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Critical current and pinning-force densities in a series of niobium alloys subjected to severe plastic defor-
mation have been determined from measurements of complete hysteretic magnetization curves on alloys
with Ginzburg-Landau parameter « between 1.3 and 13 at temperatures from the critical temperature 7
down to 0.147.. Systematic scaling rules were found that accurately describe all of the results over the
entire range of fields and temperatures. The pinning-force density scales with magnetic induction as a single
function of B/H; it scales with temperature as the § power of the upper critical field He(T), is roughly
proportional to x~7, where 1<y<3, and is otherwise independent of 7. A model for the pinning process
that takes into account deformation of the fluxoid lattice by the pinning forces is proposed to account for
the observed scaling rules. The results are consistent with a pinning interaction based on a second-order
elastic interaction between dislocations and the fluxoid lattice, but other mechanisms are not excluded.
Cooperative effects seem to be an essential feature of the pinning process, leading to a dependence of the
pinning-force density on the square of the pinning-point strength, and on the arrangement of pinning points.

I. INTRODUCTION

HE concept of the critical state introduced by
Bean! and developed by Kim et al.2? and by
Anderson? provides a phenomenological theory of mag-
netic hysteresis in type-II superconductors in magnetic
fields between the onset of flux penetration and the
upper bulk critical field H,,. The critical state describes
a current distribution throughout the superconductor
that is supposed to be determined by the effectiveness of
material inhomogeneities in pinning a flux distribution
against Lorentz forces. Kim’s analysis with de Gennes’s®
thermodynamic definition of forces appears to provide
a satisfactory basis for describing experimental results
on most magnetic hysteresis and transport currents in
high-field superconductors. In low x materials, addi-
tional hysteretic surface currents may also appear,
presenting an experimental difficulty in separating sur-
face and bulk effects. This paper deals only with cases
in which bulk hysteresis dominates.

The measured dependence of critical current density
J. on local magnetic induction B has often been de-
scribed by some convenient empirical formula. How-
ever, simple formulas for J.(B) used in model calcula-
tions have sometimes been erroneously regarded as
inherent properties of the critical state. In fact, we are
aware of only one detailed theory® that attempts to
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calculate J,(B) due to an assembly of pinning points for
a wide range of B.

Therefore, the objective of this research was to
obtain experimental data on J,(B) for a wide range of
k and T on a particular type of pinning structure
in order to provide a guide and a test for theoretical
studies.

Several phenomenological calculations of the strength
of the interaction between individual fluxoids and par-
ticular kinds of pinning points are available. Silcox and
Rollins” and Friedel ef al.8 have calculated the effects of
pinning of a very dilute fluxoid lattice by cavities and
Webb? and Cramer and Bauer® have calculated the
interaction between a single fluxoid and the strain field
of a screw dislocation. Labusch! has recently estab-
lished a thermodynamic basis for calculations of pinning
a fluxoid by a strain field. Willis e/ al.”* have recently
calculated the strength of pinning due to'a region of
disparate «.

Clear experimental verification of critical-state con-
cepts has been obtained for various type-II supercon-
ductors.231° However, there is a large body of experi-
mental data (see review by Livingston and Shadler®)
very little of which is amenable to quantitative analysis.
Nembach has reported a value of the pinning strength
of dislocations derived from remanent (trapped) flux
measurements at 4.2°K in plastically deformed niobium.
However, it is unfortunately somewhat doubtful be-
cause of the uncertain distribution of internal magnetic
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Fic. 1. Typical hysteretic magnetization curve obtained by
electronic integration. Data apply to Nb-+4 at.% Ti alloy at
4.2°K. The reversible curve for the same material after annealing
is also shown as a dashed line for comparison. Data for M, and
dH.(B)/dB were taken from the reversible curve.

fields in this measurement. Narlikar and Dew-Hughes's
have reported quantitative data comparing various
treatments of deformed niobium alloys. Fietz et al.'®
have derived rather precise values of critical-state
pinning-force densities from magnetization and trans-
port current measurements at 4.2°K but the materials
studied were commercially treated alloys of niobium-
25 at.9, zirconium that contain a complex mixture of
metallurgical inhomogeneities. Coffey’” has reported
measurements of the field and temperature dependence
of the critical current density in heat-treated niobium
alloys and Freyhardt and Haasen!® have recently re-
ported magnetization measurements on lightly cold-
worked niobium single crystals that have been inter-
preted to indicate a pinning force of 10~7 dyn for
individual dislocation-fluxoid interactions.

This paper reports in detail experimental values of the
critical-current density J. and pinning-force density ¥,
due to dislocation pinning over a wide range of tempera-
ture and magnetic field. These quantities were measured
on a series of heavily cold-worked niobium-titanium and
niobium-tantalum alloys, in which the Ginzburg-
Landau parameter « varied from about 1.3 to 13. In
most of these alloys it was possible to vary the tempera-
ture T between about 0.147; and T, and the magnetic
induction B from about 0.1H s to H,. The data thus
obtained were found to be highly reproducible, and a
set of remarkably consistent scaling rules was found.
The results are compatible with critical-state concepts,
and at least one simple pinning model. A model sug-
gested by a theory of Labusch® has been invoked to take
into account cooperative effects in the fluxoid lattice in
making connection between the measured pinning-force
density and individual pinning point interactions. A
preliminary report of some of the experimental results
has been given by Webb and Fietz.!*
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II. EXPERIMENTAL

Data for the critical current and pinning-forces den-
sities were derived from magnetization curves on long
cylindrical specimens cycled in a longitudinal applied
field using an analysis described in the Appendix. The
curves were obtained by electronic integration® of the
difference in terminal voltage of two identical balanced
coils, one of which contained the specimen as the
applied field was slowly varied. This voltage, pro-
portional to the magnetic moment, was plotted on the
Y axis of an X-Y recorder with a voltage proportional
to the applied field H, obtained by integrating the
output of the empty coil, plotted on the X axis. Calibra-
tion of the vertical axis in terms of average magnetiza-
tion was carried out by making use of the initial
diamagnetic slope obtained after the specimen was
cooled in zero field. A typical curve is shown in Fig. 1
along with the reversible curve obtained from an an-
nealed specimen of the same alloy composition. A
detailed study of the reversible behavior of the annealed
alloys has been published elsewhere.?!

The applied field was provided by a 40-kOe solenoid
powered by a self-ramping current regulator.?? The field
was uniform to 0.059, over a distance of about 6 cm in
a bore of 3.8-cm diam.

In order to provide temperature adjustment over the
range between 1.2 and 15°K, the specimen and coil
assembly were mounted in a vacuum-insulated can
inserted within the bore of the solenoid. Temperatures
below 4.2°K were obtained by varying the vapor pres-
sure above liquid helium in which the specimen was
immersed. Manostat control held temperature fluctua-
tions to less than 0.01°K under these conditions.
Temperatures above 4.2°K were obtained by electrically
heating a brass wire coil within the specimen chamber
in the presence of helium gas at about 1 Torr. Tempera-
tures were measured with a carbon resistor in thermal
contact with the specimen. This resistor was also used
in a feedback system to control the temperature during
the heating. Temperature fluctuations above 4.2°K
were less than 0.1°K, and were mainly due to mag-
netoresistance of the carbon resistor that was not
compensated.

The alloys were prepared under the supervision of
Professor J. L. Gregg of the Materials Science Center
Metallurgical Facility at Cornell University by arc
melting high-purity materials which had previously
been electron beam zone refined. Chemical analysis of
these specimens is given in Table I.

After multiple arc melting in an argon atmosphere
with particular care to ensure purity and uniformity, the
specimens were swaged from the original 1.25-cm ingots
to 0.37-cm diam without intermediate anneal. A chemi-
cal polish to 0.36-cm diam was found to be sufficient to

2 W. A. Fietz, Rev. Sci. Instr. 36, 1621 (1965).
21 W. A. Fietz and W. W. Webb, Phys. Rev. 161, 423 (1967).
2,W. A. Fietz, Rev. Sci. Instr. 36, 1306 (1965).



178

remove the heavy surface damage, and we think that
magnetization curves obtained from the specimens thus
prepared are representative of uniform flux pinning
throughout the specimens, since a further decrease in
size produced no more change in the deduced values of
critical current density.

The severe plastic deformation produced by swaging
to a reduction of cross-sectional area by a factor greater
than 11 without intermediate annealing is expected to
produce a macroscopically uniform distribution of dislo-
cations at a density of about 10" per cm? in all these
alloys. Such structures are known from electron-
microscopy studies to consist of cells less than 1 x across
that are nearly free of dislocations, but are bounded by
quite diffuse cell walls of dense dislocation tangles.
Recently, the dislocation structure of deformed niobium
has been studied in detail by Christian ef al2® No
isolated slip bands or macroscopic undeformed regions
would remain following the extremely heavy plastic
deformation that was used in our preparation.

The approximate equilibrium magnetization of these
materials was obtained from data on carefully annealed
specimens of identical composition. The changes in
equilibrium properties, such as H., due to cold working
were small in the alloys reported here.

Resistivity and resistivity ratios were obtained by
measuring the voltage drop along the specimen in the
presence of a transport current at room temperature and
at 4.2°K in a field sufficient to quench superconductivity
or in one case at a temperature slightly above the
critical temperature.

III. PARAMETERS OF CRITICAL-STATE THEORY

In a type-II superconductor, de Gennes® has shown
that it is possible to define, for a nonequilibrium flux
distribution within the material, a force density equal
to the gradient of the magnetic pressure. This force
tends to even out the internal flux distribution and thus
reduce internal current densities. The expression given
by de Gennes is

F= (B/4r)(dB/dx)[dH .(B)/dB], (Gaussian units) (1)
or in customary form,

F=(JB/10)[dH.(B)/dB], (practical units)
where H,(B) is the external applied field which would
produce the equilibrium magnetic induction B within
the material if there were no flux pinning whatever.
These equations apply to a virtually infinite-length flat
plate or a cylindrical geometry with applied field
parallel to the surface in which lines of flux remain
essentially straight. The second equation gives the
volume force in dynes per cubic centimeter if B is in
gauss and J is in amperes per square centimeter.

% J. Christian et al., Phil. Mag. 15, 873 (1967); 15, 893 (1967).
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TasLe I. Chemical analysis of cold-worked niobium-based alloys.

Nominal Actual
compo- compo- Other
sition sition Carbon Oxygen Tantalum metals
(at.%) (at.%) (ppm)  (ppm)  (ppm)  (ppm)
Nb-5Ta  Nb-5.3 Ta
Nb-1.5 Ti Nb-1.5 Ti
Nb-2Ti Nb-1.9Ti 120-155* 80-200* 100-250* 10-50*
Nb-4.5 Ti Nb-4.2 Ti
Nb-4.5Ti Nb-3.6 Ti
Nb-9Ti Nb-9.1Ti
Nb-12Ti Nb-11.7 Ti

s Range observed in tests of six different specimens selected from this
group.

In the steady state the force density is supposed to be
balanced by forces representing the resistance to motion
of fluxoids through the superconductor. The critical
state is defined by the limiting current density J, at
which the fluxoid array is essentially stationary. Thus a
specimen is said to be in the critical state if the force
density F due to the gradient of the magnetic pressure is
everywhere equal to the maximum of a resistance to
passage (at infinitesimal velocity) of the fluxoid array
due to inhomogeneities in the superconductor. This
resistance which presumably depends on local magnetic
field B, temperature T, and, of course, the microstruc-
ture and composition of the material, is called the
pinning-force density F .

Anderson? advanced the concept of flux creep to
describe the motion of the vortices where thermal
activation processes might be important. In this theory
the flux bundle is a simple way to incorporate collective
effects that result from the long range of interaction be-
tween the fluxoids that make it difficult to move or to
pin a single fluxoid without affecting a substantial
number of neighbors. The flux-creep model assumes that
the rate at which flux bundles escape a pinning barrier
can be expressed in terms of an activation energy U and
a rate Ry as

R=Rqexp(—U/ksT), (2)

where kp is Boltzmann’s constant. The activation
energy U for a flux bundle may be written

U=U,—VFX,, 3)

where U, is the energy barrier for bundle motion, V,
is the bundle volume, F is the gradient of the magnetic
pressure described by de Gennes, and X, is some
characteristic length relating the force to an energy. The
concept of the critical state at nonzero temperatures in
the presence of flux creep depends on the condition that
during the measurements the rate of flux creep is suffi-
ciently small that it has a negligible effect. If the creep
rate is designated as R., Egs. (1) and (2) may be com-
bined to give Anderson’s result in modified notation:

Fc"—-“[Up—'kBT ln(Ro/Rc)](Xpr -1, (4)
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F16. 2. Upper critical field H,, asa function of reduced tempera-
ture for the four alloy compositions studied in detail. Alloy solutes
are 5 Ta, 1.5 Ti, 4.5 Ti, and 9 Ti at.%, respectively, from the bot-
tom to the top curve.

If the details of the interactions involved in the
pinning of these flux bundles and the type and distribu-
tion of the pinning sites were known, the quantities in
Eq. (4) could be calculated and a relationship for the
measurable quantity F, could be obtained as a function
of local field and temperature and of the pinning parame-
ters. Lacking this, one may seek to deduce the parame-
ters X, and U, from the experimental data.

Even assuming that these three parameters are ap-
propriate, they cannot each be fully determined from a
critical current experiment without further assumptions
about their dependence on 7" and B. Thus a strategy of
seeking reasonable elementary alternatives for com-
parison with experiment will be adopted for discussion
of the dependence of F, on T, B, and «.

It is convenient to express some of the temperature
dependence in terms of the temperature dependence of
the fundamental superconducting parameters H,.(T)
and « through the temperature dependence of H.(T)
=V2kH ,(T), which is easily measured.
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Fic. 3. Logarithmic plot of the critical current density versus
reduced field for Nb-5 at.%, Ta.
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Fic. 4. Logarithmic plot of the critical current density versus
reduced field for Nb-1.5 at.9, Ti.

The explicitly linear temperature dependence of the
second term on the right-hand side of Eq. (4) turns out
to be negligible because 257 In(Ro/R.)<KU ,. Under this
condition F,~F, and the pinning-force density is de-
termined. In anticipation of this result, F, is substituted
for F, in subsequent discussions of pinning and the two
quantities are used interchangeably except where the
distinction is explicitly involved.

Iv. RESULTS

In this section we present the experimental results as
plots of pinning-force density /', and critical-current
density J, obtained from measured magnetization
curves using the equations derived in the Appendix. To
illustrate the field and temperature dependence of the
volume pinning force F ,, the behavior of four specimens,
alloy compositions Nb-5 at.9%, Ta, Nb-1.5 at.%, Ti,
Nb-4.5 at.9, Ti, and Nb-9 at.9, Ti, are presented in
detail in forms involving only the assumption of gener-
ally homogeneous pinning-force density and the exist-

T T T T T T —T

Nb-45atolTi |

0.93

102 1 L 1 i ! 1 1 1
(o] 0.1 02 03 04 05 06 07 08 09 1.0

B/H

Fic. 5. Logarithmic plot of the critical current density versus
reduced field for Nb-4.5 at.9, Ti.
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F16. 6. Logarithmic plot of the critical current density versus
reduced field for Nb-9 at.%, Ti.

ence of a bulk-current density determined by Maxwell’s
equations. These results, which are typical of a larger
number of specimens studied, represent a wide range of
the Ginzburg-Landau parameter «. A summary in-
cluding some additional data is displayed in a later
figure.

In Fig. 2, the upper critical field H,, is displayed as a
function of temperature for the four specimens whose
behavior is to be considered in detail since H.e is an
important parameter in the analysis. These data were
taken directly from the magnetization curves. The
estimated over-all uncertainty which is smaller than the
size of the points is due mostly to the slight smearing of
the magnetic transition at H,s. Since H.; is altered only
slightly by plastic deformation of these alloys, the
values of —4xM . (H) and y=dH,(B)/dB required to
calculate J, and F, could be obtained directly from
measurements of the nearly reversible magnetization of
annealed specimens of compositions identical to the
plastically deformed alloys.

Using the relationships derived in the Appendix, the
critical current densities have been obtained from the

T T T T T T T T T

Nb-5at.o|
Ta

Fo (108 dyne /cm3)

Fic. 7. Pinning-force density as calculated using Eq. (1) plotted
as a function of normalized magnetic field for Nb-5 at.% Ta.
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Fi16. 8. Pinning-force density for Nb-1.5 at.9, Ti.

magnetization data as a function of temperature and
local magnetic induction B. These results are shown in
Figs. 3-6, where the logarithm of the critical current
density J, is plotted as a function of the reduced local
field B/H,,, at temperatures given as reduced tempera-
ture t=7T/T,. Data points are not shown since the
curves are derived from continuous magnetization
curves, and calculations were performed at a sufficient
number of points that interpolative error is negligible,
The error bar represents the estimated over-all un-
certainty in the measurement. The results in this form
show the plateau commonly exhibited by the current
density in hard superconductors at #<<1. At higher
temperatures they show a broad range in which the
critical current falls gradually with increasing B. The
sharp increase in J, that occurs as B— 0 in measure-
ments of critical transport currents is not accessible in
these experiments.

Figures 7-10 present values of the critical Lorentz
force density as defined by Eq. (1) and equated with the
pinning-force density F, plotted as functions of the
normalized parameter B/H,. for the same measure-
ments used in Figs. 2-6. In every case the presence of a

10.0

6.0

Fp (108 dyne/cm3)

2.0

F16. 9. Pinning-force density for Nb-4.5 at.9, Ti.
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F1c. 10. Pinning-force density for Nb-9 at.9, Ti.

maximum of the pinning-force density around B/H.,
~(.6 is evident. The decline of 7, at higher fields and
temperatures is clear in these results.

Figure 11 shows a logarithmic plot of the maximum
value of F, obtained at each temperature as a function
of H . at that temperature for each of seven specimens.
The temperature range is approximately the same for
each alloy. The straight lines are drawn with a slope
of 5.

V. DISCUSSION

Discussion of our experiments proceeds in two phases.
First, we examine the results with a minimum of
theoretical prejudice to discover and identify any
general properties or scaling rules. Second, we proceed
in a more speculative vein to introduce a model for the
critical pinning-force density due to an array of pinning
points, consider its properties and the possible pinning
mechanisms, and compare the results with the experi-
mental scaling rules.

The two independent experimental parameters are of
course magnetic field H or better, internal field B, and
the temperature 7. We look for scaling laws for the
dependence of the pinning force ', on these quantities.
The properties of the superconducting material may be
described in Ginzburg-Landau theory by a pair of
parameters such as the critical field Z,(T) representa-
tive of the condensation energy [H.(7)J/8r and
the dimensionless, nominally temperature-independent
Ginzburg-Landau parameter . In the alloy system
studied, H,(T) is practically independent of composition
and the generalized Ginzburg-Landau perameters k; and
ks show a strong temperature dependence. Fortunately,
it turns out that H.(7T)=V2k:(T)H.(T) is the appro-
priate parameter to scale both the temperature and the
magnetic field. Pinning introduces additional scaling
parameters including the density and distribution of
pinning points which were not varied in this series of
experiments. The properties of the pinning points
themselves suggest the fundamental superconducting

W. A. FIETZ AND W. W.
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lengths £(7°) the coherence length and A(7') penetration
depth as appropriate parameters to compare with the
characteristic width of the pinning points and with the
nominal fluxoid spacing d= (¢q/B)V2.

The results of analysis of the field dependence have
been anticipated by the data presentation in Figs. 3-10.
The similarity of the curves generated by plotting F, in
Figs. 7-10 as functions of the field B scaled by H..
identifies a scaling parameter H,. Each curve has a
maximum at B/H.(7)=0.6 within the experimental
uncertainty of 0.1, a concave upward portion near
H 5, and a nearly straight or slightly concave downward
portion at low fields. In fact all of the data can be
superimposed by appropriate linear scaling of F, by
plotting against B/H s, except possibly at the lowest
fields, where the data analysis begins to fail.

Examination of the scaling of , with various parame-
ters leads to the remarkable result illustrated in Fig. 11.
Here the logarithm of the maximum value of F,(T) at
each temperature of measurement is plotted against the
corresponding logarithm of H.s(T) for each alloy. We
see.that in each case a straight line with the slope § fits
the data well within the expected experimental error.
The data determine these slopes to be 2.54-0.1. Similar
results are obtained on choosing the values of F, at
other values of B/H s, although the scatter is increased.
All of the alloys studied showed this same characteristic
scaling of F, with H,.; thus the straight lines drawn
through the data are parallel.

The dependence of F,, on alloy composition is not so
precisely determined because the deformation produced
in each specimen may not be identical. However, dupli-
cate specimens were identical in behavior as illustrated
by the data on two specimens with nominal composition
4.5-at.9% titanium included in Fig. 11. These two
specimens were melted in different runs and were
worked at different times. The specimen labeled 6-at.9,
titanium is known to be detectably nonuniform and
somewhat contaminated; nevertheless, the same tem-
perature dependence prevails. Thus the temperature
scaling with H 45/ seems to be insensitive to vagaries of
specimen preparation. All of our data on Fjmay In
the high-purity alloys scale with x=7, where 1<y<3.
F 5 (max) In the dirtier alloys also decreases as « increases.

The field dependence of F, does not fit a simple
polynomial in X=B/H ., but the form X”*(1—X)™ has
previously been used!® as a convenient empirical fit in
the range 0.1<X<0.9 with =% and m=1. Near
HyF,c1—X as X — 1 and at low fields F, « X or X/*
as X — 0 provide better limiting forms but these factors
combined do not reproduce the clearly observed maxima
of Fp at X=0.6. Coffey!” has observed rather similar
field and temperature dependence in severely cold-
worked commercial niobium-titanium and niobium-
zirconium alloys.

The scaling rules thus assume the product form

Fp=Kk(x)g(B/H o) Hea(T) 2, )
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where the function g(B/H ) is illustrated by Figs. 7-10
and % (k) is something like x~7, with 1<y<3. The factor
[H .2 (T)7%2 is established with high precision, g(B/H .2)
and K are determined to better than =159, for
0.2<B/H 5<0.9, but k(x)=«" is only a qualitative
form.

VI. PINNING MODEL

Our results give a systematic description of the
pinning-force density in the particular case of a very
high density of dislocations from which we might hope
to deduce some information about the properties of the
pinning points and thus the mechanism responsible for
pinning of the fluxoid lattice by dislocations. There are
about six distinct mechanisms, all of which are expected
to provide ~10~% dyn for each dislocation-fluxoid
interaction in the low-temperature limit. However,
there is an intervening difficulty that has commonly
been ignored. This is the need for a satisfactory theory
connecting the measured continuum quantity F, and
the array of local interactions f, between dislocations
and fluxoids that sum to F,. Although no satisfactory
theory for this problem has yet been published, our
discussion is based on an empirical approach that we
hope provides a beginning. It anticipates and is con-
sistent with a forthcoming detailed theory due to
Labusch.® The final form of both is similar to the result
of a calculation of pinning effects in flux flow recently
obtained by Yamafuji and Irie* for a quite different
physical basis and situation.

The essential difficulty is that the pinning points are
not independent of each other. Instead they are coupled
by the elasticity of the fluxoid lattice. This is demon-
strated by considering the effect of a breakaway of a
fluxoid from one of the many pinning points with which
it interacts along its length. It will relax a little, thus
increasing the load on adjacent pinning points and, by
its interaction with adjacent fluxoids, increase the load
on their pinning points. This cooperative effect has been
implicitly introduced in Anderson’s and Kim’s critical-
state concepts by using the “flux bundle” as the pinned
entity rather than a single fluxoid.

The importance of these cooperative effects is further
illustrated by an argument predicting the total absence
of pinning in the limiting case of a perfectly rigid
infinite lattice of fluxoids interacting with a perfectly
random array of localized pinning potentials of ap-
preciable breadth. Since the rigid lattice could not
deform locally for energy minimization, its total energy
would be independent of its position with respect to the
pinning-point array and there would be no pinning at
all.

This discussion suggests that an important parameter
is the maximum distance § that a fluxoid bows out at a
pinning point before it is pulled away by the Lorentz
force and the forces of interaction with the surrounding

# K. Yamafugi and F. Irie, Phys. Letters 25A, 387 (1967).
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fluxoid lattice. The maximum deformation 8, due to a
single pinning point, depends on the strength of the
interaction force per pinning point f; and the effective
stiffness of the fluxoid lattice represented by an elastic
constant C times the nominal fluxoid spacing (¢o/B)Y2.
Thus we obtain

8= f1(a/C)(B/¢o)?, 6

where ¢ is a constant of order unity. Using?® f;=~10-8
dyn and C/a=~10° dyn cm™2, we find the extremely small
displacement §=~10~® cm. A similar calculation in the
low-field limit using the line energy or tension of a single
fluxoid as the restoring force yields essentially the same
kind of result. Thus the fluxoid lattice is very rigid and
the pinning process must involve a statistical average
over all of the interaction forces sampled by this
relatively rigid net.

If we assume that the pinning-force density is given
simply by a linear superposition of the contribution of
all the effective pinning points, we have

Fp=fol», ™

where NV, is an effective density of pinning points and
f» is the maximum pinning force for each interaction.

Assuming that the pinning points consist of individual
fluxoid-dislocation interactions, that the fluxoids are
relatively stiff, and that their range of interaction with
the dislocations is a distance d less than the fluxoid
spacing, the effective density of interactions with indi-

2 R, Labusch, Phys. Status Solidi 19, 715 (1967).
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vidual pinning points N is just the product of the Jength
of fluxoid per unit volume B/¢,, the effective area per
unit length d, and the density p of dislocations threading

the area; that is,
N1= (B/¢o)pd. (8)

Typical magnitudes for our cases give N;~101X 10"
X1076=10%% cm™3.

As already pointed out, a perfectly rigid lattice
interacting with a perfectly random array of localized
potentials should accrue no net pinning. However, if the
lattice is even slightly deformable, the resulting non-
random distribution of distances between fluxoids and
pinning points gives a net pinning force depending on
the distance 6 that a fluxoid can be displaced by the
pinning potential. In fact, the ratio §/d, where d is the
width of the pinning potential, can be interpreted as the
fraction of the points of interaction between fluxoids and
obstacles that can become effective in pinning against an
applied (Lorentz) force. This result is equivalent to
replacing d by § in Eq. (8). Using Eq. (6), the ratio
defines an efficiency factor W=4§/d as follows:

W= (f»/d)(a/C)(B/do)"*, ©)

where f,=f1 is the maximum pinning force of an
individual dislocation-fluxoid interaction.

Thus the pinning-force density given by Eq. (7) is
simply reduced by the efficiency factor W, giving

Fp=fzszWy

where W is defined by Eq. (9). Assuming f,=fi,
N,=N; as given by Eq. (8) and W as given by Eq. (9),
the effective pinning-force density is

Fp= fi*p(B/¢0)**(a/C). (11)

Thus we find the remarkable result that the pinning-
force density is proportional to the square of the
strength of individual pinning points because of the
appearance of fi in the efficiency factor of Eq. (9).

Labusch® has carried out a detailed statistical analysis
of this many-body problem. His theory indicates that to
lowest order in the pinning-point density, F,=0 unless
the quantity that we call an efficiency factor W is
greater than unity. This result can be understood as
indicating that it is necessary that distortions of the
fluxoid lattice must be larger than the width of the
pinning potential for pinning to occur; that is, §>d.
However, in our materials with f;~10~% dyn and
d~10-%, we have 6~10~% and W~1072, so that the
expected situation involves only very weak interactions
and small fluxoid-lattice distortions.

The above argument indicates a lack of pinning in our
case and suggests that the observed pinning might be
due to higher-order correlations between pinning points.
However, consideration of the effect of fluctuations in
the pinning-point distribution leads to pinning by even
a random array as a first-order effect as follows: As-
suming that only groups of pinning points strong enough

(10)
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that W>1 are effective, we seek fluctuations that
provide a net local excess of a number of at least »
favorable pinning points providing a net strength
Jo—> faznfi. The quantity # is determined by the
requirement that Eq. (9) yield W>1, with f,=nf1.
This configuration should occur with random proba-
bility 1/#2, so that the effective density of these pinning
configurations is N, — N,> (B/¢o)pd/n?. The criterion
that W>1 yields

1/2 —1
=[50 2]
d\¢o/ C

The new values of NV, and f, can be inserted in Egs. (9)

and (10) to obtain the pinning-force density F,. How-

ever, inserting V,=N, and f,= f, yields precisely the

same pinning strength given by Eq. (11) since # cancels
out exactly in the expression for F,,.

Since F,, is independent of #, we can estimate the
interaction force f between a single fluxoid and a single
dislocation if all other quantities are known. Using the
maximum observed value of F,~107 dyn cm™3 to find
the maximum (low-temperature) value of f; assuming
p=10" cm=2, B/¢o=~ 10" cm™2, and ¢/C~ 105 cm?/dyn,
we find f1~107 dyn which is a factor of 10 larger than
the values that have been calculated for a dislocation-
fluxoid interaction.®¥ This number may, however, be
overestimated by about one order of magnitude due to
uncertainty in f; and the probability (to be discussed)
that the dislocations are not randomly arranged.
Therefore, we think these experiments indicate 10-8
< fi(max)<10~7 dyn.

Ordering of the dislocations into regular arrays should
enhance the critical-force density as suggested by
Meyerhoff and Heise? but we think that the preceding
discussion indicates that this is not a necessary condi-
tion, contrary to the claim of Narlikar and Dew-
Hughes.?” Nevertheless, pinning is undoubtedly en-
hanced by the expected clustering of dislocations into
the diffuse cell walls known to be characteristic of severe
plastic deformation of niobium.? Cells about 10~* cm
wide with an effective dislocation density ~10% cm™2 in
the walls are expected and would provide clusters con-
taining perhaps ~10° interaction points. This non-
random distribution of pinning enhances the pinning-
force density for a given average dislocation density
because the effective pinning force contributed by a
cluster increases roughly as the number % in the cell,
while the number of these pinning centers decreases
roughly as 1/# instead of as 1/#?2 as in the random case.

The collective pinning represented by the pinning
force fp=mnf in a volume containing between # and »?
pinning interactions seems to be simply an explicit
description of a property of the flux bundle hypothesized

(12)

28 R. W. Meyerhoff and B. H. Heise, J. Appl. Phys. 36, 139

(1965).
* A. V. Narlikar and D. Dew-Hughes, J. Mater. Sci. 1, 317

(1966).
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by Anderson? in his original theory of flux creep. The
size of this bundle can be estimated from our data, using
Eq. (12), which yields #~102. Thus #?=10% and the
“bundle volume” V,~N, n?=n?/[ (B/¢po)pd]~10"12
cm?®. From measurements of flux creep in Pb-T1 alloys
subjected to severe plastic deformation at low tempera-
tures to produce pinning structures similar to ours,
Beasley et al.2® were able to estimate the comparable
values of activation volume and energy for pinning of a
flux bundle. They observed volumes ~10* times the
volume per pinning point and pinning energies ~ 102
times the energy per pinning point under conditions
comparable to ours. This comparison suggests that the
cooperative pinning in our analysis of the critical
pinning force corresponds to the activation volume or
flux bundle invoked to understand flux creep.

It remains to compare the most startling feature of
our experimental data—the scaling rules—with the
predictions of the model we have presented. The object
is to compare the observed temperature and field de-
pendence of the pinning-force density

Fo=Kk()H %% (B/H .s) &)

with the calculated pinning-force density which can be
written in the form

Fp=p(He/ 00)**f*(a/C)(B/H )",  (117)

where temperature, field, and x dependence are implicit
in f1 and a/C.

There are two factors in Eq. (11) that contribute to
the temperature dependence of F,: the fluxoid-lattice
elasticity @¢/C and the pinning force f;. Labusch? has
calculated a¢/C and has given formulas relating the
necessary elastic constants of the fluxoid lattice to
magnetic properties. In the appropriate limit,® we take
a/C= (167CgCas)""2, where Cg and Cyu are elastic
stiffness constants for the fluxoid lattice given by
Labusch. Similar results can be obtained by summation
of the forces on a slightly displaced fluxoid due to all
other fluxoids using a modified London model due to
Coffey'” without invoking continuum elastic properties
of the fluxoid lattice.

The temperature and field dependence of a/C are
summarized below for two ranges of B/H ..

Sl
a/C= 1 0KBKLH s
(H/B)'*(B/H o2)**H o
0.76

T (B/Ho)(1—B/H.)H?

1—B/H 1.

At very low fields the “line tension” or self-energy of
the fluxoid dominates its deformation, and different
statistics may prevail with F,« f;*3p*% under certain

28 M. R. Beasley, R. Labusch, and W. W. Webb, Bull. Am.
Phys. Soc. 12, 519 (1967), and (unpublished); see also M. R.
Beasley, Materials Science Center Report No. 921, Clark Hall,
Cornell University, Ithaca, N. Y. (unpublished).
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conditions. However, our data are most uncertain in
this region and we could not establish evidence for this
effect. As B— 0 the effective elastic constant a/C is
also not well known. Both the experiments and the
model are uncertain in the low-field limit.

There may be several contributions to f; for dislo-
cation-fluxoid interactions but the temperature and field
contributions for those that can be calculated are quite
similar although data needed for accurate determina-
tions are incomplete. We think that the second-order
elastic strain perturbation of the condensation energy®
in the fluxoid core is the dominant pinning contribution
so far estimated for this case. It is calculated as the
change, as the crystal compliances change at the normal-
superconducting transition, of the integral of the dislo-
cation strain energy over the fluxoid volume. One finds
f1=(AS/4)b?/.S?, where AS is the change of the shear
compliance S at the normal to superconducting transi-
tion and & is the magnitude of the dislocation burgers
vector. At lowest temperatures in niobium, AS~4X 1016
cm?/dyn, S~3X102 cm?/dyn, and 5~3X10~8 cm, so
that f1~107% dyn. The temperature dependence is due
to the compliance change which is taken from data on
niobium? that is consistent with AS(T) « H,.(T)%2. The
x dependence is a reasonable guess and the stated
temperature dependence may be just an approximation
to the sum of a linear and a parabolic term suggested by
similarity arguments.®® The field dependence at high
fields is roughly a linear factor of the form 1— B/H ., due
to the decrease of the maximum of the order parameter
between fluxoids. Thus we take

v o) ()
o(O)K c2
¢ (T) 3/2 B
()12
H.(0)x H,.
Combining the field, temperature, and « dependence

of all of the factors, we find that the pinning model
gives the proportionality

~—A ©)
EapP

F,oc H o (T)52
X (B/H)/«*: B small,
X1/kt: B~H/2,

X(B/Hc2)(1_B/Hc2)/K3: l—B/Hc2<<1, (13)

in satisfactory agreement with our results. The con-
sistency of the properties of this pinning model with our
experiments supports its relevance. However, the diffi-
culty of identifying the correct model and pinning
mechanisms is illustrated by the fact that the correct
functional dependence on B and T can also be obtained
from an entirely different pinning model'” that happens
to be inappropriate for the present case.

(12996(1}) A. Alers and D. L. Waldorf, Phys. Rev. Letters 6, 677

(1;)612)) P. Seraphim and P. M. Marcus, IBM J. Res. Develop. 6,94
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Better definition of the pinning process due to dislo-
cations would require complete measurements of the
elastic coefficients that enter into calculation of the
properties of the pinning points,* analysis of the de-
pendence of F, on p over a wide range of p and dislo-
cation structures, and a systematic analysis of flux
creep in the same materials to measure directly the
pinning energy and the size of the pinned unit. It is
quite likely that the results would prove to be too
complex for more than qualitative understanding—Ilike
many other properties of dislocations.

Finally, we should consider the evidence for the
temperature dependence associated with thermal acti-
vation of flux motion. Equation (4) has two terms and
the linear temperature dependence associated with
thermal activation is represented by the second term.
Only if kT In(Ro/R.)Z U, will the effects of thermal
activation be observable. The lowest reasonable value of
U,= fyd seems to be ~1078X1076~10" erg and the
largest value of k5T In(Ro/R.) is <1075, Therefore, the
linear term in T is not ordinarily detectable and the
simplifying heuristic assumption F,=~F that we used in
the present case is justified. Thus the temperature de-
pendence of the critical current is due entirely to the
temperature dependence of the pinning-point strength
and the fluxoid-lattice stiffness and »ot to a term in kT
due to thermal activation. Although flux creep does
occur, its effect on the measured critical state is small.
We have already mentioned that the activation volume
or flux-bundle volume and the effective pinning energy
found by Beasley et al.?® from flux-creep measurements
on alloys with similar pinning structures are similar to
the pinning energies deduced from our critical pinning-
force measurements. We found at lowest temperatures a
pinning energy U,=~10"%2 erg and V,~10"2 cm?®. The
comparison can be carried further by considering the
high-field limit. As B — H.,, both U, and f, vanish and
this result is reflected in both creep and critical pinning-
force measurements. The activation volume for flux
creep has been observed to decrease to a nonzero limit as
B— H,. A nonzero temperature-dependent minimum
bundle volume is also predicted by our pinning model.
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APPENDIX: MAGNETIC MOMENT OF A
HYSTERETIC CYLINDRICAL SPECIMEN

A long cylinder of reversible type-1I superconductor
with negligible demagnetizing factor in a uniform
applied magnetic field H, directed along the axis of the
cylinder should show uniform magnetic induction,
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B(H,)=H,+4wM ,(H,), where M,(H,) is the equilib-
rium magnetization of the specimen in applied field H,.

However, if flux-pinning sites are present within the
material, B is generally not uniform but is an irre-
versible but well-defined function of the past magnetic
history of the specimen if a boundary condition, the
value of B just inside the surface, can be specified for
all values of applied field H,. A simple model for the
hysteretic material is obtained by assuming that this
boundary value of magnetic induction By is a single-
valued function of the applied field and is just equal to
H.+4xM ,(H,). This assumption neglects surface hys-
teresis effects and supposes that pinning sites may be
introduced without altering the basic superconducting
parameters of the material. Both of these assumptions
appear to valid for reasonably high values of « at
0.2H s<B<0.9H.s.

With these boundary conditions and the assumption
that a critical state, defined by a critical current
J(B,T), exists throughout the specimen, a simple result
can be obtained relating the magnetic moment at an
applied field H, to the critical current density J.(B,T)
evaluated at a value of B equal to the boundary field
By. Thus we obtain values for the function J.(B,T) by
varying By over a suitable range of values.

Suppose the magnetic induction B(r) existing in a
cylindrical specimen at an applied field H, is everywhere
greater than zero, extends smoothly to the center, and
has the boundary value B(R)= By, where R is the radius
of the specimen. There are two possible field con-
figurations consistent with these restrictions and the
critical-state model, shown in Fig. 12 and labeled B(r)
and B_(r). These are the configurations expected from
smoothly sweeping the applied field either up to or
down to H, from zero or from a value above H... The
associated critical current configurations are J(By)
and J_(B-), which may be considered as functions of
the radius » with a parametric dependence on the
boundary field Bo. For the conditions specified above, it
is possible to expand the currents in a Taylor series
about the point =R, so that

Ji(r)=J1(R)+J (R)(r—R)

+J"(R)(r—R)?/21+--- (A1)
and
J_(n)=J_-(R)+J ' (R)(r—R)
+J "(R)(r—R)2/2!4+---, (A2)

where the primes indicate derivatives with respect to 7.
The induction B for the two cases is obtained by
integrating the series above, giving

By (r)=Bot+k[J+(R)(r—R)
+JY(R)r—R)Y/2!4----] (A3)

and

B_(r)=Bot+k[J-(R)(r—R)

+ TR r—R/214+-+-], (Ad)
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where k=4a/10 if J is in amperes per square centimeter
and B is in gauss.

Finally the magnetic moment, defined in terms of an
average magnetization M, is obtained by performing the
integration

_ 1 27T 2
= / & / [B()—H.Jrdr, (A5)
wR% J, 0

which, with the assumption that Bo=H ,+4nM ., yields

_ J.R J/R* J/R
41rM+=47rMe+2k( T ) (A6)
31 4l 5!
and
_ J_R J_'R* J_'R}
4WM_=4WMe+zk( i > (A7)
3! 4! 51

where all derivatives of J,. and J_ are evaluated at the
surface.

Now the critical-state model assumes a relationship
between the magnitude of the critical current and the
local field ; hence

[Je(B) [ =174(B)| = |J-(B)]. (A8)
It can be shown that
gy /orr=(—1)"o"J_/dr"

at r=R. (A9)

Thus the two series given above for M and M_ have
terms that are equal in magnitude but the odd terms
have opposite signs. Their difference is

2kJLR 4RT RS

47r(M+—M)= T 5 +--+, (A10)
3 !
and their sum is
_ _ kJ  R?
Ar (M +M_)=2(4xM ) — +---, (Al1)
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F1G. 12. Assumed schematic magnetic field distribution within
the worked specimen. Only these two configurations are consistent
with the critical-state model and the assumptions of the text.
These represent the two branches of the hysteretic magnetization
loop described in the Appendix.

a result similar to that previously obtained for a flat-
plate geometry® assuming a particular form for J,(B). In
regions where the series converge rapidly, the simple
results
dx (M —M_)~2kJT R (A12)

and o

dr (M +M_)=2(4xM ,) (A13)
are obtained, from which J.(B) and 4vM.(H,) can be
calculated.



