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A relativistic formulation of the hyperfine properties of metals has been developed and applied to study
the Knight shifts K,, relaxation times 7T;, and Ruderman-Kittel 4;» and pseudodipolar By, interactions in
the two alkali metals, rubidium and cesium. The calculations have been carried out using Dirac orthog-
onalized-plane-wave wave functions, and the relativistic expressions derived have been checked for cor-
rectness by proceeding to the nonrelativistic limit. The calculated values of K, for rubidium and cesium
are 0.609, and 1.429%,, as compared to 0.65%, and 1.49%, from experiment. The values of 71T for these
metals are 1.293 and 0.128 deg sec, in good agreement with the experimental values of 1.235 and 0.130 deg
sec, respectively. The relativistic values of 42 for rubidium and cesium are found to be 24.45 and 189.64
cps, as compared to 5045 and 200410 cps from resonance experiments. The theoretical values of Bis
for the two metals are 0.45 and 2.65 cps, respectively, as compared to 1142 cycles and 3545 cps from
recent steady-state NMR measurements. The relativistic results for all the properties, including (7':7)71,
are substantially larger (7% to 60%,) than predicted by nonrelativistic theory, leading to improved agree-
ment with experiment. Possible reasons for the poor agreement between experiment and theory for Bys in
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both metals are discussed.

I. INTRODUCTION

HE importance of relativistic effects on properties
of heavy metals has been realized for some time.
One of the properties that was analyzed earliest,! by an
extension of the quantum defect method, was the
cohesive energy of alkali metals. Subsequently, the in-
fluence of relativistic effects on band structure was
highlighted by several calculations at symmetry points
based on perturbation theory.? More detailed calcula-
tions, using Dirac theory adapted to orthogonalized-
plane-wave (OPW) and augmented-plane-wave (APW)
techniques, have been carried out for a number of
heavy metals.? The role of relativistic effects in the
theory of g shifts in ESR has also been investigated.*
The influence of relativistic effects on the hyperfine
properties of metals is the subject of study in the present
work. Hyperfine effects depend sensitively on the wave
function in the vicinity of the nucleus. Since this region
is relatively unimportant for properties depending on
band structure alone, the study of hyperfine properties
thus provides a further test of the relativistic theory of
metals.
More specifically, we shall be interested in the theory
of Knight shifts, nuclear relaxation times, and Ruder-
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man-Kittel (RK), and pseudodipolar (PD) interactions
in two heavier alkali metals, rubidium and cesium.
Nonrelativistic analyses®¢ for these metals have shown
that there are significant departures from experiment
which could be associated with relativistic effects.
Since relativistic wave functions are now available for
the corresponding atoms, it is possible to construct
Dirac OPW wave functions for these metals. This, then,
seems to be an appropriate time for a relativistic analy-
sis of the various hyperfine properties.

In Sec. II, the definitions and terminology for Dirac
OPW functions” will be described and theoretical ex-
pressions will be derived for the various properties of
interest. In Sec. I1I, numerical procedures and results
will be presented. The significance of the results and
possible improvements will be discussed in Sec. IV.

II. THEORY

The properties that we shall be concerned with,
namely, Knight shift, relaxation times, and RK and PD
interactions, require in some form or other an evaluation
of matrix elements of the hyperfine Hamiltonian

FHngs™'=2_ ea; A; 1)

over conduction electron wave functions. In Eq. (1),
the components of « represent the first three Dirac
matrices and A, is the vector potential produced by the
nuclear moment yy at the site of the sth electron r;.

A= (urXr)/rd. (2)

The evaluation of the hyperfine matrix elements for
Dirac-Hartree-Fock (DHF) atomic functions has been

5 J. Callaway, Energy Band Theory (Academic Press Inc., New

York, 1964).
6S. D. Mahanti and T. P. Das (to be published).

7 P. Soven, see Ref. 3.
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presented in an earlier paper® (hereafter referred to as
TMD I). Several features of this analysis can be
utilized in the present problem. However, one now has
to work with relativistic wave functions appropriate to
metals. For the Dirac OPW formalism which we shall
adopt, the wave function for a state with wave vector k
and majority spin index o is conventionally written? as

A(E)

¥, (k)=
(kr) Q'

[Xa(k>r)—2c Bc(k:o')‘ﬁC(r)]r (3)

where

1/2 :i_->
k)= —— o'k ik
xo(k,t) ( — ) e @

are thefour-component plane-wave wave functions
with energy W (in units of mc?) and |4 ) represent the
spin functions

) ()

The components of ¢ in Eq. (4) are the Pauli matrices.
The four-component core wave functions ¢.(r) in
Eq. (3) are defined by the appropriate quantum num-
bers®? nxu and are given by

Pres(D)= (;Z;:—“") ,

where gac(r) and fuc(r) are the radial wave functions
for the major and minor components, respectively, and
¥y is the usual two-component angular spinor.®® The
orthogonalization coefficients B.(k,s) in Eq. (3) are

given by
By (ko) = <¢mm l xo(k) ) (6)

For the sake of convenience, the Bloch wave function
in Eq. (3) has been normalized to the Wigner-Seitz
volume o and A(k) is the corresponding normaliza-
tion factor. For ease of manipulation of the matrix
elements of JCnss™!, it is convenient to use an angular
spinor representation for the Bloch functions in terms
of which Eq. (3) may be rewritten as

bl )Wn )
id (s W—ed

©)

()= ax,.(km( )

where

. 1+
au(k,0)= 47ri’(
2W

1/2
) CWhjs umor) T io*(h),
A (k)

Qe
kS, A(E)
)= i) E D) |

OS(L. Tt)erlikkis, S. D. Mahanti, and T. P. Das, Phys. Rev. 176,
10 (1968).

®M. E. Rose, Relativistic Electron Theory (John Wiley & Sons,
Inc., New York, 1961).

bx(k,r) = [jl(kr)_z:n Dnn(k)gnx(r):l (8)
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In Eq. (8), the functions j,(x) and ¥;»(E) are®® the
spherical Bessel function and spherical harmonic, re-
spectively, and C(lsj; mi,m,) are Clebsch-Gordan co-
efficients. The summation over # is restricted to the
occupied core states only, and the function D, is
given by

ES,
Ju(kr) :!rzdr . 9

an = nk\? 'l nK
®) / [g O 1ol

In Egs. (8) and (9), S, and 7/, associated with the lower
component of the Bloch-spinor, depend upon the parity
of the particular core state under consideration and
are given by

Se=1;l=k;l'=k—1; j=1—% for x>0
(10)

Sy=—1;l=—«k—1;/=—x; j=I14+% for «<O.

and

It should be remarked here that for values of £ within
the Fermi-surface, W1, and hence one can safely
approximate the factor (1+W)/2W in a.(ko) by
unity and (14+W) by 2 in the expression for d.(k,r)
in Eq. (8).

Using Eq. (7) for the Bloch wave function, one ob-
tains the matrix element of 3Cy¢s*e! between two stat:s

‘k:0> and ‘k,a‘71>1
(kolea- AlK'a")= 3 3 ieustuy™ (ko) aran(k',0”)

K141 K242
XIW cxealesk’)+ W o (B’ ) ]

X <‘wa1 l (X 0): I ‘/’——xzuz) ) (11)

where

W enalbs) = f T hrEndadr. (12)

In deriving Eq. (11), the nuclear moment has been
assumed to point in the z direction. This general form
of the hyperfine matrix element is useful in the analysis
of both Knight shift as well as RK and PD interactions.

A. Knight Shift (X,)

The evaluation of K, requires a diagonal hyperfine
matrix element over Bloch states at the Fermi surface.
Since (7X¢), commutes with the z component J, of the
total angular momentum operator, the double sum over
u1 and go in Eq. (11) will reduce to a single one. On sub-
stituting the hyperfine matrix element in the standard

expression for the Knight shift, we obtain for K,
K o= — Q2mc/#){®(kr))avxso, (13)

where x, is the Pauli susceptibility in cgs volume units
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and

O(k)=i(4m)* X ()4 1C*(hijr; w—0y0)

K1K2p

X C(bh jos p—0,0) (= D)o [(2h+1) b+ 1) 12
0 4

l 0 I (A A
X ( )( )A caeg Y 1P~ * (k)
g—u 0 u_/\N0O O O

X le""’(k) [an(k;k) + me(kl;k)] . (14)

In Eq. (14),
( l lo I3 )
my Mg M3

are the Wigner’s 37 symbols,'® while 4,,,,* arises from
the matrix element [on the right-hand side of Eq. (11)]
of (#X@), over the angular spinors (ki) and (—xop).
The values of this matrix element for various choices
of k1 and ks have been listed elsewhere.®® In writing
Eq. (13), it has been assumed that the susceptibility
is not affected by relativistic effects, a reasonable as-
sumption for rubidium and cesium, for which the Fermi
surface is within the Brillouin zone and never reaches
the zone boundary. In addition, a considerable sim-
plification is achieved when one uses a spherical® !
Fermi surface, since one can make use of the orthog-
onality property of the spherical harmonics in carry-
ing out the average in Eq. (13). The expression for the
Knight shift then reduces to

K =~ (2mc/n)®(kr)x:Q (15)
with
®(kp) =7 (16/3)Wii(kr,kr)+ (64/9)Was(kr kr)
+ (16/9)Wui(kr,kr)+(32/9)
X Wailkwlr)+Wialkr,kr))], (16)

where 7i=—n, and it is immaterial whether the spin
index o is up or down.

The summation in Eq. (14) for ®(kr) leads to two
distinct types of contributions to K, one involving
matrix elements over similar angular momentum states
such as s-s, p-p, and d-d, and the other involving com-
binations of different angular momenta, for example,
s-d and p-f. The second contribution can be shown to
vanish identically, using the symmetry property of the
37 symbols. The significance and numerical importance
of the nonvanishing terms will be discussed in the next
section. Unlike the nonrelativistic theory, where the
contribution to K, arises only from the s-character of
the conduction electron wave function, all angular
components contribute in the relativistic theory as
shown in Eq. (16). The correctness of Eq. (16) can be
assured by making a nonrelativistic reduction similar
to that for atoms as in TMD 1.

10 R, Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3-5 and

6-j Symbols (Technology Press, Cambridge, Mass., 1959).
11 F, S. Ham, Phys. Rev. 128, 2524 (1962).
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For this purpose, we shall separate the s and non-s-
like contributions in Eq. (16). The Dirac equation for
an electron in a Bloch state | ko) with energy e(ko) is

[ca-p+Bmc*+V  (x) ¥ (ko) = e(ko) ¥ (ko). (17)

Using the expansion for ¥(ke) in (7) one can separate
Eq. (16) into different angular spinor components, a
typical one being

[ca:p+Bmc?+V . (r)— e(ka)]( =0.

by(kyr)Wun
(kyr)y ) (18)

id (Ry? )Y —en

Equation (18) is analogous to the Dirac equation for
atomic states and one can carry out the corresponding
nonrelativistic (NR) reduction using the procedure
outlined in TMD I. The NR reduction of the x=—1
(!=0) term of Eq. (16) then leads to

Wii(kr,kr)= / bi(kp,r)di(kr,r)dr

(19)

— ——bs*(kr,) | r=o.
4me

Using Eq. (8) for the definition of b,(kr,), the right-
hand side of Eq. (19) reduces to

! [1=2. Bax(k (0) 2A2(k)
e n Dn,1 F)gm ] Q ’

0

and consequently ®(kr) of Eq. (16) becomes
(k) = — (8h/6me) (T4 (0))
This leads to the final reduced form of K as
K NB=(87/3)(¥ir*(0))xsS0,

which is the standard nonrelativistic expression for the
Knight shift.

The other three terms in Eq. (16) involving x=—2
and 1 are associated with the p components of the wave
function. The terms W3 and Wi refer to diagonal
elements over ps;2 and pi1/2 states, respectively, while
Wz and Wis refer to nondiagonal elements between
these states. These terms can be reduced to non-
relativistic form using Table IIT of TMD I, where a
separation into orbital and dipolar effects has been
made. Thus,

—ep[(641r/9)W§§(kp,kp) g 47('/1.3[.61
X (1/7%),[40/9—40/457,
—eur(16m/9)W 11 (kp,kr) — dmunur
X{(1/r%),[—8/9—40/457,
-_ 6#1(327['/9)[W§1 (kp,kp)-[— W/ﬁ(kp',kp):l b 4:1!‘#3#[
X{1/r?),[—32/9+80/45],
where (1/7%), is the expectation value of 7~ over the

p part of the normalized nonrelativistic wave function.
The first term in the square brackets on the right refers

(20)
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to orbital contribution, while the second is for the
dipolar effect in the nonrelativistic approximation. On
adding up these contributions, we find that the orbital
and dipolar effects vanish individually as expected
from NR theory.

B. Indirect Nuclear Spin-Spin Interaction

In addition to the direct dipolar interaction, the
nuclei in a metal are indirectly coupled to each other
through their mutual hyperfine interactions with the
conduction electrons. The isotropic part of the coupling
between two nuclei is referred to in the literature as
RK interaction,'?!® and is represented by an effective
spin Hamiltonian

Hrr=Anli- I, (21)
where I; and I, are the spins of the two nuclei con-
cerned and A1, represents the strength of the coupling.
In nonrelativistic theory, the RK interaction arises
from the second-order effects of contact, dipolar, and
orbital parts of the hyperfine interaction acting sepa-
rately. In addition to the indirect isotropic interaction,
there can also be a dipolarlike coupling between the
nuclei of the form

3Cpp= B[ Ii- .—3(I1- Rie)(Is- Rip)Ris™2],  (22)

where Riz is the radius vector joining the two nuclei.

AE12= 2 Z
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This interaction is referred to as the pseudodipolar
interaction!®! and the dominant contribution to Big
arises in the nonrelativistic theory from a combination
of one order each in the contact and dipolar hyperfine
interactions. There is an additional contribution to Bis
from second-order effects of dipole interaction alone.
In the relativistic formalism, all the different hyperfine
interactions, contact, dipolar, and orbital, of NR theory
are embedded in the single perturbation Hamiltonian in
Eq. (1). In order to evaluate 412 and By. in a relativistic
theory, the general expression for the second-order
perturbation energy has to be separated into compo-
nents involving scalar and tensor coupling as in Egs.
(21) and (22). We shall now proceed to sketch the rela-
tivistic theory.

For a system of two nuclei with spins I; and I,
located at the lattice sites Ry and Rs, their hyperfine
interaction with the conduction electrons is described
by an extension of the Hamiltonian in Eq. (1).

C‘Chfsrel(l,Z) = Z ew;: [Al(l‘i— R1)+A2(l‘i— Rz)] s (23)

where the summation ¢ is over all the electrons, and A,
and A, are the vector potentials associated with the
magnetic moments 1 and . of the two nuclei. Using
conventional second-order perturbation theory and
Slater determinants for the many-particle electronic
wave functions, the expression for second-order cou-
pling energy due to 3Cxts™°!(1,2) in (23) is given by

nko n'k’e’

oce unoce <nka’ [ ew: Al(l'— Rl) l n’k'o/)(n'k’al I (412 Az(t— Rz) l nka)
El J

(24)

en(ko)—en (K'a’)

In Eq. (24), the wave vector k is expressed in reduced zone scheme, and 7,0 are the band and spin indices, re
spectively. The summation in #'k’s’ extends over the unoccupied states, while the ko summation is over the
occupied k space. As is well known, in the one-electron approximation, the effect of the Pauli principle can be
ignored in the intermediate states,? so that one can extend the #'k’s’ summation in Eq. (24) over the entire k
space. In addition, using the periodic property of the Bloch functions, Eq. (24) reduces to

oce (nko|ea- Ay(r) |n'K'o")(n'K'o’ | ea- As(r) | nko)
AEp=23% % lie“k'—")'km?f ], (25)
nko n'k’s’ e,.(ka)-— €y’ (k'a')
where the summation in #'k’e’ now scans the entire k  the relation
space, both occupied and unoccupied. The Ri, depen- VBV
dence in Eq. (25) is contained in the ei®~® Rz term in W RV (Rao)
the summand. The explicit form of the R;, dependence (1) u+1)2w+1)(2L41)7v2
is, however, determined by the shape of the energy =(=1) 5{ ir ]
band through the k, k’ summation in Eq. (25). Using )
the spherical harmonic expansion for ei®—® Rz and v Loop\ L p
b ’ , )YLM*(RM) , (26)
—v' M »/\O 0 O
12 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 4 N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679
13§, D. Mahanti and T. P. Das, Phys. Rev. 170, 426 (1968).  (1955).
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together with Eq. (11) for the hyperfine matrix ele-
ment, leads to the somewhat complicated but general
expression for the second-order energy given in Eq. (A1)
of the Appendix, valid for a Fermi surface of any shape.
This expression contains various types of coupling be-
tween the nuclei which can be recognized by collecting
terms associated with the pertinent values of LM.
Thus, the isotropic part of Eq. (A1) determined by the
Y°(Ry;) gives the relativistic RK interaction.

For a spherical Fermi surface, the only term with
L=2 that occurs in Eq. (A1) after k k' integration has
a Vy0(R1) dependence. In order to denve the ¥y%1(R1s)
and V*?(R;,) terms in the pseudodipolar coupling
Hamiltonian 3pp in Eq. (22), one would have to con-
sider the u, and u, components of the hyperfine Hamil-
tonian along with u,. However, the coefficients of the
V.M terms in 3Cpp are simply related to that for the
V5, and no separate calculations are necessary. For
general departures (less than cubic) from spherical
symmetry, an examination of Eq. (A1) shows that
there can be additional coupling terms besides the RK
and PD interactions as defined in Egs. (21) and (22).
In particular, for a distorted Fermi surface, one can ob-
tain finite ¥1# terms which would indicate a vector
interaction between the nuclear spins. There is no
counterpart of this term in nonrelativistic theory.

For quantitative analysis, it is necessary to carry
out the summations and corresponding simplification
in Eq. (A1) for RK and PD interactions separately.

C. Ruderman-Kittel Interaction
This interaction is obtained from the scalar ¥® term
of Eq. (A1). On using the expressions for a,, as defined
in Eq. (8) and carrying out the angular integrations in
k and k' space, Eq. (A1) reduces to

AE12 0 = zezﬂlzﬂh
Toor © (k /)
———— k%' 2dkdE’

Wr / /0 e(ko)—e(l'c”)

where the Fermi surface has been assumed spherical
and Ty @ (k%) is again a rather complicated expression
given in Eq. (A2) of the Appendix. It is to be noticed
that in contrast to Eq. (Al), Eq. (A2) does not involve
any summation over y/, since for the L=0 interaction,
the pertment Wigner 37 symbols in Eq. (A1) lead to
u=pu. Usmg Eq. (21) the RK parameter 41,° can be
expressed in terms of AE;® of Eq. (27) as

A12= AE12(°)/Ilzl2z . (28)

The R, dependence of Ais is determined by the
pertinent phase factor j7.(kRi) 7u(R'Ry2) associated
with Toer©@ (B,k') in Eq. (27). For the sake of uni-
formity, we shall denote the contribution to 42 from
the p=px' term in Eq. (A2) as 4**. Terms involving
p>2 will be neglected since they make quantitatively

27)
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insignificant contribution'® to 4. For a particular
choice of u in Eq. (A2), I, and /4 are no longer in-
dependent but are determined by /; and /;. Various
combinations of /i, and lsls will be characterized as
(ss-s5), (ss-pp), (pp-pp), -+ contributions to Az~
Among the terms with u<2, 41,% is the most dominant
and will be considered first.

For 41, Eq. (A2) shows that only diagonal con-
tributions such as (ss-ss), (pp-pp), and (dd-dd) can
exist. It is interesting to note that the (pp-pp) and
(dd-dd) terms derive contributions from both ¢=¢’ and
o#¢’. This is a consequence of spin-orbit effects built
into the relativistic theory which makes a particular ¢
state an admixture of up and down spin states. For the
(ss-ss) contribution, the effects of spin-orbit interaction
are absent, and hence, no terms with ¢5%¢”’ exist. After
the summations in Eqgs. (27) and (A2) are carried out
using the properties of (3;) symbols, Eq. (28) reduces to

A 1200 -— 2’)’1’)’2h282
A
where

PO(k,k") = — (8/71)[ (4/9)Q1r1,11(%,%" )+ (4/9)Q11,11 (%, %)
+(32/4m) Q33,33 (k, k") + (2/9) Q21,31 (R %)
+(2/9)Q13,13(k,%") 1 jo(kR1z) jo(K'Ris)  (30)

PO(RE)
—————k%"%dkdk’

29
e(k)— (k') 29)

with

anz,xm(k;k’) = [W"l"ﬂ(k7k/)+ me(k,:k):]
XLW cges(byk )+ W i (' R) 1,

where only (ss-ss) and (pp-pp) terms have been re-
tained, the higher / terms being unimportant.!3

The integration over &’ involving the entire % space,
both occupied and unoccupied, can be avoided by the
technique utilized by Ruderman and Kittel.}® As a
further simplification, we assume e(k) to be independent
of direction of k, a reasonable approximation for the
alkali metals of interest. The integration over ' may
be replaced by one over e(%’) using the relation

dk=de(dk/de)=4[m(k)/F]de, 31)
where m,(k) is the thermal mass®® characterizing the

density of states. Using these steps, Eq. (29) is re-
expressed in the form

A1%=(16/7%)yryoh2e?[ (4/9) 111,13+ (32/45)I3,33

+ @&/ u,u+ 2/NIn,m+ 2/ s3], (32)
where
T kr
lexz.x3x4= _ s / km,(k) Sin(ZkRm)
12° Jo
Xanz,xaxq(k,k)dk . (33)

The suffixes (kixe,xsks) in Eq. (32) designate processes
connected with (s1/951/2—51/281/2), (P3/apsa— pasepssz),

(1720172 Prs2p1s2),  (Pajspre—psjaprse), and (pijapass

— p1/2ps/2) hyperfine matrix elements.
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In an analogous manner, expressions for 415! and
A1 corresponding to u=1 and 2, respectively, can
be derived using Eqs. (27) and (A2)

A12u= - (32/12)‘)/1"/2ﬁ262[(16/27)]ﬁ,§§+ (4/27)]{111

+(16/27)J11,13+(16/27)J11,51], (34)
where
T kp
J iz wsns=— . / km(R)Q erna,nsee(lske)
12° J o
X jl(kRu)[COSkRm—l- kRys SinkRm]dk . (35)

The first term in Eq. (34) originates from a process
described by the product of the relativistic matrix
elements (s1/2—s1/2) and (psj2—pss2). The other terms
have similar interpretation. The expression for 415%2 is
given by

A1?2=(128/157)yry fie?
X [(256/225)K§§,§§+ (34/27)K31,01],
where

T kr . 36)
lexz.xsu:'—""' / 'mt(k)Qxxkz,x3n4(kyk)]2(kR12)
2R123 0

X {[(3—E2R152) cos(ER1z) 1+ 3kRuz sinkRya}dk .

D. Pseudo-Dipolar Interaction

The tensor Y:°(Ris) of Eq. (A1) describing the PD
interaction [Eq. (22)] will be considered next. By
analogous steps as those used in deriving Eq. (27),
one obtains

© = e, T  OE)
AE12 P = eu1,u0,
12 M1zi2 va'/ -/; e(ko‘)—é(k, /)

Xk %dkdk , (37)

where T,o® (k") is exactly similar to T, @ (k%)
defined in Eq. (A2) with the terms

(3 w\/e 0 u

e o )G o o)

&, 0 LMo o o
replaced by

(3 u\fe 2 u

SCE (Y

&, 6 N 0 0

and an additional factor of 4/5 coming from the
(2L+1)Y2 term in Eq. (A1). To determine Bj, conven-
iently from Eq. (37), one has to reexpress the PD Hamil-
tonian in Eq. (22) in a spherical tensor representation:

Jepp=Bi1s Y ConO—n?(I1,I2) Voam(R12),

where

Coo=(4n/5)M?, Coga==t(24x/5)'2,

Cﬁ:!:2= (961!'/5)1/2 (38)
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and
O¢ (Ily IZ) = 21‘1:-[2::‘}"l (Il+12_+I1_I2+) s

Ou*(Iy )= —3(I1plo4 1100y,
O?(I )= —1(I1412y),

and equate coefficients of ¥"*(R;;) in Egs. (37) and
(38). In contrast to the case of A1, where only the
#'=p terms survive in the summations of Eq. (A1), for
the case of Bis an examination of T, indicates that
two types of terms can survive, namely,

u=p'=1 and 2
and

u=0, u'=2, (39)

u=2, up'=0.

Of the various combinations of 4 and y’ in Eq. (39), the
one with u=p'=2, and both the second type of terms
together, constitute the relativistic counterparts of
second-order dipole effects in NR theory. Expressions
for these terms will not be presented here since they
are very complicated, and also quite ineffective in their
contributions by virtue of the fact that they do not
depend on the dominant s character of the wave func-
tions. The dominant contribution arises from the
p=u'=1 term. The Ry, dependence for this term is de-
scribed by a phase factor 71(ARi2)j1(k'Rys) similar to
the A1, contribution to the RK interaction. In the NR
theory, Bi.!'! arises out of a cross interaction between
contact and dipolar hyperfine operators. Further, as in
the case of Ai!'!, most important combinations of
(r1xs) and (ksks) are those associated with (s1/5—s1/9)
and (p,—p,) matrix elements. After some algebraic
manipulations similar to those for 421, one obtains

B1zn‘= - (128/1!'2)")/1’)'2h82
X[ 2T+ 40 u—5Tmm— 5T ms ],

where J ;x5 ¢4¢4 has been defined in Eq. (35).

(40)

E. Reduction to Nonrelativistic Limit

As in the case of the Knight shift, both for physical
interest as well as a check on the relativistic theory, it
is useful to carry out the Breit reduction of Egs. (32),
(34), (36), and (40) to compare with earlier expressions!?
for A1 and Bi; derived by a NR procedure. In par-
ticular, the first and the dominant term of Eq. (32) can
be shown to reduce to the NR expression for Ajs
arising from two orders of contact interaction. The last
three terms of Eq. (32) should similarly reduce to the
second-order contribution from orbital and dipolar
interactions in NR theory. For the purpose of illustra-
tion, we will carry out the NR reduction of 415!* in (34)
in some detail, as it embodies some features of both
412 and Bi' in Egs. (32) and (40). Additionally,
Az is of interest since it has no NR counterpart.

The expression 41, involves matrix elements over
both s and p components of the conduction electron
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wave function. The nonrelativistic reduction of the
former follows similar lines as for the Knight shift. The
reduction of the non-s-like terms is however a little
subtle. The NR reduction in this case cannot be carried
out directly from Eq. (34), since terms associated with
different values of » in Eq. (A2) reduce differently. This
follows because the values of » determine u4 for the
relevant hyperfine matrix elements over p;,,, states,
which may be seen to depend on u4 from Table III of
TMD 1. A typical p-type matrix element in (A2) in-
volves Aszz*Wis(k,k). For pi=3%, using Table IIT
(TMD 1),

245 W sk ) > (8/5)(h/m)Qpo(brk), (A1)

where
Qpp(k;k) = <Xp(k:’) [ 1/78 IXp(k;’» ’

xp(k,r) being the radial part of the p component of the
nonrelativistic OPW function. On carrying out a similar
reduction for all the terms in 7',® appropriate to
A1z, one can show that 41,!! vanishes in the NR limit,
the terms associated with »=0 being cancelled by the
sum of the y==-1 terms. This cancellation holds sepa-
rately for the dipolar and orbital hyperfine terms in the

NR approximation.
In an analogous manner, Eq. (32) for 41:° reduces

to the NR form
A1"(NR) = A412%(cont)+ 4 12°°(orb)+ 41,.°°(dip), (42)

where the three terms correspond to second-order
effects of contact, orbital, and dipolar hyperfine inter-
actions and are given by

17 1\3/16m\2 1 kr
A12°°(C0nt)=~(——> (———) Yryeylht— / Emy(k)
AVITANE! Ri?Jo

X Il//k(O) , 4 Sln(Zlez)dk 5
32 1 kr
A 1200(01'b) = ——y1yey tht— / kmt(k)Q1,12(k,k)
m Ryy? 0

X 51n(2kR12)dk 5 (43)

48 |
A12%(dip) = ——yryavtht— / kmy(R)Q1,1%(k k)
T Rie? /o
Xsm(2kR12)d/e 5
which are exactly the same as those derived by NR

theory.®® Similarly for By, in Eq. (40), the NR reduc-
tion leads to the result

64 1 kr
Bio(NR) =—yryayetht— / Tema(k) [¥x(0) |2
™ Ri? Jo

XQ1,1(k,k)[COSkR12+kR12 SinkRm]
X [SinkRm— kR12 COSkR]z:l (k2R122)—1dk .
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This result agrees exactly with that from a NR pro-
cedure and is described in the NR approximation as a
cross interaction between contact and dipolar hyperfine
effects. In the reduction process for Bi,'l, one arrives
at a set of terms that can be identified with a cross inter-
action between contact and orbital hyperfine effects in
NR theory. These terms add to zero on using the
relevant matrix elements from Table III (TMD I).
This is in agreement with the NR result.

It is interesting at this point to examine the predicted
Ry2 dependence of RK and PD interactions. In order to
obtain Rj; dependence, one has to express the integral
in Eq. (36) in terms of reduced variable kRi2. One
cannot do this analytically for the function (%)
X Qg eses(B,k) in the integrand. If this latter function
were k-independent, Eq. (34) would indicate an Ry;™*
dependence. However, both in relativistic and non-
relativistic theory, 7,0 xs; «se, 15 @ function of £ and so
the actual Ry, dependence can only be found by
numerical calculations. Similar remarks apply to PD
interaction.

III. RESULTS AND DISCUSSION

The expressions derived in Sec. IT have been utilized
for quantitative calculations of the Knight shift, RK,
and PD interactions for rubidium and cesium. The
Knight-shift results are discussed first.

A. Knight Shift

Accurate experimental results!®!® for the Knight
shifts in these metals are available from a number of
measurements over the past few years. While we are
interested in comparing our theoretical results with ex-
periment, our major emphasis is on the importance of
relativistic effects. Since relativistic effects are primarily
determined by the hyperfine matrix elements, we shall
first make a comparison of these with nonrelativistic
theory and try to understand the physical origin of
various sources that contribute to relativistic effects.
In the calculation of the hyperfine matrix elements,
single Dirac OPW functions have been used. For the
core states, we have employed the atomic relativistic
Hartree-Fock wave functions of Coulthard.'”

In Table I, the contributions from the individual
matrix elements in Eq. (16) are separately displayed,
together with the corresponding nonrelativistic matrix
elements for one-OPW wave functions. The Wy term
which is related to the nonrelativistic s contribution is
seen to predominate, but the p-like terms individually
make significant nonvanishing contributions. However,
on adding up the p-like contributions as in the sixth
column, the sum is small, though nonvanishing. This

(1525. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074
16 D, F. Holcomb, J. A. Kaeck, and J. H. Strange, Phys. Rev.

150, 306 (1966).
17 M. A. Coulthard, Proc. Phys. Soc. (London) 91, 44 (1967).
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TasLe 1. Relativistic hyperfine matrix elements (expressed in units of x,) occuring in the Knight-shift expression.
AL Sum®
‘\Rel. Ie e Hre Wat+Ws  HHII4+IV
contrs. Wi W Wi (psre—p12) (Total p Total ® NR
Metal\ (S1/2—51/2) (psia—pass) (prja—pri2) + (pri2—p3i2) contribution)  I-+IT-4+IIT+4TV appr. ®
Rbss 7691.30 403.86 —211.83 —197.92 — 5.89 7685.41 7162.64
Csl38 18521.14 898.54 —516.64 —431.15 —49.25 18471.89 14081.78
a The entries in these columns include the numerical factors in Eq. (16) and have been multiplied by the factor (—2mc/#) of Eq. (15).
nonvanishing result is a characteristic feature of from band-structure calculations are
relativistic effects. However, in terms of magnitude, the
difference between relativistic and nonrelativistic M\ 1210
s contribution is much more pronounced, and can be AT
. . . Mo/ Rb
associated with the effects of the mass velocity and (47)

Darwin terms in Foldy-Wouthuysen® language. The
magnitude of this effect is seen from columns 7 and 8
to be about 7.39, for rubidium and 31.29, for cesium.
The smaller result for rubidium is to be expected be-
cause it is a lighter metal and the extent of variation
from cesium to rubidium indicates that for other
alkali metals, potassium, sodium, and lithium, the
relativistic corrections will be insignificant.

To compare the Knight shift from relativistic theory
with experiment, we need a knowledge of Pauli sus-
ceptibility x,. It would be ideal if direct experimental
values of x, for the two metals were available, so that
one could test the correctness of hyperfine matrix
element. Unfortunately, no experimental values of x,
from spin-resonance measurements exist in rubidium
and cesium. One has, therefore, to fall back on theoreti-
cal estimates of the susceptibility. Using density of
states obtained from band structure calculations,®!! the
Pauli susceptibilities come out as

(x)Bana®*=0.605X 10~¢ cgs vol units,
(3)Bana®*=0.592X10"% cgs vol units.

However, one has to correct these values for the ex-
change enhancement in the presence of the magnetic
field.'® There are several alternative approaches to in-
corporate this effect. One that seems most plausible is
due to Silverstein!®

(Xa*)Band=Xs/[1+ (mo/mt— 1)(X8/x0):| . (45)

In Eq. (45), xs on the right-hand side refers to the
susceptibility, including the effects of exchange en-
hancement and without band corrections, while x, is
the free-electron susceptibility corresponding to the
densities in these metals, m; is the density-of-states
mass given by

(44)

dk
my= n2e— ’
AE|y—tp

(46)

and m, is the free electron mass. The values of m,/m;,

18 C. Herring, in M agnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York, 1966), Vol. IV,
185, D. Silverstein, Phys. Rev. 130, 1703 (1963).

Uz
(—) =1.304.
™Mo/ Cs

The corrected values of (x:*)Bang to be used in the
Knight shift are

(Xs*)Bana®=0.7804X10~¢ cgs vol units,
(xs*)Bana®*=0.7696 X 10~¢ cgs vol units.

Using these values of (x;*)Bang, the Knight shifts in
relativistic and nonrelativistic approximations are
tabulated in Table II. The near-exact agreement be-
tween the relativistic result for cesium and experiment
is fortuitous in view of the neglect of such effects as the
core-polarization and core-conduction correlation. The
importance of these and other possible sources of cor-
rection will be discussed in Sec. IV. The most important
feature of the results is the ratio between the rela-
tivistic and nonrelativistic K,, which equals the cor-
responding ratio between the matrix elements, and is
quite substantial for cesium.

(48)

B. Spin-Lattice Relaxation Time

The other important property that depends upon the
hyperfine matrix element at the Fermi surface is the
spin-lattice relaxation time 7'1. As in the case of the
Knight shift, one again has to correct for the influence
of correlation and exchange among conduction elec-
trons. Since we now have a dynamic process to deal
with, one has to include the influence of dynamic cor-
relation among electrons instead of the static effects
for the susceptibility. Such effects can only be approxi-
mately treated at the present time. Since our main
concern here is the role of relativistic effects, we shall

Tasie II. Nonrelativistic and relativistic values of Knight
shift (K,) compared with experiment.

K,
Metal\ Nonrelativistic ~Relativistic =~ Experimental
Rbs® 0.0056 0.0060 0.0065
Cst33 0.01086 0.01419 0.0149




638 TTERLIKKIS,

Tasie III. Nonrelativistic, relativistic, and experimental

values of (7,7) in deg sec.
(T1T)
Metal

Nonrelativistic Relativistic Experiment
Rbse 1.485 1.293 1.2344-0.10
Cgl33 0.219 0.128 0.130+0.01

merely quote the expression?® of 73 in the literature
without including the effects of dynamic correction.

(T\T)~'= Q2m/7)ko*(er)F

F=5(8/3)>yn%y 2% |¥15(0) | 2)?
in the nonrelativistic case. For the relativistic case
F=3e*yn* 1o (ks))?. (51

Using the values of the matrix elements in Table I and
substituting appropriate values for other quantities,
we obtain the theoretical values of (717) listed in the
third column of Table III. The second column lists the
NR results in one-OPW approximation and the last
column gives the most recent experimental results.
Again, the close agreement between the results of
relativistic calculation of 7’1 and experiment should not
be taken seriously in view of the neglected effects of
dynamic correlation and additional contributions to
the hyperfine field pointed out in the case of K,. The
more significant results are the 12.99, and 41.49, de-
creases in the values of (717" for rubidium and cesium
on including relativistic effects. These corrections are
relatively larger compared to the corresponding cor-
rections for K, since the square of the hyperfine matrix
element occurs in the expression for 7171

(49)

where
(50)

C. Ruderman-Kittel Interaction

To obtain better insight, we have listed the con-
tributions from the various component terms in Egs.
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(32) and (34) for 412 and Ai.'! separately in Table
IV (a). In Table V, we tabulate the theoretical results
for the RK parameter 4y in rubidium and cesium and
compare it when experiment®! and earlier nonrelativis-
tic!® results. .

The most important contribution to A4, arises from
the 415%° expression in Eq. (32). As in the case of Knight
shift, the major part (almost 99%,) of 415%° is associated
with the 71,11 term, which reduces to the second-order
result from contact interaction in NR theory. The other
three terms in Eq. (32) are associated with second-order
contribution from the ps;» and 12 components by
themselves and through their cross product. The cross
terms have the same sign as the diagonal terms for the
p-like contributions in contrast to the situation for the
Knight shift. This difference of relative signs in the
two cases occurs probably because the Knight shift in-
volves simple matrix elements, while the RK inter-
action involves products. However, these p contribu-
tions are all seen to be individually rather small. They
represent the contributions from orbital and dipolar
hyperfine interactions in NR theory, where their effects
are also minimal. The effects of higher ! components
d,f,---) of the wave functions were found to be
negligible, and are not listed.

The terms in the expression (34) for 4.1, which
have no nonrelativistic counterparts are found from
Table IV(b) to be rather small, compared to the lead-
ing term of 41,%, but they are an order of magnitude
larger than the p-component contributions to 412%.
This behavior can be understood since the terms in
Ay involve matrix elements connected with the pre-
dominant s component of the wave function which
does not occur for the p-component terms of A15%.
The net effect of the A1, term is seen to be exceedingly
small because of some cancellations among them. The
A12?% contribution was not found to be significant and
hasnot been listed.

Tapie IV. (a) Contributions to 41,% in cycles from various angular components of the wave function.
(b) Contributions to 42! in cycles from various angular components of the wave function.

Part (a)
Contrs.® I t+13, 13
to 415 Imm I,z Iy (Priepara— Priopase)

Metal (s1/951/2—S1/251/2) (barspare—Dasapsin)  (brepria—pinpie)  +(Dsrprr—psspiss) Total
Rbss 24.00 0.02 0.06 0.00 24.08
Cs133 187.17 0.16 0.50 0.02 187.85

Part (b)
Contrs.p Ji,g+Jian
to Aot J, B Ji,u (s1/25112— P1r/2pse)

Metal (s1/25172— Psiapsrz) (s12812—prreprre) - (S1/2S1/2— Pasaprz) Total
Rbss —0.60 0.32 0.65 0.37
Csl3s —3.45 1.84 3.40 1.79

a The numbers quoted include the numerical factors in Eq. (34&.
b The numbers quoted include the numerical factors in Eq. (36

20 T, Moriya, J. Phys. Soc. Japan 18, 516 (1963).
21 J, Poitrenaud, J. Phys. Chem. Solids 28, 161 (1967).
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The final result from relativistic theory for 4i» in
cesium is in very good agreement (about 95%,) with
experiment. The situation for rubidium is not as good,
the theoretical result now being about 509, of experi-
ment. Possible reasons for this discrepancy will be dis-
cussed in Sec. IV. Again, the ratio of relativistic and
nonrelativistic results is perhaps of greater interest
than the specific agreement with experiment. We notice
from Table IV that relativistic effects increase 42 by
about 169, for rubidium and 60%, for cesium. These
corrections are more than twice as large as those ob-
tained for the Knight shift, which is not unexpected,
since squares of hyperfine matrix elements are again
involved as in the case of relaxation times. Since the
dominant contribution to A4is, and hence the major
relativistic correction, arises from the s component of
the conduction electron wave function, it again appears
that the main relativistic effect in these metals is of the
mass-velocity and Darwin type.

D. Pseudo-Dipolar Interaction

Various contributions to PD coupling constants are
listed in Table VI for both metals together with results
from NR theory and experiment?' for comparison.
Equation (40) consists of four terms. These terms in-
volve the products of the (sij2—s1/2) matrix element
with the diagonal (pso—ps2) and (pije—pije) terms
and the nondiagonal (psje—p12) and (prje— pase)
terms. The nondiagonal terms are grouped together
in the fourth column of Table VI, while the diagonal
terms are given separately in the first two columns. All
three terms are seen to be comparable in magnitude
with each other and corresponding terms in Ai.!,
because the latter involves products [Eq. (33)] of
similar matrix elements. The results in both metals
are found to be more than an order of magnitude smaller
than experiment, as was the case with nonrelativistic
theory. Thus, relativistic corrections cannot alone pro-
duce agreement with experiment, and the source of
discrepancy has to be sought elsewhere. We shall dis-
cuss this point further in Sec. IV. A comparison of
relativistic and nonrelativistic results indicates that
there is about 5.5%, increase due to relativistic effects
in rubidium and about 149, in cesium. These correc-
tions are comparable to those for the Knight shift,
which is not surprising, since the major relativistic
effect is associated with the contact term, which occurs
linearly in both the Knight shift and PD interaction.

HYPERFINE INTERACTIONS IN ALKALI
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TaBLE V. Relativistic results for 4, in cycles compared with
experiment and nonrelativistic theory.

A= A1z
A0 4A 1 Non- Axz
Metal A1 At Relativistic relativistic Experiment
Rbss 24.08 0.37 24.45 21.00 50+ 5
Ceus 187.85 1.79 189.64 117.55 200410

IV. CONCLUSION

A formalism for relativistic analysis of hyperfine
properties of metals has been developed and applied
to two alkali metals, rubidium and cesium. The results
clearly demonstrate the importance of including
relativistic effects for heavy metals. The improvement
found over the results of nonrelativistic analysis in
these metals was observed to decrease significantly
from cesium to rubidium as expected. While it was
sufficient for the case of alkali metals to deal with a
single occupied band, the expressions derived in this
paper can be easily extended to include more than one
band, which will be necessary in the analysis of the
hyperfine properties of heavier polyvalent metals such
as lead, thallium, and platinum; in particular, the RK
and PD interactions in these metals. Also in our
analysis, we have utilized relativistic” single-OPW
functions, which is a good approximation for the
monovalent alkali metals except lithium. Since our
primary interest here was in the assessment of the im-
portance of relativistic effects, rather than in obtaining
good agreement with experiment, we have not sought to
analyze the effect of using more than one-OPW func-
tions. The use of many-OPW functions is expected in
general to reduce the s character somewhat and, there-
fore, our estimates of the Knight shift and RK parame-
ter. On the other hand, the PD parameter B;, should
not be affected significantly by the use of many-OPW
functions, since any decrease of s character is likely to
be compensated by the gain in the p character of the
wave function. Further, since relativistic effects on
hyperfine properties arise primarily from the core
region, the percentage wise corrections over NR theory
should not be expected to change appreciably in going
from single- to many-OPW wave functions for both
relativistic and NR theories.

As far as comparison with experiment, relativistic
effects appear to improve the results for the Knight
shifts, relaxation times, and RK parameters, and pro-
duce good agreement with experiment. The agreement
with experiment is not as good for the RK parameter in

TasiE VI. Results for PD coupling parameter B, expressed in cycles.

Jag+Jon
Ji1,% Ji,n (s1/281/2— P1/2p3r2) Total By B By
Metal (S1/2S172—S1/98172)  (SieSie—prseprre)  +(SueSre— paseprse) (Rel) (NR) Experiment
Rbss —0.12 +0.65 —0.08 0.45 0.40 1142
Celss Z0.60 1366 —042 265 2.33 3545

& The entries in this and previous columns include the numerical factors of Eq. (42).
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rubidium, while for the PD constants in both metals,
there is a rather strong disagreement between theory
and experiment. In making a final assessment between
theory and experiment, it would be necessary to include
other mechanisms that could influence the magnitudes
of hyperfine properties. Two possible important
mechanisms are core-polarization?*2% and core-conduc-
tion correlation effects. A quantitative analysis of the
core-conduction correlation effects would be rather
difficult. However, in view of the dynamic independence
of core and conduction electrons,?* its effect may be
expected to be small. For the core-polarization effects,
one could make use of one-electron procedures available
in the literature.?>?* It would be interesting to in-
vestigate these effects particularly for the RK and PD
interactions, as they involve products of hyperfine
matrix elements leading to an enhancement in the
importance of core polarization as was also found in the
case of relativistic effects. A definitive assessment of
agreement between theory and experiment can be made
only after an analysis of CP effectsis available. However,
it does not seem to us that the order-of-magnitude dif-
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ference between present theory and experiment for the
PD constant can be removed by inclusion of core-
polarization and core-conduction correlation effects.
It would be helpful if some remeasurements of the PD
constants were carried out, perhaps using powerful
echo techniques. Similar results for the RK parameter
in rubidium would be also helpful in explaining the
much less important difference between theory and ex-
periment. In addition, further light can be shed on the
experimental-versus-theoretical situations by calculat-
ing RK and PD parameters in heavier metals like lead,?’
platinum,?® and thallium,?”** where accurate experi-
ments have been carried out.
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APPENDIX: SECOND-ORDER ENERGY EXPRESSIONS IN THEORY OF
INDIRECT NUCLEAR SPIN-SPIN INTERACTION

For the sake of brevity in the text and retaining continuity in the discussions, the second-order energy expressions

occuring in the theory of indirect spin-spin interaction among nuclei will be presented in this Appendix.
Using Eq. (11) for the hyperfine matrix elements in the second-order energy expression in Eq. (25), we obtain the

following expression for AE;, which holds for a Fermi-surface of any general shape.

AE1=26%12p2: 2 2 {[E(kd)—f(k'ﬂ')]"l Y3 X (=YY AE Y (B)Y 1M (Rag) fu(kRuz) fu (k' Ruz)

ko k’c’ LM pv p'v’

x[(2u+1)(2u;:—1)(2L+1):"“(

W L p\ L p
)6 o 0).Z
—y' M v/\O 0 0/ sikopr x3xans

X (lxam*(kl,(f’)a'um(k;o')A Kllz"lA K3K4M[WK1K2(k:k,)+ WKz"l(k,)k)][WKa“(k:kl) + W“"z(k,rk)] } .

2 tap*(k0) @ (K,07)

(A1)

In Eq. (A1), the band indices # and #’ are dropped for brevity and will be recalled wherever necessary. For the
alkali metals, no specification of # and #’ is required because there is only a single occupied band.

Equation (A1) can be reduced further by introducing the definition of a, in Eq. (8) and carrying out angular
integration in k space. Equation (27) results in this manner with 7', (,k) given by

16 0
TN'<°>(/e,/e’)=—Z(—1>"Y°°*(R”)<M 0 _”X:

(2h+1)(2l+1)(25+1) (2l 1)

)(zp+1>2jﬂ<kkn>f,‘<k'm2>

X ¥ z<-mwwﬂ{

K1K2u1 K3K4p4

47

L u Iy I
X C(ls} 725 p1-0’, 0")C(lsh js; a0’y 6" )C(la3 j 45 wa—0, 0) A A xm"‘( )(
o—u1 v pa—a/ \O

Iy 14 I3 I M
x )
o —p1 v w—d’ /N0 0O

1/2
:, (—1)oto—2mC*(L% j1; py—o, o)

ﬂl4)
0 0

)/
;){Wx,xz(k,k'>+Wm<k',k>}{W~3x4<k',k)+wm<k/,k>}. (A2)
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