# Nuclear Spin-Lattice Relaxation in Liquid Nontransition Metals\*

F. A. ROSSINI AND W. D. KNIGHT

Department of Physics, University of California, Berkeley, California 94720

(Received 20 September 1968)

We develop a broad interpretation for nuclear spin-lattice relaxation in liquid nontransition metals using our new data for Bi<sup>209</sup> and previously reported data for Ga<sup>69,71</sup>, Rb<sup>85,87</sup>, Sb<sup>121,123</sup>, Na<sup>23</sup>, and In<sup>115</sup>. Our work provides new insight into the relative importance of the various contributions to the NMR shift K and the nuclear spin-lattice relaxation rate  $R_1$ . The three potentially significant contributions to K are the hyperfine contact  $K_s$ , hyperfine orbital  $K_o$ , and core polarization  $K_{cp}$ . All other contributions to K are negligible. The sum of  $K_o$  and  $K_{ep}$  is small compared to  $\overline{K}_s$  even in heavy elements. The first significant contribution to  $R_1$ is the hyperfine contact rate  $R_{1s}$ , expressed by the Korringa relation, with  $K(\alpha)$ , the correction factor for electron-electron interactions, having a reasonable value of about 0.75 for all metals in our study. The second and last non-negligible contribution to  $R_1$  is the nuclear quadrupole rate  $R_{1q}$  arising from the effect of ionic motion on the conduction electrons, whose magnitude decreases with an increase in temperature.

## I. INTRODUCTION

N this paper, we develop a broad interpretation of In this paper, we develop a zero tion metals based on recent experimental work. We discuss relevant contributions, both electric and magnetic, to the nuclear spin-lattice relaxation rate  $R_1$ , assess their importance, and treat their temperature dependence. A similar treatment of the contributions to the NMR shift K, provides a means of understanding the magnetic contributions to  $R_1$ . We analyze data for the isotopic pairs Ga<sup>69,71</sup>, Rb<sup>85,87</sup>, and Sb<sup>121,123</sup> and for the single isotopes Na<sup>23</sup>, In<sup>115</sup>, and Bi<sup>209</sup>. The sources of data are shown in Table I.1-9

#### II. CONTRIBUTIONS TO $R_1$ AND K

#### A. Contributions to K

We expect the contact part  $K_s$ , which is always positive, to be the most significant contribution to the NMR shift.<sup>10</sup> The orbital contribution  $K_{o}$ , which may be positive or negative,<sup>11</sup> can be written in approximate form as12

$$K_{\rm o} \approx 2\chi_{\rm o} \langle 1/r^3 \rangle V_a \,, \tag{1}$$

- \* Based in part upon a Ph.D. thesis by F. A. Rossini, University of California at Berkeley, 1968; supported in part by the U.S. Office of Naval Research.
- <sup>1</sup> D. A. Cornell, Phys. Rev. 153, 208 (1967).
   <sup>2</sup> M. Hanabusa and N. Bloembergen, J. Phys. Chem. Solids 27, 363 (1966).
- <sup>8</sup> D. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074 (1955). <sup>4</sup> B. R. McGarvey and H. S. Gutowsky, J. Chem. Phys. 21, 2114 (1953)
- <sup>5</sup> B. R. McGarvey and H. S. Gutowsky, J. Chem. Phys. 20,
- 1472 (1952). <sup>6</sup> W. W. Warren and W. G. Clark, Bull. Am. Phys. Soc. 11, 916
- (1966); and paper to be published.
   <sup>7</sup> F. A. Rossini, E. Geissler, E. M. Dickson, and W. D. Knight, Advan. Phys. 16, 287 (1967).
   <sup>8</sup> F. A. Rossini, thesis, University of California, Berkeley, 1068 (unpubliched)
- 1968 (unpublished).
- <sup>9</sup> G. Bonera, F. Borsa, and A. Rigamonti, paper presented at XV Colloque Ampere, Grenoble, France, September, 1968.
   <sup>10</sup> C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77,
- 852 (1950). <sup>11</sup> T. P. Das (private communication).
- <sup>12</sup> R. J. Noer and W. D. Knight, Rev. Mod. Phys. 36, 177 (1964).

178

641

with  $X_o$  the orbital susceptibility and  $V_a$  the atomic volume. If we assume as a first approximation that  $\chi_0 \approx \chi_{p \text{ free el}}$  and use the atomic values of  $\langle 1/r^3 \rangle$  from the compilation of Barnes and Smith,<sup>13</sup> we find that  $K_{o}$ may be an appreciable fraction of  $K_s$  especially in Sb and Bi.

Core polarization may also contribute to K, but this contribution cannot be readily estimated in general. Calculations in some light metals give  $|K_{ep}|$  $\approx |0.1K_s|$ .<sup>14-16</sup> The shifts due to the polarization of the core states by s, p, etc., electrons are calculated independently, and there may be cancellation among these terms.  $K_{cp}$  may be positive or negative.<sup>11</sup>

Any dipolar contribution to K must be averaged over all nuclear orientations and is therefore zero in the

TABLE I. Sources of  $R_1$  and K data.

| Element | $R_1$                                                                                             | K                                                    |  |
|---------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| Ga      | D. A. Cornell <sup>a</sup><br>M. Hanabusa and                                                     | D. A. Cornell <sup>a</sup>                           |  |
| Rb      | N. Bloembergen <sup>b</sup><br>D. F. Holcomb and<br>R. E. Norberg <sup>o</sup>                    | B. R. McGarvey and<br>H. S. Gutowsky <sup>d,</sup> • |  |
| Sb      | W. W. Warren and<br>W. G. Clark <sup>f</sup>                                                      | W. W. Warren and<br>W. G. Clark <sup>f</sup>         |  |
| Na      | D. F. Holcomb and<br>R. E. Norberg <sup>e</sup><br>M. Hanabusa and<br>N. Bloembergen <sup>b</sup> | B. R. McGarvey and<br>H. S. Gutowsky <sup>d, e</sup> |  |
| In      | F. A. Rossini, <i>et al.</i> <sup>g</sup>                                                         | W. W. Warren and<br>W. G. Clark <sup>f</sup>         |  |
|         | W. W. Warren and<br>W. G. Clark <sup>f</sup><br>G. Bonera, F. Borsa and                           | F. A. Rossini <sup>h</sup>                           |  |
| Bi      | A. Rigamonti <sup>i</sup><br>F. A. Rossini <sup>h</sup>                                           | F. A. Rossini <sup>h</sup>                           |  |

| <sup>a</sup> Reference 1.        | <sup>d</sup> Reference 4. | <sup>s</sup> Reference 7. |
|----------------------------------|---------------------------|---------------------------|
| <sup>b</sup> Reference 2.        | • Reference 5.            | <sup>h</sup> Reference 8. |
| <ul> <li>Reference 3.</li> </ul> | f Reference 6.            | i Reference 9.            |

<sup>13</sup> R. G. Barnes and W. V. Smith, Phys. Rev. 93, 95 (1954).
 <sup>14</sup> W. M. Shyu, T. P. Das, and G. D. Gaspari, Phys. Rev. 152,

270 (1966) <sup>15</sup> G. D. Gaspari, W. M. Shyu, and T. P. Das, Phys. Rev. 134, A852 (1964).

<sup>&</sup>lt;sup>16</sup> W. M. Shyu, G. D. Gaspari, and T. P. Das, Phys. Rev. 141, 603 (1966).

liquid.<sup>17</sup> The Landau diamagnetic contribution to  $K^{18}$ turns out to be insignificant for these metals when the free-electron approximation, an appropriate first approximation for liquid metals, is used.

We divide K into two parts

$$K = K_s + K', \tag{2}$$

where K' is composed of  $K_0$  and  $K_{op}$  which cannot be distinguished experimentally.

The temperature dependence of K is sufficiently small that its effect on  $R_1$  is no greater than the experimental error in  $R_1$  and it is therefore neglected.

## **B.** Magnetic Contributions to $R_1$

The principal magnetic contribution to  $R_1$  derives from the contact interaction. An expression for this rate for noninteracting electrons was derived by Korringa.<sup>19</sup> Electron-electron corrections were made by Pines<sup>20</sup> and Silverstein.<sup>21,22</sup> A more complete model for these corrections was proposed by Moriya<sup>23</sup> and corrected and extended by Narath and Weaver<sup>24</sup> who use the following expression for  $R_{1s}$ :

$$R_{1s} = (4\pi k_B T/\hbar) K_s^2 (\gamma_n/\gamma_e)^2 K(\alpha), \qquad (3)$$

in which  $K(\alpha)$ , the electron-electron correction factor, is necessarily less than or equal to 1.00.

Mitchell<sup>25</sup> has calculated the orbital relaxation rate for Bloch electrons and Obata<sup>26</sup> for electrons in solid cubic metals in the tight binding approximation. Both results give the same order of magnitude. We will use Obata's more tractable expression for p-like conduction electrons in our estimates

$$R_{1o} \approx (4\pi/\hbar) (\gamma_e \gamma_n \hbar^2)^2 k_B T \rho^2(E_f) \langle 1/r^3 \rangle.$$
 (4)

We use the atomic  $\langle 1/r^3 \rangle$  and the free electron  $\rho(E_f)$ .  $R_{10}$  is then within the experimental error for Bi, where it should be the largest. The spin-dipole rate turns out from Obata's work to be 0.3  $R_{10}$  and hence is also insignificant in the present treatment.

For a metal with *p*-like conduction electrons the expression for core polarization relaxation is <sup>27</sup>

$$R_{1\rm cp} = (4\pi k_B T/3\hbar) (\gamma_n/\gamma_e)^2 K_{\rm cp}^2.$$
<sup>(5)</sup>

The temperature dependence of  $K_{ep}$  has never been calculated. We do not know  $K_{ep}$  directly for any of our

- 1955), Vol. I, p. 367.
- <sup>21</sup> S. D. Silverstein, Phys. Rev. 128, 631 (1962).
   <sup>22</sup> S. D. Silverstein, Phys. Rev. 130, 912 (1963).
   <sup>23</sup> T. Moriya, J. Phys. Soc. Japan 18, 516 (1963).
   <sup>24</sup> A. Narath and H. T. Weaver, Phys. Rev. (to be published).

- <sup>26</sup> A. H. Mitchell, J. Chem. Phys. 26, 1714 (1957).
   <sup>26</sup> Y. Obata, J. Phys. Soc. Japan 18, 1020 (1963).
   <sup>27</sup> Y. Yafet and V. Jaccarino, Phys. Rev. 133, A1630 (1964).

metals, but if  $|K_{\rm op}| \approx |0.25K_s|$ ,  $R_{\rm 1ep} \approx 0.02R_{\rm 1s}$  or smaller than the typical experimental error. We will therefore neglect  $R_{1ep}$  and see this neglect justified as we continue.

The dipole-dipole,28 pseudodipolar29 and indirect exchange<sup>30</sup> interactions are motionally narrowed<sup>28,29</sup> in the liquid. Using the expression<sup>31</sup>  $R_1 \approx (\delta \omega)^2 \tau_c$  with  $\tau_c \approx 10^{-13}$  sec,<sup>7</sup> we find these contributions to be much less than 1 cps.

#### C. Electric Quadrupole Contributions to $R_1$

The work of Cornell<sup>1</sup> and Warren and Clark<sup>6</sup> have shown that for metals with  $I > \frac{1}{2}$  there is a significant relaxation rate which is directly attributable to the electric quadrupole interaction.

The general expression for quadrupole relaxation in a liquid due to atomic motion is<sup>32</sup>

$$R_{1q} = \frac{3}{80} \frac{2I+3}{I^2(2I-1)} \left(\frac{e^2 Q}{\hbar}\right)^2 J(0), \qquad (6)$$

where J is the spectral density of the correlation function.

Using the correlation time approximation, J(0) $\propto q^2 \tau_c$ , Rossini *et al.*<sup>7</sup> estimated q, the electric field gradient (efg), for liquid indium. They found that qhad its largest contribution from the effect of ionic motion on the p-conduction electrons which were assumed to bond covalently. They obtained the correlation time  $\tau_c$  from the expression for jump diffusion,  $D = \langle r^2 \rangle_{\rm av} / 6\tau_c$ . This model is crude but nevertheless physically plausible.

Borsa and Rigamonti<sup>33</sup> calculated  $R_{1q}$  in a number of liquid metals using a screened Coulomb potential. This calculation neglected the conduction-electron contributions to the efg which Rossini et al. found so important. Borsa and Rigamonti used the ionic antishielding factor  ${}^{34}(1-\gamma_{\infty})$  to account for the effect of the ions on the core electrons.

In a more basic calculation of  $R_{1q}$  for liquid In and Ga, Sholl<sup>35</sup> used the spectral-density formalism and included conduction-electron effects. He used the asymptotic form of a screened interatomic potential of amplitude A

$$V(r) \to \cos 2k_F r / (2k_F r)^3 \tag{7}$$

to calculate J(0), which he multiplied by the anti-

- <sup>28</sup> N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948). <sup>29</sup> N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679
- (1955)
- <sup>(1953).</sup>
   <sup>∞</sup> M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
   <sup>∞</sup> D. Pines and C. P. Slichter, Phys. Rev. 100, 1014 (1955).
   <sup>∞</sup> A. Abragam, *Principles of Nuclear Magnetism* (Clarendon Press, Oxford, 1961).
   <sup>∞</sup> B. Darras and A. Bizamanti, Nuova Cimento 48, 104 (1967).
  - F. Borsa and A. Rigamonti, Nuovo Cimento 48, 194 (1967). <sup>34</sup> For a complete list of references on the antishielding factor
- see R. M. Sternheimer, Phys. Rev. 146, 140 (1966). <sup>35</sup> C. A. Sholl, Proc. Phys. Soc. (London) 91, 130 (1967).

 <sup>&</sup>lt;sup>17</sup> M. Hanabusa, Cruft Laboratory, Division of Engineering and Applied Physics, Technical Report No. 470 (Harvard University Press, Cambridge, Mass., 1965).
 <sup>18</sup> T. P. Das and E. F. Sondheimer, Phil. Mag. 5, 529 (1960).
 <sup>19</sup> J. Korringa, Physica 16, 601 (1950).
 <sup>20</sup> D. Pines, *Solid State Physics* (Academic Press Inc., New York, 1955). Vol. J. p. 367

shielding factor for an almost neutral ion,  $(1-\gamma_{\infty})_{an}$ . He calculated  $A(1-\gamma_{\infty})_{an}$  by using the potential to calculate the efg in the solid by a lattice sum which came out  $q = Aq_0(1-\gamma_{\infty})_{an}$ , where  $(1-\gamma_{\infty})_{an}$  appears as an enhancement factor to the purely ionic field gradient  $Aq_0$ . He compared his q with the measured quadrupole coupling in the solid,  $e^2 q Q/h$ . Since  $q_0$  is a number, a numerical value of  $AQ(1-\gamma_{\infty})_{an}$  may be derived. The value of A may be calculated if the unscreened potential is assumed to be Coulomb-like. Thus, with Q known, the value of  $(1-\gamma_{\infty})_{an}$  may be obtained.

Sholl's result for  $R_{1q}$  is

$$R_{1q} = \frac{2I+3}{I^2(2I-1)} \left[ \frac{A (1-\gamma_{\infty})_{\rm an} Q}{\hbar} \right]^2 \frac{\pi \rho I_1}{75D}, \qquad (8)$$

where  $\rho$  is the number of atoms per unit volume.  $I_1$  is given by

$$I_1 = \int_0^\infty f(r_0) G(r_0) dr_0, \qquad (9)$$

where  $f(r_0)$  is defined by

$$f(r_0) = \frac{1}{A} \frac{d}{dr} \left[ \frac{1}{r} \frac{dV(r)}{dr} \right] \Big|_{r=r_0} = (2k_F)^2 \frac{7(2k_F r_0)^2 \sin(2k_F r_0) + \left[15 - (2k_F r_0)^2\right] \cos(2k_F r_0)}{(2k_F r_0)^5},$$
(10)

and  $G(r_0)$  is

$$G(r_0) = \frac{g^{\frac{1}{2}}(r_0)}{r_0} \left[ \int_0^{r_0} f(r_1) g^{\frac{1}{2}}(r_1) r_1^4 dr_1 + r_0^5 \int_{r_0}^{\infty} \frac{f(r_1)}{r_1} g^{\frac{1}{2}}(r_1) dr_1, \right]$$
(11)

with the g the x-ray radial distribution function (rdf).

The temperature dependence of Eq. (8) arises from  $\rho$ ,  $I_1$ , and D. The density  $\rho$  varies typically a few percent over a wide temperature range.  $I_1$  depends on g(r) and  $k_F$  which are only slightly temperature-dependent. The diffusion coefficient D for a liquid metal typically varies with temperature as  $e^{-(1500^{\circ}K)/T}$  which is much stronger than any of the other temperature-dependent quantities in Eq. (8). Thus, our estimates for  $R_{1q}$  from Sholl's expression will vary in temperature approximately as D.

Physically, Sholl's model and the simpler model of Rossini et al. can account for the most significant part of the efg as arising from the conduction electrons near the nucleus due to ionic motion. Sholl calculates the efg at the nucleus due to ionic motion and then includes the effect of the conduction electrons as a screening cloud sensitive to ionic motion. Rossini et al. begin with the free atom and then add the effect of the other atoms by treating the p-conduction electrons as directional covalent bonds sensitive to ionic motion. As is to be expected the two models give comparable results with  $R_{1q}$ contributing a significant part of the observed  $R_1$ .

Another mechanism for quadrupole relaxation is the scattering of conduction electrons at the Fermi surface similar to the magnetic hyperfine interaction. Such calculations have been made by Mitchell<sup>36</sup> for Bloch electrons and by Obata<sup>37</sup> for electrons in the tight binding approximation. Hanabusa<sup>17</sup> has expressed the Mitchell result as

$$R_{1q'} = \frac{9\pi}{50} \frac{m^2}{\hbar^5} \frac{2I+1}{I^2(2I-1)} \frac{e^4 Q^2}{k_F^4} \left\langle \frac{1}{r^3} \right\rangle^2 k_B T.$$
(12)

Although it has no where been considered previously, the appropriate antishielding factor for  $R_{1q'}$  should be the conduction-electron antishielding factor  $(1-R_0)^{38,39}$ and not  $(1-\gamma_{\infty})$ . The former quantity is approximately unity for the metals under consideration.<sup>38,39</sup> As calculated from Eq. (12)  $R_{1q'}$  is much less than 1% of the experimentally known quadrupole coupling in Ga and Sb. It is also very small in the other cases of interest.

Thus,  $R_1$  may be divided in two significant parts,

$$R_1 = R_{1s} + R_{1q}, \tag{13}$$

where in the cases of interest to us the other magnetic and quadrupole contributions are negligible.

## **III. ANALYSIS**

For elements with two magnetic isotopes, we may uniquely solve for the magnetic and quadrupolar rates by using two simultaneous equations for  $R_1$ . Since this is not possible for elements with one magnetic isotope, we will study them later in the light of what we learned from the isotopic pairs.

Before we turn to the data, three points should be noted. First, Narath and Weaver<sup>24</sup> find  $K(\alpha)$  to be nearly the same for all of the solid alkali metals. Since these are the most free-electron-like of solid metals and furthermore since all liquid metals are nearly freeelectron-like,<sup>40</sup> we assume that  $K(\alpha)$  does not differ greatly among liquid metals. This assumption is in fact validated by the experimental results. The parameters in the calculation for  $K(\alpha)$  have a temperature dependence which is insignificant. In the separation of  $R_{1s}$  and  $R_{1q}$  from the experimental  $R_1$  for elements of

<sup>&</sup>lt;sup>86</sup> A. H. Mitchell, J. Chem. Phys. 26, 1714 (1957).

<sup>&</sup>lt;sup>87</sup> Y. Obata, J. Phys. Soc. Japan 19, 2348 (1964).

<sup>&</sup>lt;sup>38</sup> M. H. Cohen and F. Reif, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, pp. 360 ff. <sup>39</sup> R. E. Watson, A. C. Gossard, and Y. Yafet, Phys. Rev. 140,

A375 (1965). <sup>40</sup> N. E. Cusack, in *Reports on Progress in Physics* (The Institute of Physics and the Physical Society, London, 1963), Vol. 26.

two magnetic isotopes, the percentage error in  $K(\alpha)$ turns out to be about twice the percentage error in  $R_1$ making difficult a check on possible temperature dependence. Second, the limited information available on  $K_{\rm o}$  and  $K_{\rm cp}$  indicates that in general they should not be as large as  $K_s$ . Because of cancellation, K' might be smaller in absolute value than either of its components. Third, the only quadrupole relaxation mechanism of sufficient size to cause the observed rate is that due to the effects of ionic motion on the conduction electrons. Theory predicts a decreasing temperature dependence for this rate. Theoretical estimates for  $R_{1q}$  are not known precisely as will be seen because of the difficulty in applying the complicated Sholl formalism to specific cases.

We now estimate  $R_{1q}$  from the Sholl formalism. The nuclear-moment values used in our estimates are taken from the compilation of Fuller and Cohen.<sup>41</sup> Densities are from the Liquid Metals Handbook.42 Diffusion data for Ga, In, and Na are listed in Nachtrieb's review article.43 The diffusion coefficient for Bi was estimated from the viscosity data by Ofte and Wittenberg.44 For Rb and Sb, D was obtained from the viscosity data following the method of Saxton and Sherby.<sup>45</sup> We will use the Awhich Sholl calculated for an unscreened Coulomb potential  $A \approx 0.121$  cgs. Sholl's calculation of  $(1 - \gamma_{\infty})_{an}$ turned out about three times the calculated ionic value of  $(1-\gamma_{\infty})$  in Ga and In. We use the same ratio in estimating  $(1-\gamma_{\infty})_{an}$ . There is no easy way of estimating  $I_1$  short of doing the difficult integrals. Sholl found  $I_1$ to be 30% smaller for In than Ga, which is quite close considering the imprecision of our estimates. As a first approximation we may look at the values of  $f(r_1)$  and  $f(r_2)$  corresponding to the first two peaks of the x-ray rdf and compare them for different elements. We then appeal to Paskin's "law of corresponding states<sup>46</sup>" by which the structure factors of a pair of liquid metals with the wave vectors scaled by the ratio of the cube root of the atomic volume are nearly the same implying similar rdfs. Paskin has shown this for In, Rb, and Na among others. We extend this result to Ga, Sb, and Bi. If f is relatively large at the rdf peaks, we expect a relatively large  $I_1$  and conversely. Using the calculated values of  $I_1$  in Ga and In for comparison, we will roughly estimate  $I_1$  for the others. Typical errors for D are between 10 and 20%. We arbitrarily set our error for the rough estimate of  $R_{1q}$  at  $\pm 50\%$  of its largest value. This is reasonable in view of the previously mentioned uncertainties and since the  $R_{1q}$  value is not expected to

be exact. Typical experimental errors for  $R_1$  are about 5%. Table II shows values for I,  $I_1$ ,  $(1-\gamma_{\infty})_{an}$ , and our estimates for  $R_{1q}$ .

In analyzing the data, we begin by assuming  $K = K_s$ . Figures 1-4 show this case for  $R_{1s}$  in Ga<sup>69</sup>, Rb<sup>85</sup>, Sb<sup>121</sup>, and Na<sup>23</sup>. In each case,  $K(\alpha)$  of about 0.75 fits the data well. Data for  $R_{1q}$  in Ga<sup>69</sup>, Rb<sup>85</sup>, and Sb<sup>121</sup> are shown in Figs. 5-7. The qualitative features of the data are similar for both isotopes of Ga, Rb, and Sb. Cornell's Ga data were used since only he studied both isotopes. Estimates for  $R_{1q}$  in Na<sup>23</sup> give a value of about 1% of the experimental  $R_1$ . The consistency of the magnetic data for  $K = K_s$  and  $K(\alpha) \approx 0.75$  lead us to conclude that  $K(\alpha)$  is in the neighborhood of 0.75 for liquid metals and that K' is probably small. In Ga and Rb,  $R_{1q}$  is not known over large temperature ranges. On inspection of the data in Figs. 5 and 6 we feel that  $R_{1q}$ appears to be constant in temperature. However, the Hanabusa data for Ga predicts a decreasing temperature dependence for  $R_{1q}$ . Figure 7 shows clearly a decreasing temperature dependence of  $R_{1q}$  in Sb.

The cases of In<sup>115</sup> and Bi<sup>209</sup> are more complicated because we are dealing with single magnetic isotopes and a very significant contribution from  $R_{1q}$ . If we assume that  $K = K_s$  and  $K(\alpha) \approx 0.75$  for In, Fig. 8 shows an unaccounted for relaxation rate which is approximately linear. Since  $R_{1q'}/T \approx 2.5 \times 10^{-3}$  from Eq. (12), this rate must be magnetic. This means a finite K'. If  $K(\alpha) \approx 0.75, K' \approx -0.1 K_s$  is reasonable in view of calculations for  $K_{cp}$  in light metals.<sup>14–16</sup> The slope of  $R_1$ versus T flattens as T decreases to the melting point.<sup>8</sup> A clearer indication of this point may be found in the measurements by Styles<sup>47</sup> of the In<sup>115</sup> linewidth in 50% In-50% Bi alloys which extend lower into the supercooled region. This flattening indicates a quadrupole relaxation rate decreasing with temperature and smaller than our estimates in Table II.

The minimum of  $R_1$  in Bi<sup>209</sup> is obvious from the data of Rossini<sup>8</sup> shown in Fig. 9 and is confirmed in the work of Styles,<sup>47</sup> since  $R_1$  is proportional to the linewidth in the liquid. The estimate in Table II for  $R_{1q}$  appears to

TABLE II. Estimates for  $R_{1q}$ .

| Isotope                               | Ι                                | $(1-\gamma_{\infty})_{\mathrm{an}}$ | $I_1$                                                | $R_{1q}^{\mathbf{a},\mathbf{b}}$                                                            |
|---------------------------------------|----------------------------------|-------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Ga <sup>69</sup><br>Ga <sup>71</sup>  | 323                              | 28 °                                | 3.30×10 <sup>−11</sup> °                             | $\begin{array}{ccc} 73.5 & e^{564/T} \\ 29.3 & e^{564/T} \end{array}$                       |
| Rb <sup>85</sup>                      | 2523                             | 150 d                               | 2.37×10 <sup>-11 a</sup>                             | $2.87 e^{938/T}$                                                                            |
| Rb <sup>87</sup><br>Sb <sup>121</sup> | )<br>~<br>5]<br>~<br>7           | 30 ª                                | 3.90×10 <sup>-11 s</sup>                             | $\begin{array}{rrr} 250 & e^{2490/T} \\ 154 & e^{2490/T} \end{array}$                       |
| ${}^{ m Sb^{123}}_{ m In^{115}}$      | ରାକ ଭାକ ଭାକ ସାହା ଅଭା ଲାକ ଅଭା ମହା | 17 d<br>77 o                        | 2.37×10 <sup>-11</sup> a<br>2.37×10 <sup>-11</sup> ° | $\begin{array}{c} 1.54 & e^{1120/T} \\ 0.041 & e^{1220/T} \\ 1.58 & e^{1250/T} \end{array}$ |
| Bi <sup>209</sup>                     | 2<br>9<br>2                      | 150 ª                               | 3.90×10 <sup>-11</sup> a                             | 46.4 $e^{1520/T}$                                                                           |

<sup>a</sup> Our estimate. <sup>b</sup> T in °K.

• Sholl calculation. •  $3 \times (1-\gamma)_{\text{ionic}}$  from literature.

47 G. A. Styles, Advan. Phys. 16, 275 (1967).

<sup>&</sup>lt;sup>41</sup>G. H. Fuller and V. W. Cohen, Nuclear Data Sheets, Oak Ridge National Laboratory Report, 1965, Appendix 1 (unpublished).

Liquid Metals Handbook, edited by R. N. Lynn, Office of <sup>45</sup> N. H. Nachtrieb, Advan. Phys. 16, 309 (1967).
 <sup>45</sup> N. H. Nachtrieb, Advan. Phys. 16, 309 (1967).
 <sup>46</sup> D. Ofte and L. J. Wittenberg, Trans AIME 227, 706 (1963).
 <sup>45</sup> H. J. Saxton and O. J. Sherby, Am. Soc. Metals Trans. Quart.

<sup>55, 826 (1962).</sup> <sup>46</sup> A. Paskin, Advan. Phys. 16, 233 (1967).

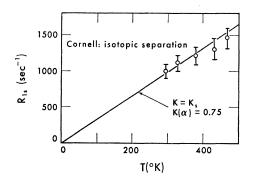


FIG. 1.  $R_{1s}$  versus T in liquid Ga<sup>69</sup>.

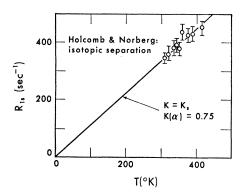


FIG. 2.  $R_{1s}$  versus T in liquid Rb<sup>85</sup>.

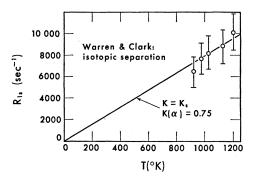


FIG. 3.  $R_{1s}$  versus T in liquid Sb<sup>121</sup>.

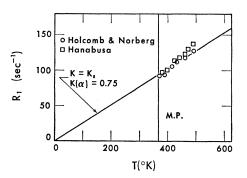


FIG. 4.  $R_{1s} \approx R_1$  versus T in liquid Na<sup>23</sup>.

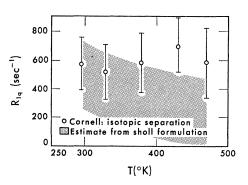


FIG. 5.  $R_{1q}$  versus T in liquid Ga<sup>69</sup>.

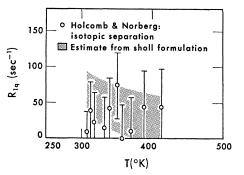


FIG. 6.  $R_{1q}$  versus T in liquid Rb<sup>85</sup>.

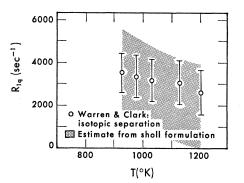
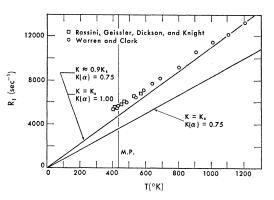


FIG. 7.  $R_{1q}$  versus T in liquid Sb<sup>121</sup>.





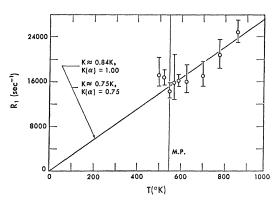


FIG. 9.  $R_1$  versus T in liquid Bi<sup>209</sup>—data of Rossini (Ref. 8).

be small. If we take  $K(\alpha) \approx 0.75$ ,  $K' \approx -0.25 K_s$ . Again this is reasonable as bismuth's large  $\langle 1/r^3 \rangle$  might lead to a significant  $K_o$  and since  $K_{cp}$  is unknown. It is interesting to note that where  $R_{1q}$  appears to be temperature-dependent it decreases with temperature. Only in the alkalis, where  $R_{1q}$  is relatively less important, does this not appear clearly.

## IV. CONCLUSIONS

We have developed a broad interpretation for nuclear spin-lattice relaxation in liquid nontransition metals in terms of all known interactions of the nuclear magnetic dipole and electric quadrupole moments with the lattice. Data for  $R_1$  and K in Ga<sup>69,71</sup>, Rb<sup>85,87</sup>, Sb<sup>121,123</sup>, Na<sup>23</sup>, In<sup>115</sup>, and Bi<sup>209</sup> have been examined within this framework.

Four conclusions may be drawn:

(1) The potentially significant contributions to K are hyperfine contact  $K_s$ , hyperfine orbital, and core polarization. (The sum of the last two is referred to as K'.)

(2) K' is small compared to  $K_s$  even in heavy elements.

(3) The potentially significant contributions to  $R_1$  are the hyperfine contact  $R_{1s}$  expressed by the modified Korringa relation and the nuclear quadrupolar contribution arising from the effect of ionic motion on the conduction electrons  $R_{1g}$ , which decreases with temperature.

(4) Reasonable values of  $K(\alpha)$  are close to 0.75 for all liquid metals examined.

The presence of significant magnetic relaxation mechanisms other than hyperfine contact, such as orbital core polarization, which were considered possible especially for heavy elements, is discounted. The temperature dependence of  $R_{1q}$  expected from a model where the efg follows the diffusive motion of the ions is shown to be reasonable. The experimental data are explained without requiring  $K(\alpha)$  to have a temperature dependence.  $K_s$  dominates K even in heavy elements with K' turning out to be at most about 0.25  $K_s$ . It is of some significance that this method of analysis places small upper limits for noncontact magnetic interactions which have heretofore not been evaluated by any direct experimental method. The available data fit very well into this framework for nuclear spin-lattice relaxation in liquid nontransition metals.

# ACKNOWLEDGMENTS

We would like to thank Dr. E. M. Dickson and Dr. E. Geissler for their valuable contributions during the course of this work. Dr. W. W. Warren and Professor W. G. Clark kindly provided a preprint of their work in liquid indium and antimony. Professor T. P. Das helped to clarify some theoretical points.