

Here C„is the heat capacity at constant strain, Xp is
the isothermal compressibility, and p is the Gruneisen
function de6ned by

y= (1/C„)(BS/8 lnV) r. (2)

Equation (2) is valid for noncubic as well as cubic solids,
provided that the change of volume takes place under
isotropic stress. ' In superconductors and other systems
where magnetic sects are important, the quantities
in Eqs. (1) and (2) depend on the magnetic conditions

~ T. H. K. Sarron and R. W. Munn, Phil. Mag. 15, 101 (j.967).
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under which they are evaluated. Here, we shall always
use quantities evaluated at constant magnetic Geld and
so do not need to indicate this explicitly.

Superconductivity occurs only at low temperatures
where the difference between heat capacities or com-
pressibilities under different restraints is negligible. We
therefore use C or X without subscripts to denote the
common values of the heat capacities or compressi-
bilities. Similarly, we use t/" or X to denote the volume
or compressibility of both the normal and the super-
conducting states (the differences between these quan-
tities in the two states may of course be significant in
other contexts). We use superscripts rI, and s to denote
normal and superconducting state properties.

Separate Contributions to y
We make the common approximation that the

entropy of the metals considered here is the sum of
separable lattice and electronic contributions. We
denote such separate lattice and electronic quantities
by superscripts l and e, so that S=S'+S'. It then
follows by differentiation that the heat capacity can
be written as C=C'+C', and that the volume derivative
of the entropy also consists of two contributions. We
can then define separate GrQneisen functions from Eq.
(2) by

1( BSe 1 8$'
v'= —I; r'=—

e'kdlnv o' slsv)
(3)

'G. A. Alers and D. L. Waldorf, Phys. Rev. Letters 6, 677
(I96I)n

The total Griineisen function is not the sum of these
two components, but a weighted average:

v= (v'C'+v'C')/(C'+C') (4)

From Eq. (1), P is given by

P= (x/V) (v'C'+v'C')

In general, X also contains lattice and electronic con-
tributions, but at low temperature these are negligible
compared with the contribution arising from the static
lattice energy. It is then convenient to define separate
contributions to P such that P=P'+P', where

P'=v'C'x/V; P'=v'C'x/V

We also assume that the lattice contributions are the
same in both states and do not need to be distinguished
by superscripts I or s. This assumption cannot be
strictly valid because of the coupling between nuclear
and electronic motion, but it is usually found experi-
mentally that the lattice contributions to the heat
capacity and thermal expansion do not change mea-
surably on transition (one or two apparent exceptions
are discussed in Appendix A). Furthermore, the changes
in elastic constants on transition have been measured
for some metals and found to be only a few parts per
million. '

On these assumptions the only change in y on tran-
sition arises from the change in the electronic com-
ponent. For the normal state the electronic heat ca-
pacity and entropy are given by

Cen pen (&)

so that from Eq. (3)
7'"=ti lnI'/d lnV.

The calculation of y'" from experimenta1 data is con-
sidered in detail in Sec. 3.

The superconducting-state electronic Griineisen func-
tion y" is given by PssV/xCss from Eq. (6). Another
expression for p" can be obtained by manipulating the
two forms of Eq. (4) for the normal and supercon-
ducting states:

+es (1/Ces)[Cen+en (Cn+n Cs+e)5 (9)

Substituting from Eq. (1), we obtain the equation

+es Ceneren/Ces (V/XCes) (pn ps) (10)

which proves to be convenient for calculating y" as
pn —p' is directly measurable.

There is a more accurate method of obtaining y",
applicable only at the critical temperature. At these
low temperatures, heat capacities can be measured
more accurately than thermal expansions, and at T„
P"—P' can be replaced in Eq. (10) using the Ehrenfest
relation shipa

1
(C" C')—(d 1 T /&P)

V
to give

+es(T ) Ceneren/Ces+I (Cn Ce)/Cesj

&& (d lnT, /d ln V) . (12)

We shall see later that y" is often negative. Now in
Eq. (12) the heat capacities must be positive, with
C"(C' at T„and y'" has usually been found to be
positive. ' The negative values of y"(T,), therefore,
arise from sufliciently large positive values of d lnT, /
d lnl/.

Andres' has obtained a general thermodynamic ex-
pression for y" in terms of temperature and strain
derivatives of the reduced critical 6eld function II /He,
where H, is the critical magnetic Geld required to
suppress superconductivity at a given temperature and
Ho its value at O'K.

3. EXPERIMENTAL VALUES OF y'"

Experimental Methods

Two principal methods have been used to determine
y'". One is a thermal expansion method which involves

D. Sebo enberg, SuPercondlckeify (Cambridge University
Press, London, 1960}, p. 74; A. B. Pippard, Classical Tfzemo-
dynamics (Cambridge University Press, London, 1966), p. j,35.

4The exceptions are certain transition and rare-earth metaIs,
e.g., lanthanum t'K. Andres, Phys. Rev. 168, "/08 (1968)g.' K. Andres, Phys. Kondensierten Materie 2, 294 (1964).



obtaining the limiting slope as T'-+ 0 of the fractional
volume change for the normal state as a function of T'.6

The other is a magnetic method apphcable only to
superconductors, which involves obtaining the limiting
slope of (BEE.2/Bp) r as a function of T'.~ There is also
another method, ' which we shall not discuss as it uses
normal-to-superconducting volume changes to obtain
(BH.2/BP)r and thence y'".

The values of y'" obtained by the magnetic method
have often been considerably larger than those obtained
for the same metals by the thermal-expansion method.
For example, in Table I the results obtained by the two
methods are compared for three of the metals discussed
below. In this section we show that the magnetic
method ls likely to bc less lcllablc thRn thc tlicrmal
cxpRnslon method.

p"=aT+bT'(+cT'+ ~ )

and, therefore,

(13)

(V V0)/Vo= 'a—Ts+,'bT'(+-'cT'+-) -(14)

where V and Vp are the volumes at T and 0 K. The
linear term in Eq. (13) is identified with p'", and y'"
is calculated from Eq. (6):

+6~ Ps~V/xcen. +V/yl (15)

Probably the most reliable method of obtaining the
coeKcient a is' to extrapolate V(T) to zero and then
to plot values of (V—Vo)/T' against T' when the
lntcrccpt ls 2QVp.

The accuracy of this method depends on knowing
the importance of the higher terms in p", bracketed in
Eq. (13), at the lowest temperatures of measurement.
These terms cause the plot of (V—Vo)/T' against T'
to be curved rather than linear, Rnd so complicate the
extrapolation to O'K on which the value of a depends.
SuKciently accurate low-temperature thermal expan-
sion data can themselves define the curvature quite
closely, while less accurate data can be extrapolated
linearly, given some external indication of the tem-
perature below which the curvature is negligible. For
most solids, terms in T' and higher are negligible at
temperatures of 1 or 2% of the heat capacity Debye
temperature; but for any particular solid, the im-
portance of these terms can be estimated from that of

6 J. G. Collins and G. K. White, I'rogress in Jo7Jl TemparaAue
I'hysics, IV (North-HoHand Publishing Co., Amsterdam, 1964),
p. 450.

~ C. H, ,Hinrichs and C. A. Swenson, Phys. Rev. 123, 1106
(1961).

8 J.L. Olsen and H. Rohrer, Helv. Phys. Acta M, 87'2 (1960).

Thermal-Exyansion Measurement of y'"

Experimental volume changes are obtained from
measurements of length changes in the principal
crystallographic directions. For normal metals at the
lowest temperatures the thermal expansion is of the
forme

Tax,E I. Comparison of magnetic and thermal values of
y'" for three metals.

Metal

Tln

Magnetic y'"

1a

3.9+O.ld

1.2+0,4f

1.7+0.5 b

0.7~1.5'
1.3+0.1'
1.3~0.2'
1.0a0.2 ~

& See Ref. 25.
b See Ref. 14.
& See Ref. 15.

&See Ref. T.
I See Ref. 16.

& See Ref. 18.
~ See Ref. 17.

the corresponding terms in the low-temperature series
expansion for the heat capacity, which is generally
known accurately. Usually, measurements of thermal
cxpRIlslon below 4 K determine y'" with an uncertainty
of the order of 10%.The uncertainty may be somewhat
larger if the electronic term is particularly small com-
pared with the lattice terms, as in indium.

Magnetic Measurement of y'"

The determination of y'" from (8'/8p)r as a
function of T is analogous to the determination of I'
from II,' as a function of T'. Since magnetic methods
of measuring I' have been thoroughly discussed, we
shaB merely sulnmarize the essentials of the most
reliable method to provide a basis for our discussion
of thc measurcmcnt of "f

Hinrichs and Swenson' introduced the quantity

Q =L1—H.'/Ho']/t',

where H p is the critical 6eld at O'K and I, is the reduced
temperature T/T. (T, is the critical temperature above
which superconductivity cannot exist at zero pressure).
At suKciently low temperatures Q flattens off to the
value (4n.T,2/HPV)F. For a solid obeying the shnpie
weak-coupling BCS theory' this limiting behavior is
approached only below P=O.'05. At low temperatures,

Q is very sensitive to uncertainties in the experimental
data: at P=0.05 an uncertainty of 0.05% in Ho gives
an uncertainty of 1% in Q. By comparing the depen-
dence of Q on P for various metals with that predicted
by the BCS theory, values of I' in good agreement with
calorimetric measurements were obtained. ' " The
method was further exploited by Finnemore and
Mapother. " Both sets of authors emphasized that
although the temperature dependence of II, can bc
used to determine F, the temperature dependence of
IJ,' is preferable for this purpose because it approaches
its limiting behavior at higher temperatures.

Now the quantity

&=L1 (~H'/~P)rl(dH"I—dP) j/~
~ J. Bardeen, L. ¹ Cooper, and J. R. SchrieGer, Phys. Rev.

108, 1175 (1957).' J. E. Schirber and C. A. Swenson, Phys. Rev. 123, 1115
(1961).

D K Finnemore and D E Mapother, Phys. Rev. 140, A510
(1965).
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could be used in obtaining y'" just as Q has been used
in obtaining I'. At sufBciently low temperatures, R
flattens off to the value Lknl'X/V(dH02/dp)7(&- —1).
By analogy with Q we might expect R to approach its
limiting behavior around P=0.05. This is con6rmed
on the BCS theory by calculations using the method
to be described in Sec. 5; some details of the calculations
are given in Appendix B.Like Q, R is very sensitive to
uncertainties in the experimental data, especially at
low temperatures. The important difference between

Q and R is that H, can be measured to within 0.1 Oe,
or a few hundredths of a per cent, whereas because of
uncertainties in the pressure (BH,2/ctp)r can only be
measured to within a few per cent—some hundred times
less accurately. Consequently, while the uncertainty
in Q at P=0.05 may be typically 1%%uo, that in Jt. may
be 100%. This suggests at once that magnetic values
of y'" may be subject to large errors.

In practice, no two authors have used exactly the
same method to obtain y'", and none has used E. itself.
Most methods actually used have involved Gtting a
graph or power series to the experimental values of
(BH,'/Bp)r as a function of t'; graphical or analytical
methods have then been used to obtain the limiting
slope at P=O from which y'" can be calculated. It has
been realized that the limiting slope is very sensitive
to uncerta, inties in the lowest-temperature data, and
the estimates have accordingly been more heavily
weighted by the data at higher temperatures. We shall

see that it is this plausible procedure which gives rise
to the frequent overestimates of p'" characteristic of
the magnetic method.

The theoretical calculations mentioned above indi-

cate that the slope of (BH,'/Bp)r as a function of t'

increases rapidly outside its region of limiting behavior
(it may double between t'=0.05 and t'=0.1), owing

to an exponential contribution like that in C". We
expect the behavior of (BH,2/Bp)r for real metals to
be qualitatively the same as this, just as the behavior
of H,' for real metals is qualitatively the same as pre-
dicted by the BCS theory. Any estimate of the limiting

slope biased by the higher-temperature data will there-

fore be too large, leading to an overestimate of 7'".
The low-temperature behavior of (BH.2/Bp)r is illus-

trated in Fig. 1; typical accuracy is insufhcient to
detect the changing curvature and hence to obtain the
limiting slope which determines y'".

We noted above that the magnetic method can give
values of I' (at zero pressure) in agreement with calori-
metric measurements. If, in the same way, values of I'
are derived for a range of pressures, y'" can be deter-
mined directly from the pressure derivative of I'. Since
the extrapolations to O'K are then performed before

introducing the uncertainties of the pressure derivatives,
there is no longer a systematic tendency to produce
overestimates. However, uncertainties of the order of
100% remain, because the change in I' between 0 and
10 kbar may be only as large as its experimental un-

FIG. 1. Schematic behavior
of (BII,'/Bp)z at low tempera-
tures. The broken line is the
limiting tangent at O'K, and
the error bar corresponds to an
uncertainty of +1%. Note
that (BJI,2/Bp)z is negative.

I

0.05

T2/T 2

0.1

certainty, while at higher pressures I' may no longer be
linearly dependent on pressure. A recent example of
this version of the magnetic method" gave y'"= 1.5+0.3
for indium and 2.0&0.3 for tin (cf. Table I) using
temperatures down to 0.1'K and pressures up to 30
kbar. This is in principle the best version of the mag-
netic method, but it, is still much less reliable than the
thermal-expansion method.

4. EXPERIMENTAL VALUES OF y"
Choice of Metals

We present values of y" for the type-I supercon-
ductors indium, lead, tantalum, and tin. These metals
have sufficiently high critical temperatures for their
thermal expansion to be measured in the supercon-
ducting state, and for each of them thermal expansion
values of y'" are available.

"I. V. Berman, ¹ B. Brandt, and N. I. Ginzburg, Zh.
Eksperim. i Teor. Fiz. 53, 124 (1967) /English transl. : Soviet
Phys. —JETP 26, 86 (1968)j.

'~ J. G. Collins, J. A. Cowan, and G. K. White, Cryogenics 7,
219 (1967).

'4 G. K. White, Phil. Mag. 7, 271 (1962).
"K.Andres, Cryogenics 2, 93 (1961).
'6 G. K. White, Cryogenics 2, 292 (1962)."G. K. White, Phys. Letters 8, 294 (1964)."J.K. Schirber and C. A. Swenson, Phys. Rev. 127, 72 (1962).

Selection of Experimental Values

In this subsection, we select thermal expansion values
of y'" for the four metals to be discussed in Secs. 4 and
5: indium, lead, tantalum, and tin.

Iedimm. Recent thermal expansion measurements'

give y~~= 2.9~0.8.
Lead. The thermal expansion values of White' and

of Andres" agree within experimental error (see Table
I). We adopt White's value as it is estimated to have
the smaller uncertainty.

Taetalmm. The thermal expansion values of White"
and of Andres" coincide (see Table I), and we adopt
this common value.

Tie. We adopt the single thermal expansion value, '
which agrees within experimental error with the mag-
netic value" (see Table I).
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Indium

We take values of the thermal expansion in both
states from Collins et u/. 13; heat capacity from O'Neal
and Phillips"; and compressibility from Chandrasekhar
and Rayne. 20 The resulting values of y" are shown in
Fig. 2; they are all negative.

Lead

1
PCS

o.

0 0.5
T/T

ln

PCS 0.

0

0 0.5
T/T

Heat capacities are taken from Keesom and van der
Hoeven, " and the compressibility from Alers and
Waldorf 2' The experimental values of P"—P' due to
White'4 and to Andres" do not agree well, and those of
White show considerable irregularity. Further values
of p"—p' have therefore been calculated from the
thermodynamic equation"

PCS

0.5
T/Tc

(a)

~es
I

Pb
-lp-

0.5

(b)

Sn

1 O'H ' BH '
pn ps

SxBTBp-

using experimental critical-6eld data.""The three
sets of values of P"—P' are shown in Table II. Except
at low temperatures the values calculated from Eq.
(16) lie between the values measured directly, and we
therefore adopt this set of values as most probable.
The values at low temperatures could still be subject
to quite large errors for the reasons outlined in dis-
cussing the magnetic determination of y'", but these
errors should be less than in y'", which is related to the
limiting sloPe of P"—P' at T=O. The resulting values
of y" are shown in Fig. 2. They are all negative, de-
creasing as the temperature falls, and at the lowest
temperatures are of large but uncertain magnitude.

Tantalum

Experimental values of P"—P' are calculated from
values of (BB,/Bp)r quoted. by White" as obtained
from his thermal-expansion measurements. Heat
capacity data are taken from Hultgren et al.26 and
compressibility from Featherston and Neighbours. "
The resulting values of y" are shown in Fig. 2. Although
they all appear to be negative and practically constant,
the large uncertainties could allow positive or changing

~9 H. R. O'Neal and N. E.Phillips, Phys. Rev. 13?,A748 {1965).
~ B. S. Chandrasekhar and J. A. Rayne, Phys. Rev. 124, 1011

(1961)."P. H. Keesom and B.J. C. van der Hoeven, Phys. Letters 3,
360 (1963); Phys. Rev. 137, A103 (1965).

~ G. A. Alers and D. L. Waldorf, J.Appl. Phys. 33, 2283 (1962);
see, also, Ref. 2.

"See Ref. 3. The second term in Eq. (16) arises from the
temperature-dependent magnetostriction in the superconducting
state, and corrects p' to its zero-field value.

~ D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev.
112, 1888 (1958).

"M. Garfinkel and D. E. Mapother, Phys. Rev. 122, 459
(1961)."R. Hultgren, R. L. Orr, P. D. Anderson, and K. Kelley,
Selected Values of Thermodynamic I'roperties of Metals and Alloys
(John Wiley R Sons, Inc. , New York, 1963).

'~ F. H. Featherston and J. R. Neighbours, Phys. Rev. 130,
1324 (1963).

FIG. 2. Experimental and theoretical values of y~ for indium,
lead, tantalum, and tin. The error bars give the uncertainties on
the experimental points, while the curves give the theoretical
values with uncertainties less than the smallest error bars. There
is an additional point for lead at T/T, =0.28, not shown for lack
of space: p"= —16~7. Note the difterent scale for tantalum.

5. THEORETICAL VALUES OF y"
Description of Theory

Our calculation of theoretical values of y" is based
on some results of the simple weak-coupling form of

TmLE II. Comparison of experimental values of P"—P' for lead,
in units of 10 8 K .We take Te=7 18oK

Calculated from
Eq. (16)

Source
White' Andresb

3.6~0.3
5.9a0.5
8.3+0.8

11.0~1
14.1~1
17.9~1

2.0+0.5
5 ~1
9 +3
6 ~3

12 &3
6 ~3

1+0.5
2~1.5
6~2

15&3

a See Ref. 14.
b See Ref. 15.

'8 C. A. Bryant and P. H. Keesom, Phys. Rev. Letters 4, 460
(1960); Phys. Rev. 123, 491 (1961)."J.A. Rayne and B. S. Chandrasekhar, Phys. Rev. $20, 1658
(1960).

values, except that at T„&"obtained using Eq. (12) is
certainly negative.

Tin

We obtain P"—P' from White's results, " as for
tantalum; heat capacities from O'Neal and Phillips"
and Bryant and Keesom28; and the compressibility
from Rayne and Chandrasekhar. '9 The resulting values
of y" are shown in Fig. 2; they are all negative and
appear to decrease as the temperature falls. The nega-
tive y" values give rise to values of the total Gruneisen
function y' that are so much smaller than y" as to be
negative themselves.
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the BCS theory' which incorporate the assumption that
lattice properties do not change on transition. These
results can be exprcsacd in the form

HP = (8~1'TP/V)h(t),

5-=I'T,f{t),
C"=TT,g(t),

where f, g, slid k al'c universal fullctlo11s of tile reduced
temperature t=T/T, . Ilccausc of thcIIIlodynaxlllc I'c-

lationships among the left-hand sides of these equations,

f, g, and II are related through

f= tt'+ (T/T, ), (2o)

g=(T/T )f'=(TIT.)(h"+1), (21)

where thc prime denotes differentiation with respect
to l. Certain special values of the functions 8,re also
Axed. by thermodynamic requirements:

h(1)=0, h'(1) =0, f(1)=1,
h'{0)=0, f(0)=0, g(0) =0.

If we assume that the BCS theory is applicable for
arbitrary strain, the quantities h(t), f(t), and g(t)
depend on strain only through the stxain dependence
of T,. We can then derive an expression LEq. (22)j for
y" in terms of the functions f and g and. the volume
dependence of T,. In Appendix 8 wc also give the
expression for (BHP/BP)r which was used in the cal-
culations referred to in Sec. 3. The expression for y"
depends only on the validity of Eqs. (18) and (19) and
not on the details of the BCS theory. Consequently, it
could be applied to any appropriate theory, or even to
experimental data If Eqs. (17)-(19)Rl'c 'takcII as deffn1ng

thc fUnctlons ln terms of thc experimental qURntltlcs.
The assumption that the function h(t) is independent

of stra, in corresponds to assuming thc validity of the
similarity principle25'0 which has been used quite
widely in discussing critical Geld measurements under
pressure. The similarity principle is usually stated in
terms of the reduced critical Geld function H,/Hs, but
the strain independence of this function follows from
that of h(t) by Eq. (17).

Thc cxprc881on fox' p ) obtained U81Qg thc dcGnltlon

Eq. (3) and Eqs. (18) and (19), Is

v-= (f/g)h-+(1-g/f)(d»T. /d»V) j. {22)

This cquatlon CRQ Rlso bc obtRlncd fron1 thc gcxlcrRI

expression for y" given by Andres. ' At the critical
temperature Eq. (22) reduces correctly to Eq. (12)
with C" expressed by Eq. (19).From Eq. (22) we see
that, unlike y', 7" depends on temperature, through

f/g. This is a consequence of the general rule that a
constant y is found only when the entropy is some
function of reduced ten1perature alone. "

30 D. P. Seraphim and P. M. Marcus, IBM J. Res. Develop. $,
94 (j.962).

3' R. 0. Davies, Phil, Mag. 43, 472 (1952).

By writing y" in the form

we see that at T=0 (where f/g is zero) y" is negative
whenever d InT, /d In V is positive. In fact d lnT, /d In V
is positive for almost all nontr8, nsition metals as well
as for several transition metals, " and we saw above
that if dlnT, /dlnV is sufficiently large y" is also
negative at T,. Since f/g is monotonically increasing,
y" will then bc QcgRtlvc thloUghou. t thc supclcon-
ductlng rcglon.

Numerical Results

For numerical calculations, wc usc the BCS functions
as tabulated by MiihlschlegeP' and quoted by
Rickayzcn. Thc I'cqulx'cd cxperoncntR1 VRlUcs of
d lnT./d IOV are taken from Jennings and Swenson"
for indium, from Smith and Chu" for lead, from
Hinrichs and Swenson' for tantalum, and from Schixber
and Swenson" for tin, The calculated values of y"
are shown in Fig. 2 with the experimental values.

Only for lead is there R large disagreement with the
experimental values, but lead usually agrees less well
with the simple BCS theory than the other metals.
This is probably duc to the stronger electron-phonon
coupling in lead, " which renders the weak-coupling
BCS theory inapplicable. It is then less likely that the
entropy will have a simple volume dependence.

Values of y'" obtained directly by the thermal-
expansion method are more accurate than those ob-
tained by the magnetic method. Unless improved
techniques are developed for generating very closely
isotropic pressures of accurately known magnitude at
low temperatures, the magnetic method will remain
unsatlsf 8,ctol"y.

For the four metals studied here y" appears to be
negative at all temperatures. The assumption that the
functions f, g, and h are independent of strain leads to
theoretical values of y" which are consistent with
experiment for indium, tantalum, and tin, but not for
lead. Thc dlsagrccxlmnt fox' lc8,d xnay arlsc because lt 18

a strong-coupling superconductor (though f, g, and
h may also be strain dependent in weak-coupling
superconductors).

According to the BCS theory, the relative magru-
tUdcs of p fol diferent metals dcpcnd 011 thclr rc-

82N. B. Brandt and N. I. Glnzburg, Usp. Flz. Nauk 85, 485
(1965) LEnglish trsnsl. : Soviet Phys. —Usp. 8, 202 (1965)g."B.Miihlschlegel, Z. Physik 155, 313 (1959)."G. Rickayzen, Theory of Sgperconductiv@y (Interscience
Publishers„ Inc., Near York) I966).» L.D. Jennings and C. A. Swenson, Phys. Rev. 112,3j. (1.958)."'jL'. F. Smith and C. %. Chu, Phys. Rev. 159, 353 (1967).
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spective values of dlnT, /d lnV, and at the critical
temperature the same conclusion follows from thermo-
dynamic arguments. The theory also predicts'

T,~ O~ exp( —1/EA), (24)

where O~ is a Debye characteristic temperature, "E is
the density of electronic states for one spin at the
Fermi level, and A is an electron-phonon interaction
parameter. Then

d ln T,/d ln V= —y'+ (1/EA) [y'"+d 1nA/d ln Vj, (25)

where we have put y'= —d lnO~/d lnV, an approxi-
mation strictly valid only at O'K. So ultimately y"
depends on both y' and y'" as well as on the volume
dependence of the interaction. A discussion of the
interaction and its volume dependence is beyond the
scope of this paper, and the reader is referred to recent
theoretical papers on the topic."

Experimental or theoretical values of y" as a function
of temperature can be used to calculate the volume
dependence of quantities related to S"such as C".The
theoretical values can also be used to calculate values
of P"—P' for direct comparison with experiment. For
noncubic metals the present work could be extended to
calculations of the directional Gruneisen functions y~",
which describe the strain dependence of their properties
more completely than y" alone, but the necessary
experimental data are not yet available.

APPENDIX A: CHANGE OF LATTICE
PROPERTIES ON TRANSITION

For indium, Bryant and. Keesom' found. that C'"
was greater than C" while measurements on tin in
the same apparatus gave the usual result C'"=C".
These findings were confirmed by O'Neal and Phillips, "
who made a careful study of indium again using tin
for comparison. They concluded that although calori-

~ Actual frequency distributions differ from Debye's, and
different experimental properties correspond to different averages
over the frequency distribution, so that it is necessary to dis-
tinguish between characteristic temperatures derived from
different properties LM. Blackman, Handbuch der Physik VII/1,
374 (1955)j.The 0 in Eq. (24) is usually taken to be the one
derived from the heat capacity, presumably at the critical
temperature.

J.L. Olsen, K. Andres, and T. H. Geballe, Phys. Letters 26A,
239 (1968); W. L. McMillan, Phys. Rev. 167, 331 (1968) (the
author is indebted to Professor Olsen for bringing these two
papers to his attention); P. E.Seiden, Phys. Rev. 168, 403 (1968).
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metric data alone could not entirely exclude the possi-
bility that C'" and C" were the same for indium, the
elastic constant data tended. to support the conclusion
that they were significantly different. However, from
careful critical field measurements Finnemore and
Mapother" concluded that there was no evidence for
a difference between the entropies S'" and S".They
referred to a "disagreement" between their data and
the calorimetric data, but in fact they showed that
the difference was within the expected range of ac-
curacy of the calorimetric measurements. Since the
magnetic and calorimetric data were consistent with
another, the different conclusions drawn from the two
sets of data presumably arise from differences of analysis
and interpretation (unless one set of measurements
contains a consistent error).

The magnetic data were analyzed by calculating
thermodynamically from (BH,'/BT)„values of S"—S',
which were shown graphically to have the linear
behavior in T at low and. intermediate temperatures
expected for S'"—S" alone. However, in this graph
(Fig. 9 of Ref. 11) the experimental values of S"—S'
seem to lie slightly above the linear extrapolation at
about T=0.2T„subsequently falling below the line.
Such behavior is consistent with the presence of a small
positive curvature in S"—S' as found by the calori-
metric method. For a strict comparison with the
calorimetric data a rigorous analysis would have been
necessary in which (S" S')/T was —plotted against T'.
the intercept would then have given I' and the limiting
slope the coeKcient of T' in S'"—S". In the absence
of such an analysis, the magnetic data cannot be
regarded as disproving the calorimetric result C'"gC".

For lead, Keesom and van der Hoeven" found that
C'" and Cia differed Ci& now being the smaller. They
also found that for a suKciently concentrated lead-
indium alloy the difference disappeared. However,
Phillips et al.39 found that any discrepancy between
C'" and C" was within experimental error and certainly
smaller than for indium. Since the primary data agreed
with those of Keesom and van der Hoevel within
experimental uncertainties (apart from the presence of
a contribution due to frozen-in normal-state material)
the difference is presumably in the analysis. Elastic
constant measurements in both states' show that the
cubic terms in C —C' should differ by only 14 parts
per million, supporting the findings of Phillips et al.
Q/hite' found that the lattice contributions to the
thermal expansion differed by 20% for lead, but here
the analysis is even more uncertain than for the heat
capacity.

There is, therefore, evidence that for indium our
assumptions are not valid to the accura, cy we require.
However, the evidence applies only to very low tem-

39N. E. Phillips, M. H. Lambert, and W. R. Gardner, Rev.
Mod. Phys. 36, 131 (1964).



peratures where C- and P" are negligible, and provides
no means of estimating these quantities at higher tem-

peratures. Consequently, in order to obtain values of
y" we are obliged to retain our assumptions, which
have the virtues of generality and simplicity.

APPENDIX 3: THEORETICAL CALCULATION
OF (BHs/BP)r

We obtain the following expression for (BH,s/Bp)r
using the theory described in Sec. 5:

(
BH,2 8xl T,2 d lnTc

h —X(y'"—1)+-
Bp 7 V

T h'
2——— BI

From Eq. (17), we see that h ~ H, s and h' ~ (BH,'/BT)„.
It can be shown, using Eq. (Ii1), that when H.s ap-
proaches its limiting behavior (i.e., Q is flattening off),
(BH,s/BP)r also approaches its limiting behavior with
R flattening off.
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In this paper and a subsequent one (Paper II) we study the nucleation of superconductivity near a sample
surface at temperatures outside the Landau-Ginzburg region. We develop a generalized image method to
solve for the normal electron temperature Green's function for a semi-in6nite sample with a specularly
reflective plane boundary in an external magnetic Geld. Gor'kov's linearized gap equation is then obtained
and studied for such a sample geometry. The pair wave function d, is found to obey the Landau-Ginzburg
boundary condition at all T&T„even though this boundary condition was originally suggested only for
the Landau-Ginzburg region (i.e., when T,—T«T,).However, we also hand that merely adding the boundary
condition to the di8erential equation appropriate to the bulk case does not give the correct solution to the
problem, except when T,—T«T, .At T=O'K, the integral gap equation is solved by a variational approach,
yielding the critical-Geld ratio H, 3/H, g&1.925. This should be compared with Saint-James and de Gennes's
result, ~1.7, for T in the Landau-Ginzburg region. The small-T correction to the ratio near T=O'K is found
to be proportional to T' lnT with a small coefficient. An upper bound is also found for the T=O'K ratio to
be 5,22, which is useful mainly in proving the existence of a ground state, so as to help justify the use of
a variational approach.

I. INTRODUCTION

HE phenomenological Landau-Ginzburg (L-G)
equation is, because of its simplicity, a very

powerful tool for studying the various phenomena of
superconductivity. ' It is well known, 2 however, that

*Work supported in part by the U. S. Air Force Once of
Scientiic Research under Grant Nos. AF-AFOSR-735-65 and
AFOSR-68-1459, the U. S. Ofhce of Naval Research (Contract
No. NOOO 14-67-A-0239-003), the U. S. Army Research OQice
{Contract No. DAHC 04 67C 0023 under Project Defender), and
the University of Maryland Computer Science Center under
NASA Grant No. ¹G-398.

t This paper and the subsequent one (Paper II) are based on a
thesis submitted by C.-R. Hu in partial ful6llment of the require-
ments for the Ph.D. degree in the Department of Physics and
Astronomy of the University of Maryland (unpublished). The
main results of Paper I were reported at the 1968 Annual Meeting
of the American Physical Society t Bull. Am. Phys. Soc. 13, 109
(1968)j.

f Present address: Department of Physics, University of
Illinois, Urbana, Ill.' V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).' Many applications of the L-G equation are discussed in P. G.

except for extremely dirty superconductors' this equa-
tion is applicable in only a limited temperature range
near the critical temperature T„and for very pure
superconductors this limitation beco..Jes rather restric-
tive. In order to extend the description of supercon-
ducting phenomena beyond the "L-G region" (the tem-
perature range in which the L-G equation is applicable),
it is necessary to use the microscopic BCS' theory or
Gor'kov's' generalization of it to space- and time-de-
pendent cases. A recent example of such an extension
is the elegant calculation by Helfand and %erthamer
of the bulk nucleation critical Geld H, 2 for all impurity
concentrations and all temperatures below T,. The

de Gennes, Superconductivity of Metals and Alloys, translated by
P. A. Pincus (%. A. Benjamin, Inc., New York, 1966).

3 K. Maki, Physics 1, 21 (1964); 1, 127 (1964);P. G. de Gennes,
Physik Kondensierten Materie 3, 79 (1964).' J. Bardeea L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (195 l.

eL P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 54, 755 (19581
I English &ansi. : Soviet Phys. —JETP 7, 505 (1958)g.

6 K. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).


