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Relativistic Effects on the Hyper6ne Interactions in Alkali Metals*
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A relativistic formulation of the hyper6ne properties of metals has been developed and applied to study
the Knight shifts E„relaxation times T~, and Ruderman-Kittel A» and pseudodipolar B» interactions in
the two alkali metals, rubidium and cesium. The calculations have been carried out using Dirac orthog-
onalized-plane-wave wave functions, and the relativistic expressions derived have been checked for cor-
rectness by proceeding to the nonrelativistic limit. The calculated values of E', for rubidium and cesium
are 0.60% and 1.42% as compared to 0.65% and 1.49% from experiment. The values of T~& for these
metals are 1.293 and 0.128 deg sec, in good agreement with the experimental values of 1.235 and 0.130 deg
sec, respectively. The relativistic values of A» for rubidium and cesium are found to be 24.45 and 189.64
cps, as compared to 50&5 and 200~10 cps from resonance experiments. The theoretical values of 8»
for the two metals are 0.45 and 2.65 cps, respectively, as compared to 11&2 cycles and 35+5 cps from
recent steady-state NMR measurements. The relativistic results for all the properties, including (T&T) ~,

are substantially larger (7% to 60/&) than predicted by nonrelativistic theory, leading to improved agree-
ment with experiment. Possible reasons for the poor agreement between experiment and theory for 8» in
both metals are discussed.

I. INTRODUCTION

I
'HE importance of relativistic eBects on properties

of heavy metals has been realized for some time.
One of the properties that was analyzed earliest, ' by an
extension of the quantum defect method, was the
cohesive energy of alkali metals. Subsequently, the in-
huence of relativistic e8ects on band structure was
highlighted by several calculations at symmetry points
based on perturbation theory. ' More detailed calcula-
tions, using Dirac theory adapted to orthogonalized-
plane-wave (OPW) and augmented-plane-wave (APW)
techniques, have been carried out for a number of
heavy metals. ' The role of relativistic effects in the
theory of g shifts in ESR has also been investigated, '
The inhuence of relativistic effects on the hyper6ne
properties of metals is the subject of study in the present
work. Hyperfine effects depend sensitively on the wave
function in the vicinity of the nucleus. Since this region
is relatively unimportant for properties depending on
band structure alone, the study of hyperfine properties
thus provides a further test of the relativistic theory of
metals.

More specifically, we shall be interested in the theory
of Knight shifts, nuclear relaxation times, and Ruder-

man-Kittel (RK), and pseudodipolar (PD) interactions
in two heavier alkali metals, rubidium and cesium.
Nonrelativistic analyses' ' for these metals have shown
that there are significant departures from experiment
which could be associated with relativistic effects.
Since relativistic wave functions are now available for
the corresponding atoms, it is possible to construct
Dirac OPW wave functions for these metals. This, then,
seems to be an appropriate time for a relativistic analy-
sis of the various hyperfine properties.

In Sec. II, the dehnitions and terminology for Dirac
OPW functions' will be described and theoretical ex-
pressions will be derived for the various properties of
interest. In Sec. III, numerical procedures and results
will be presented. The significance of the results and
possible improvements will be discussed in Sec. IV.

II. THEORY

The properties that we shall be concerned with,
namely, Knight shift, relaxation times, and RK and PD
interactions, require in some form or other an evaluation
of matrix elements of the hyper6ne Hamiltonian
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over conduction electron wave functions. In Eq. (l),
the components of 0; represent the first three Dirac
matrices and A; is the vector potential produced by the
nuclear moment pz at the site of the ith electron r;.

&,= (pr Xr,)/rP.

The evaluation of the hyperfine matrix elements for
Dirac-Hartree-Fock (DHF) atomic functions has been

~ J. Callaway, Energy Band Theory (Academic Press Inc. , New
York, 1964).' S. D. Mahanti and T. P. Daa ito be published}.' P. Soven, see Ref. 3.
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presented in an earlier paper' (hereafter referred to as
TMD I). Several features of this analysis can be
utilized in the present problem. However, one now has
to work with relativistic wave functions appropriate to
metals. For the Dirac OP% formalism which we shall
adopt, the wave function for a state with wave vector k
and majority spin index ~ is conventionally written~ as

A(k)
@.(k, r) = --Lx.(k, r) —g, 8,(k,o)4,(r)1, (3)

In Eq. (8), the functions jI(x) and FI (k) are" the
spherical Bessel function and spherical harmonic, re-
spectively, and C(lsj; r&sl, m, ,) are Cl'ebsch-Gordan co-
cfhcients. The summation over n is restricted to the
occupied core states only, and the function D„„ is
given by

kS„
D-(k) = g-(r) jl(kr)+f-(r) jl (kr) "«(9)

p - 1+W

.pl+ W) I/O

x,(k,r) =
~

&2W i

In Eqs. (8) and (9), S„and I', associated with the lower

component of the Bloch-spinor, depend Upon the parity
of the particular core state under consideration and

are given by

are the four-component plane-wave wave functions
with energy W {in units of mc') and

~ +) represent the
spin fUnctlons

5„=i; l=x, P=~—1;j=l—~ for a&0
(10)

(+)= [
and

0&

The components of e in Eq. (4) are the Pauli matrices.
The four-component core wave functions $,(r) in
Eq. (3) are defined by the appropriate quantum num-
bers' ' n~p and are given by

&
g..(r)4..~4-.(r) =

I (3)
(if„„(r)P „„J

where g„„(r) and f„„(r) are the radial wave functions
for the major and minor components, respectively, and

logo ls the llsllRl two-colllponell't allgulRI' splllol. 'p The
orthogonalization coeKcients B,(k,a) in Eq. (3) are
glvcn by

8„=—1;I= —s—1;P= —~; j=/+-', for x&0.

It should be remarked here that for values of k within

the Fermi-surface, iV=1, and hence one can safely
approximate the factor (1+W)/2W in a.„(k,a) by
unity and (1+W') by 2 in the expression for d„(k,r)
in Eq. (8).

Using Eq. (7) for the Bloch wave function, one ob-

tains the matrix element of Xhg,"' between two stat:. s

)k,o) and )k', a'),

(ka )ee A)k'a')= g g iep, a„,„,*(k,a)a„,„,(k',a')
&I+1 &2@2

XLW„,„,(k,k')+W.„,(k', k)j

For the sake of convenience, the Bloch wave function
1Il Eq. (3) llas been normahzcd to thc Wlgncr-Sc1tz
volume Qp and. A(k) is the corresponding normaliza-
tion factor. For ease of manipulation of the matrix
elements of Xhg,"', it is convenient to use an angular
spinor representation for the Bloch functions in terms
of wlllcll Eq. (3) Illay bc lcwl'I'ttcll as

t b„(k,r)lb„„ ~+.(k,r) =2 a"(k,~) I . I, (7)
Esdg(k~r)lp go

where
&ri+W 'I'

a„„(k,a) =4lri'~ — — C(i-',j;»s
—a;a) Flo- e(k),

2$'
A (k)

b„(k,r) = jl(kr) PD .(k)g.„(r)—
00'

kS„ A (k)
d.(k,r)= -- — -jl (kr) —Q D„„(k)f„„(r)

Qo

8 L. Tterlikkis, S. D. Mahanti, an.d T. P. Das, Phys. Rev. 176,
j.o (I968).
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W„,„,(k,k') = b„,*(kr)d„(kr)dr.

In deriving Eq. (11), the nuclear moment has been

assumed to point in the s direction. This general form

of thc hyper6nc D1atrix clcIQcnt ls useful ln the analysis

of both Knight shift as well as RK and PD interactions.

A. Knight Shift (K,)

The evaluation of E, requires a diagonal hypcrfine

matrix dement over Bloch states at the Fermi surface.
Since (rXe), commutes with the s component J', of the

total angular momentum operator, the double sum over

isl and Iss in Eq. (11)will reduce to a single one. On sub-

stituting the hyper6ne matrix element in the standard

expression for the Knight shift, we obtain for E,

E,= —(2rrsc/is) (C (kr) ). X,Qp,

where X, ls the Pauli susceptibility ln cgs volume Units
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In Kq. (14),
f li 4 /8 )
4mj mu mal

are the signer's 3j symbols, ' while 2„,„,& arises from
the matrix element [on the right-hand side of Eq. (11)]
of (rXe), over the angular spinors (~~p) and (—~up).
The values of this matrix element for various choices
of ~~ and a2 have been listed elsewhere. ' ' In writing
Eq. (13), it has been assumed that the susceptibility
is not affected by relativistic eGects, a reasonable as-
sumption for rubidium and cesium, for which the Fermi
surface is within the Brillouin zone and never reaches
the zone boundary. In addition, a considerable sim-

plification is achieved when one uses a spherical' "
Fermi surface, since one can make use of the orthog-
onality property of the spherical harmonics in carry-
ing out the average in Eq. (13).The expression for the
Knight shift then reduces to

with
Z, = —(2mc/&) C'(kr)x. f4 (15)

C (k p) = sr[(16/3) Wry(kg, kr)+ (64/9) W22(kr, kr)
+ (16/9) Wu(k p,kr)+ (32/9)

X{Wsi(ks,kr)+ Wim(ks, kr))], (16)

where n= —n, and it is immaterial whether the spin
index 0 is up or down.

The summation in Eq. (14) for 4'(kF) leads to two
distinct types of contributions to E„one involving
matrix elements over similar angular momentum states
such as s-s, p-p, and d d, and the -other involving com-
binations of different angular momenta, for example,
s-d and p f The second-c.ontribution can be shown to
vanish identical1y, using the symmetry property of the
3j symbols. The significance and numerical importance
of the nonvanishing terms will be discussed in the next
section. Unlike the nonrelativistic theory, where the
contribution to E, arises only from the s-character of
the conduction electron wave function, all angular
components contribute in the relativistic theory as
shown in Eq. (16).The correctness of Eq. (16) can be
assured by making a nonrelativistic reduction similar
to that for atoms as in TMD I.

"R.Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3-j and
6-j Symbols (Technology Press, Cambridge, Mass. , 1959).' F. S. Ham, Phys. Rev. 128, 2524 (1962).

C(k)=i(4n.)' Q (i)" "—C"(lx,'j-&-, p —0,0)
K1gP/I

XC(l2-', jz& p —0&o)(—1)~ "[(2lz+1)(2l2+1)]'~'

lg 0 l2 lg 0 E2

l~„,„, Y&,
—*(k)

io —p 0 p, ) (0 0 0)

X Ylm ~(~)[Wagap(krak)+Wgggy(krak)] ~ (14)

For this purpose, we shall separate the s and non-s-
like contributions in Kq. (16).The Dirac equation for
an electron in a Bloch state ~ka) with energy e(ka) is

[ce p+Pmc'+ V, (r)]%'(k&r) = e(ko)%'(ka). (17)

Using the expansion for @(ko) in (7) one can separate
Eq. (16) into different angular spinor components, a
typical one being

b, (k,r)P„„)
[ce p+Pmc'+V. (r) e(k—o)] ~=0. (18)

id.(k,r)P „„I

Equation (18) is analogous to the Dirac equation for
atomic states and one can carry out the corresponding
nonrelativistic (NR) reduction using the procedure
outlined in TMD I. The NR reduction of the ~= —1
(1=0) term of Eq. (16) then leads to

Wa(kr, ks) = b&(k p,r)dr(k p, r)dr

bP(kp, r)
~
„=0. (19)

4nsc

Using Eq. (8) for the definition of b„(k~,r), the right-
hand side of Eq. (19) reduces to

h A'(k)
[1—Z- &-,t(kr)g".(0)]'

4mc Op

and consequently C (k&) of Eq. (16) becomes

C (kr) = —(8m.k/6mc) (+p~'(0) )

This leads to the final reduced form of E, as

E," = (87r/3) {4'p~'(0))x,Qp, (20)

which is the standard nonrelativistic expression for the
Knight shif t.

The other three terms in Eq. (16) involving ~= —2
and 1 are associated with the p components of the wave
function. The terms 822 and t/t/'y~ refer to diagonal
elements over p3/2 and p&~2 states, respectively, while
8'q~ and 8'~g refer to nondiagonal elements between
these states. These terms can be reduced to non-
relativistic form using Table III of TMD I, where a
separation into orbital and dipolar effects has been
made. Thus,

epr(64vr/9) W2—2(kg, k p) ~ 4mij~pr

X{1/r')~[40/9 —40/45],
epz(16m/9)Wg, (kp,—kp) —& 4wp~pr

X{1/r )„[ 8/9 40/4—5], -
—eel(32'/9) [IV2&(kp,kg)+ Wg2 (kr:,kp)] —+ 4n pe pr

X{1/r')„[—32/9+ 80/45],

where {1/r')„ is the expectation value of r ' over the

p part of the normalized nonrelativistic wave function.
The first term in the square brackets on the right refers
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to orbital contribution, while the second is for the
dipolar eGeet in the nonrelativistic approximation. On
adding up these contributions, we And that the orbital
and dipolar effects vanish individually as expected
from NR theory.

B. Indirect Nuclear Spin-Syin Interaction

In addition to the direct dipolar interaction, the
nuclei in a metal are indirectly coupled to each other
through their mutual hyperhne interactions with the
conduction electrons. The isotropic part of the coupling
between two nuclei is referred to in the literature as
RK interaction, "" and is represented by an effective
spin Hamiltonian

xRE——Ag2Ij I2, (21)

where Iy and I2 are the spins of the two nuclei con-

cerned and 3~2 represents the strength of the coupling.
In nonrelativistic theory, the RK interaction arises
from the second-order e6ects of contact, dipolar, and
orbital parts of the hyperfine interaction acting sepa-
rately. In addition to the indirect isotropic interaction,
there can also be a dipolarlike coupling between the
nuclei of the form

Xpn=ai2[Ix Im —3(h Rn)(I2 Ru)&x2 'j, (22)

where R~2 is the radius vector joining the two nuclei.

This interaction is referred to as the pseudodipolar
interaction"" and the dominant contribution to Big
arises in the nonrelativistic theory from a combination
of one order each in the contact and dipolar hyperfine
interactions. There is an additional contribution to BI2
from second-order effects of dipole interaction alone.
In the relativistic formalism, all the diGerent hyper6ne
interactions, contact, dipolar, and orbital, of NR theory
are embedded in the single perturbation Hamiltonian in
Eq. (1).In order to evaluate 2 qg and 8~2 in a relativistic
theory, the general expression for the second-order
perturbation energy has to be separated into compo-
nents involving scalar and tensor coupling as in Eqs.
(21) and (22). We shall now proceed to sketch the rela-
tivistic theory.

For a system of two nuclei with spins I~ and I2
located at the lattice sites Ry and R2, their hyperfine
interaction with the conduction electrons is described
by an extension of the Hamiltonian in Eq. (1).

ae...-'(1,2) =P ea,- [A,(r;—R,)+A, (r,—R,)j, (23)

where the summation i is over all the electrons, and A~

and A~ are the vector potentials associated with the
magnetic moments py and p2 of the two nudei. Using
conventional second-order perturbation theory and
Slater determinants for the many-particle electronic
wave functions, the expression for second-order cou-
pling energy due to Xqg,"'(l,2) in (23) is given by

(nkcr f en Aq(r —Rq) f
n'k'o ')(n'k'o '

f ea A, (r—R,) f
nko}-

aEgg ——2 P
neo e't'rr' e.(ko)- e. (k'a')

(24)

In Eq. (24), the wave vector k is expressed in reduced zone scheme, and n, o are the band and spin indices, re
spectively. The summation in n'k'o' extends over the unoccupied states, while the nko summation is over the
occupied k space. As is well known, in the one-electron approximation, the effect of the Pauli principle can be
ignored in the intermediate states, " so that one can extend the n'k'o' summation in Eq (24) ov. er the entire k
space. In addition, using the periodic property of the Bloch functions, Eq. (24) reduces to

eke n'k'rr'

(nko fen A&(r) fn'k'o')(n'k'o'
f
ee Am(r) fnko)-

ei(k'-t) ~ R»g
e„(ko)—e„.(k'o')

(25)

where the summation in n'k'0' now scans the entire k
space, both occupied and unoccupied. The R~2 depen-

dence in Eq. (25) is contained in the e'&~' +'"» term in

the summand. The explicit form of the R~2 dependence

is, however, determined by the shape of the energy
band through the k, k' summation in Eq. (25). Using

the spherical harmonic expansion for e'&"' ~& "» and

'~ M. A. RudcrIDan and C. Kittcl, Phys. Rcv. 96, 99 (1954).
"S.D. Mahanti and T. P. Das, Phys. Rev. 170, 426 (1968).

the relation

I'„"(Rgm) V„"'*(gg2)

-(2~+1)(2) '+1)(»+1)- ~2

=(—1)"Z

(
Il' "*(& ), (26)k-v' M ~i Eo 0 o)

"N. Bloembergcn and T. J. Roseland, Phys. Rcv. 97, 1679
(1955).
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togc'thci' wl'th Eq. (11) fol' thc hypcrtinc II1Rti'ix cle-

ment, leads to the somewhat complicated but general
expression for the second-order energy given in Eq. (A1)
of the Appendix, valid for a Fermi surface of any shape.
This expression contains various types of coupling be-
tw'ccn thc nuclei which can bc 1ccognizcd by collecting
terms associated with the pertinent values of JM.
Thus, the isotropic part of Eq. (A1) determined by the
Fpe(@p) gives the relativistic RK interaction.

For a spherical Fermi surface, the only term with
I=2 that occurs in Eq. (Al) after k,k' integration has
a Fee(XII) dePendence. In order to derive the Fp+'pip)
and Fp+'(XII) terms in the PseudodiPolar couPling
Hamiltonian Xpn in Eq. {22), one would have to con-
sidcl thc p~ and p„components of thc hypcIflnc Hamil-
tonian along with p, However, the coefFicients of the
I"2~ terms in XpD are simply related to that for the
F2', and no separate calculations are necessary. For
general departures (less than cubic) from spherical
symmetry, an examination of Eq. (A1) shows that
there can be additional coupling terms besides the RK
and PD interactions as detined in Eqs. (21) and (22).
In particular, for a distorted Fermi surface, one can ob-
tain 6nitc Fq~ terms which would indicate a vector
interaction between the nuclear spins. There is no
counterpart of this term in non. relativistic theory.

For quantitative analysis, it is necessary to carry
out the summations and corresponding simpli6cation
in Kq. (A1) for RK and PD interactions separately.

C. Rud. erman-xittel Interaction

This interaction is obtained from the scalar I'00 term
of Eq. (A1). On using the expressions for a.„as defined

in Eq. (8) and carrying out the angular integrations in

k and k' space, Eq. (A1) reduces to

" 2'.;&P& k, k'
k'k'dkdk', (27)

0' —6 0

where the Fermi surface has been. assumed spherical
and 2 „tP& (k,k') is again a rather complicated expression

given in Kq. (A2) of the Appendix. It is to be noticed

that in con.trast to Eq. (A1), Eq. (A2) does not involve

any summation over p', since for the I=0 interaction,
the pertinent Wigner 3j symbols in Eq. (A1) lead to
/I=/I'. Using Eq. (21) the RK parameter AIpp can be
expressed in terms of DEIII" of Eq. (27) as

~Ip ~alp /118ps ~ (28)

The E» dependence of A» is determined by the
pertinent: phase factor j,(kEII) j„(k'XII) associated
with T,. &p& (k,k') in Eq. (27). For the sake of uni-

formity, we shall denote the contribution to Aq2 from
tile p, =/I 'telIII III Eq. (A2) Rs XII». Tcl'Ills IIivolvlIig

II,&2 will be neglected since they make quantitatively

insigni6cant contribution" to A~q. For a particular
choice of /I in Eq. (A2), lp and l4 are no longer in-
dependent but are determined by /~ and la. Various
combinations of /~l2 and lsl4 wiO be characterized as
($$-$$), ($$-pp), (pp-pp), ~ ~ contributions to Hip».
Among the terms with @&2, A»00 is the most dominant
and will be considered 6rst.

For AIKPP Eq (A2) shows that only diagonal con-
tributions such as ($$-$$), (PP-PP), Rnd (dd-dd) can
exist. It is interesting to note that the (pp-pp) and
(dd-dd) terms derive contributions from both 0 =a' and
o/0-'. This is a consequence of spin-orbit effects built
into the relativistic theory which makes a particular 0
state an admixture of up and down spin states. For the
($$-$$) contribution, the effects of spin-orbit interaction
are absent, and hence, no terms with 0 /0' exist. After
the summations in Kqs. (27) and (A2) are carried out
using the properties of (3j) symbols, Eq. (28) reduces to

A g20'= 2ygygh'e'
PP(k, k')

X k'k "dkdk', (29)
e p e(k) —e(k')

&'(k,k') = —(8/Ir') L(4/9)QII. II(k&k')+(4/9)Q», »(»k')
+ (32/4m')QH, SI(k,k')+ (2/9)QSI, SI(k,k')

+(2/9)QIs, ip(k, k') 1jp(kRIp) jp(k'XII) (30)
with

Q„,„,.„,(k,k') =LW„„,(k,k')+8"„„,(k',k)1
XPV...,(k,k')+ 8'„,„,{k',k)j,

wlicr'c oilly ($$-$$) RIld (pp-pp) terms have
tained, the higher l terms being unimportant. "

The integration over k' involving the entire k space,
both occupied and unoccupied, can be avoided by the
technique utilized by Ruderman and Kittel. " As a
further simplification, we assume e(k) to be independent
of direction of k, a reasonable approximation for the
alkali metals of interest. The integration over k' may
be replaced by one over e{k') using the relation

~k=de(dk/de) = 'L~I(k)/k j~-e,

where III~(k) is the thermal mass" characterizing the
density of states. Using these steps, Eq. {29) Is rc
expressed in the form

~»"=(16/~'bivp&'e'L(4/9)III. II+(32/45)lm. m

+ (4/9)III, II+ (2/9)III, SI+{2/9)III,Isj, (32)

ktpig(k) sin(2kRIp)

XQgIgm, ggg4(k~k)dk (33)

hc sufBxcs (KIKI,KIK4) III Eq. (32) designate processes
connected wltli ($1/2$1/p $1/2$1/e)& (Pp/IPp/I —

Pp/2Pp/p)

{PI/ppI/& PI/&PI/p)i {pp/ppI/p pa/KPI/p), and (PI/epp/p
PI/ppp/p) hypcrfinc illRti'Ix clei11ciits.



In an analogous manner~ cxpI'csslons fo1' Ago and
A&2" corresponding to p,=i and 2, respectively, can
be derived. using Eqs. (27) and (A2)

A»"= —(32/uru) ylyuhusuL(16/27) JII H+ (4/27) JII II

+ (16/27) Jll, ls+ (16/27) JII,SI), (34)

ky (36)
ulg(k)Q. „,„„,(k,k) ju(k%u)+kJkgukgk4

2RQQ 0

X{L(3—kuR»u) cos(kZ»)$+3kR» slnkRIu)dk.

D. Pseudo-Diyolax I'nteraction

Tile 'tcllsol' Fu (k») of Eq. (A1) dcscrlblng thc PD
interaction PEq. (22)) will be considered next. By
analogous steps as those used in deriving Eq. (27),
one obtains

&Au"'=8'pl*au. Z
" T'..I»{k,k')

u e(ilo) —u(k'o')

Xk'k"dkdk', (3"I)

where „2& &(u, k)kis exactly similar to T„&&(ku, k')
defined in Eq. (A2) with the terms

t'&

0 —IjEO 0 OJ

replaced by
2 p tu 2 Iu

I'u'*(&»)
I

k. o —.Io o 0&

and an additional factor of +5 coming from the
(2I.+1)IIu term in Eq. (A1). To determine 8» conven-
iently from Eq. (37), one has to reexpress the PD Hamil-
tonian in Eq. (22) in a spherical tensor representation:

Xrn= &» P Cu O '(Il, lu) I'u"(&»),

Cuu= (4ur/5)'", Cu~l=a (24ur/5)'I',

Cuyu = (96ur/5) l~u (38)

kJ

J«~u ««= kuN&(k)Q~I~u ~u«(»k)
2~12 0

X jl(kZ»)pcoskZ»+kE» sinkEIujdk. (35)

The first term in Eq. (34) originates from a process
described by the product of the relativistic matrix
elements (sl(u —sl(u) and (Pugu

—Pu)u). The other terms
have similar interpretation. Thc cxp1cssloQ foI' A pm ls
given by

A lu" = (128/15m') yuvuhusu

XL(256/225)Euu, ss+ (34/27) Esl, ulj,

and
Oo'(II, Iu) = —21IA.+u(II+&~+II~~),

Ogl'(II, Iu) = ——',(II&u,+II,lug),

Opuu(ll, lu) = ——;(II8Jup),

and equate coeflicients of I"uu*{RIu) in Eqs. (37) Rnd
(38). In contrast to the case of A» where only the
p'= p terms survive in the summations of Eq. (A1), for
thc case of Byg aIl cxaIQlnatlon of T«~( ~ lndlcates that
two types of terms can survive, namely,

@=0'1 P =2)
p=2 ) p =0.

(39)

Of thc various comblnatlons of p alld p ill Eq. (39)
one with p, =p,'=2, and both the second type of terms
together, constitute the relativistic counterparts of
second-order dipole c6ects in NR theory. Expressions
for these terms will not be presented here since they
are very complicated, and also quite ineGective in their
contributions by virtue of the fact that they do not
dcpcnd on thc dominant s char'actcI' of thc wave func-
tions. The dominant contribution arises from the
p, =p,'= 1 term. The R~g dependence for this term is de-
scribed by R pllRSC fRctol jl(kE»)jl(k'E») sllllllar 'to

thc A1y contr'lbutloQ to the RK inter'action. IQ thc NR
theory, 8~2" arises out of a cross interaction between
contact and dipolar hypcrGQC operators. Further, as in
the case of Ay2", most important combinations of
(u.'IKu) Slid (KuK4) Rlc tllosc associated with ($1)u—sl~u)
and (p„—p„) matrix elements. After some algebraic
Inanlpulatlons slIQllar to those fol A2y, oQc obtalQs

8»"———(128/n')ylyuheu

XL2JII.H+ u JIY,II—u JII,SI—u Jrr, lu), (40)

where J.,„,, „«has been defined in Eq. (35).

E. Reduction to Eonrelativistic Limit

As in the case of the Knight shift, both for physical
interest as mell as a check on the relativistic theory, it
is useful to carry out the Breit reduction of Eqs. (32),
(34), (36), and. (40) to compare with earlier expressions"
for 2~2 and By2 derived by a NR procedure. In par-
ticular, the first and the dominant term of Eq. (32) can
be shown to reduce to the NR expression for Alm
arising from two orders of contact interaction. The last
'till'cc tcHI18 of Eq. (32) should. 81InlIR1'ly reduce 'to 'thc
second-order contribution from orbital and dipolar
interactions in NR theory. For the purpose of illustra-
tion, we will carry out the NR reduction of flu" in (34)
in some detail, as it embodies some features of both
Aluuu and B»" in Eqs. (32) and (40). Additionally,
A~~" is of interest since it has no NR counterpart.

The expression A~~" involves matrix elements over
both s and p components of the conduction electron
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wave function. The nonrelativistic reduction of the
foimcI' follows similar lines as foI' thc Knight shift. Thc
reduction of the non-s-like terms is however a little
subtle. The NR reduction in this case cannot be carried
out directly from Eq. (34), since terms associated with
different values of I in Eq. (A2) reduce differently. This
follows because the values of v determine tM, 4 for the
relevant hyperfine matrix elements over p;,„, states,
which may be seen to depend on p4 from Table III of
TMD I. A typical p-type matrix element in (A2) in-
volves AH"4%22(k, k). For I44= —,', using Table III
(TMD I),

A 12"(NR) =A12"(cont)+A 12 '(orb)+ A 12"(dip), (42)

where the three terms correspond to second-order
CGects of contact, orbital, and dipolar hyperfine inter-
actions and are given by

I I ' 16m. 2 I
A»2'(cont) =-— V«727~ h

22Ã 3 ~«2 0

k2224(k)

X /+2(0) J

' sin(2kR»)dk,

32 1
A 12O2{«b)= —~IV2V 4'k'

~«2 0

48
A»"(dip) = -~lv2v. '&'

~«2 0

k2214(k) Ql, 12(k,k)

Xsin {2kR12)dk „(43)

km4(k) Ql, 12(k,k)

Xsin(2kR12) dk,

which are exactly the same as those derived by NR
theory. "Similarly for BI2", in Kq. (40), the NR reduc-
tion leads to the result

64
f3 "(NR)=~a.v.'&' — k (k) Iu.(0) I'

~12 0

XQ, 1(k,k)pcoskR»+kR» sinkR» j
XLslnkR12 kR12 coskR»$(k R12 ) dk

2A.—,— I ~„-(k,k)- (g/3)(k/~. )Q„,(k,k),

Q„(k,k) =(x,(k, ) II/" tx, (k, )),

x„(k,r) being the radial part of the p component of the
nonrelativistic OP%' function. On carrying out a similar
reduction for all the terms in T, (0& appropriate to
A«2", one can show that A«2«1 vanishes in the NR limit,
the terms associated with s =0 being cancelled by the
sum of the v= ~1 terms. This cancellation holds sepa-
rately for the dipolar and orbital hyperfine terms in the
NR approximation.

In an analogous manner, Kq. (32) for A»'2 reduces
to the NR form

This result agrees exactly with tha, t from a NR pro-
cedure and is described in the NR approximation as a
cross interaction between contact and dipolar hyperf«ne
effects. In the reduction process for B«2««, one arrives
at a set of terms that can be identif«ed with a cross inter-
action between contact and orbital hyperhne CGects in
NR theory. These terms add to zero on using the
relevant matrix elements from Table III (TMD I).
This is in agreement with the NR result.

It is interesting at this point to examine the predicted
E«2 dependence of RK and PD interactions. In order to
obtain E«2 dependence, one has to express the integral
111 Kq. (36) lll 'tcl'Ills of Icdllccd val'lable kR12. Ollc
cannot do this analytically for the function 2224(k)

XQ.,„,„,„,(k,k) in the integrand. If this latter function
were k-independent, Eq. (34) would indicate an R» '
dependence. However, both in relativistic and non-
relativistic theory, 222,Q„„2,„4„4 is a function of k and so
the actual R» dependence can only be found by
numerical calculations. Similar remarks apply to PD
interaction.

The expressions derived in Sec. II have been utilized
for quantitative calculations of the Knight shift, RK,
and PD interactions for rubidium and cesium. The
Knight-shift results are discussed first.

A. Knight Shift

Accurate experimental results"" for the Knight
shifts in these metals are available from a number of
measureInents over the past few years. While we are
interested in comparing our theoretical results with ex-
periment, our major emphasis is on the importance of
relativistic effects. Since relativistic effects are primarily
determined by the hyperfine matrix e1ements, we sha11

6rst make a comparison of these with nonrelativistic
theory and try to understand the physical origin of
various sources that contribute to rela, tivistic effects.
In the calculation of the hyperhne matrix elements,
single Dirac OP%' functions have been used. For the
core states, we have employed the atomic relativistic
Hartree-Pock wave functions of Coulthard. "

In Table I thc contrlbut«OIls fI'om thc individual
matrix elements in Eq. (16) are separately displayed,
together with the corresponding nonrelativistic matrix
elements for one-OP% wave functions. The t/V«T term
which is related to the nonrelativistic s contribution is
seen to predominate, but the p-like terms individually
make significant nonvanishing contributions. However,
on adding up the p-like contributions as in the sixth
column, the sum is small, though nonvanishing. This

"D. F. Holcomb and R. K. Norberg, Phys. Rev. 98, 1074
(&955)."D.F. Holcomb, J. A. Kaeck, and J. H. Strange, Phys. Rev.
150, 306 (1966).» M. A. Coulthard, Proc. Phys. Soc. (London) 91, 44 (1967).
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TABLE I. Relativistic hyper6ne matrix elements (expressed in units of x,l occuring in the Knight-shift expression.

cl.
contrs.

Metal+

Rbs~
Cs133

7691.30
18521.14

II

(P3&2—Pa&2)

403.86
898.54

III ~

@'1,1
(P1P—P1&2)

IV~
lV21+ W'12

I,'P312—P1&2)
+ (P1n —Pai2)

—197,92
-431.15

Sum '
II+III+IV

(Total p
contribution)

—5.89—49.25

Total '
I+II+III+IV

7685.41
18471.89

NR
appr. ~

7162.64
14081.7 8

a The entries in these columns include the numerical factors in Eq. (M) and have been multiplied by the factor ( —2m'/A) of Eq. (15),

nonvanishing result is a characteristic feature of
relativistic eGects. However, in terms of magnitude, the
diGerence between relativistic and nonrelativistic
s contribution is much more pronounced, and can be
associated with the eGects of the mass velocity and
Darwin terms in Foldy-%outhuysen9 language. The
magnitude of this eGect is seen from columns 7 and 8
to be about '/. 3% for rubidium and 31.2/q for cesium.
The smaller result for rubidium is to be expected be-
cause it is a lighter metal and the extent of variation
from cesium to rubidium indicates that for other
alkali metals, potassium, sodium, and lithium, the
relativistic corrections will be insignificant.

To compare the Knight shift from relativistic theory
with experiment, we need a knowledge of Pauli sus-

ceptibility x,. It mould be ideal if direct experimental
values of x, for the two metals were available, so that
one could test the correctness of hyper6ne matrix
element. Unfortunately, no experimental values of y,
from spin-resonance measurements exist in rubidium
and cesium. One has, therefore, to fall back on theoreti-
cal estimates of the susceptibility. Using density of
states obtained from band structure calculations, ' "the
Pauli susceptibilities come out as

(y)n~Pb=0. 605X10 ' cgs vol units,

(g)n, sea=0.592X10 ' cgs vol units. (44)

However, one has to correct these values for the ex-
change enhancement in the presence of the magnetic

eld '8 There are several alternative approaches to in-
corporate this effect. One that seems most plausible is
due to Silverstein"

gn Eq. (45), y on the right-hand side refers to tlM

susceptibility, including the eGects of exchange en-
hancement and without band corrections, while yo is
the free-electron susceptibility corresponding to the
densities in these metals, m& is the density-of-states
mass given by

from band-structure calculations are

= 1.210,
~0 Rb

= I.304.

The corrected values of (X,a)ts, s to be used in the
Knight shift are

(xg")naaP =0.7804X 10 cgs vol units,
(X,*)s,„ao'=0.7696X10 ' cgs vol units.

(48

losing these values of (x,*)n, s, the Knight shifts in
relativistic and nonrdativistic approximations
tabulated in Table II. The near-exact agreement be-
tween the rdativistic result for cesium and experiment
is fortuitous in view of the neglect of such eGects as the
core-polarization and core-conduction correlation. The
importance of these and other possible sources of cor-
rection mill be discussed in Sec. IV. The most important
feature of the results is the ratio between the rela-
tivistic and nonrdativistic E„which equals the cor-
responding ratio between the matrix elements, and is
quite substantial for cesium.

B. Syin-Lattice Relaxation Time

The other important property that depends upon the
hyper6ne matrix element at the Fermi surface is the
spin-lattice relaxation time Xy. As in the case of the
Knight shift, one again has to correct for the inQuence
of correlation and exchange among conduction elec-
trons. Since we now have a dynamic process to deal
with, one has to include the inQuence of dynamic cor-
relation among electrons instead of the static effects
for the susceptibility. Such effects can only be approxi-
mately treated at the present time. Since our main
concern here is the role of relativistic effects, we shall

TABLE II. Nonrdatlvlstlc and relativistic valises of Knjght
shift (E,) compared with experiment.

and tee is the free electron mass. The values of mt&/ms

~s C. Herring, in Mogwetism, edited by G. T. Rado and H. SUhl
(Academic Press Inc. , New York, 1966), Vol. IV."S.D. Silverstein, Phys. Rev. 1%, 1703 I'1963).

Metal+
Rbs~
( sass

Nonrelativistic

0.0056
0.01086

0.0060
0.01419

0.0065
{)0149

Relativistic Experimental
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TABLE III. Nonrelativistic, relativistic, and experimental
values of {TIT)in deg sec.

1T)
Nonrelativistic Relativistic Experiment

Rb"
S133

1.485
0.219

1.293
0.128

1.234+0.10
0.130~0.01

C. Ruderman-Kittel Interaction

To obtain better insight, we have listed the con-
tributions from 0he various component terms in Eqs.

merely quote the expression' of TI in the literature
without including the eGects of dynamic correction.

(T T)—1 (2s'/P/)kp2(eF)@ (49)
where

p= ~~(gyp/3) ygpv //4(~|p„~(0) ~2)2

in the nonrelativistic case. For the relativistic case

F=-'e'y~'O'Q (k ))'

Using the values of the matrix elements in Table I and
substituting appropriate values for other quantities,
we obtain the theoretical values of (TtT) listed in the
third column of Table III. The second column lists the
NR results in one-OP% approximation andthe last
column gives the most recent experimental results.
Again, the close agreement between the results of
relativistic calculation of TI and experiment should not
be taken seriously in view of the neglected effects of
dynamic correlation and additional contributions to
the hyperfine Geld pointed out in the case of E,. The
more signiftcant results are the 12.9% and 41.4% de-

creases in the values of (TtT) for rubidium and cesium
on including relativistic effects. These corrections are
relatively larger compared to the corresponding cor-
rections for E„since the square of the hyperfine matrix
element occurs in the expression for TI '.

(32) and (34) for A» and A»" separately in Table
IV (a). In Table V, we tabulate the theoretical results
for the RK parameter AI2 in rubidium and cesium and
compare it when experiment'» and earlier nonrelativis-
tic" results.

The most important contribution to AI2 arises from
the A»0' expression in Eq. (32).As in the case of Knight
shift, the major part (almost 99%) of Atmo' is associated
with the Iry, yI term, which reduces to the second-order
result from contact interaction in NR theory. The other
three terms in Eq. (32) are associated with second-order
contribution from the p~/2 and pt/2 components by
themselves and through their cross product. The cross
terms have the same sign as the diagonal terms for the
p-like contributions in contrast to the situation for the
Knight shift. This difference of relative signs in the
two cases occurs probably because the Knight shift in-
volves simple matrix elements, while the RK inter-
action involves products. However, these p contribu-
tions are all seen to be individually rather small. They
represent the contributions from orbital and dipolar
hyperhne interactions in NR theory, where their eBects
are also minimal. The eGects of higher l components
(d,f, ) of th wave functions were found to be
negligible, and are not listed.

The terms in the expression (34) for A»", which
have no nonrelativistic counterparts are found from
Table IV(b) to be rather small, compared to the lead-
ing term of A» ', but they are an order of magnitude
larger than the p-component contributions to A»".
This behavior can be understood since the terms in
AI2" involve matrix elements connected with the pre-
dominant s component of the wave function which
does not occur for the p-component terms of A»0'.
The net eGect of the A»" term is seen to be exceedingly
small because of some cancellations among them. The
A~222 contribution was not found to be signi6cant and
has not been listed.

TABLE IV. (a) Contributions to A»" in cycles from various angular components of the wave function.
(b) Contributions to A»" in cycles from various angular components of the wave function.

rsa
A 120' IKII

($1/2$1/2 $1/2$1/2)

Part (a)

122,B
(p8/2p3/2 p8/2pa/2l

Ill, 11

(P 1 /2P1 /2 P 1 /2P1/2)

1%1,%1+11%,12

{P1/2P3/2 Pl /2P3/2)
+ (P3/2P1/2 P3/2P1/2) Total

Rb"
S133

24.00
187.17

0.02
0.16

Part (b)

0.06
0.50

0.00
0.02

24.08
187.85

ontrs b

Metal+
Rb"
CS133

~Ii, r2
($1/2$1/2 P3/2P3/2)

—0.60—3.45

JIT, ll
($1!2$1/2 Pl/2PI/2)

0.32
1.84

~rr, 12+Jlr, m
($1/2$1/2 P1/2P3/2)+($2$1 2

—P3/2P»)

0.65
3.40

Total

0.37
1.79

a The numbers quoted include the numerical factors in Eq. (34).
b The numbers quoted include the numerical factors in Eq. (36).

20 T. Moriya, J. Phys. Soc. Japan 18, 516 (1963)."J.Poitrenaud, J. Phys. Chem. Solids 28, 161 (1967).
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The anal result from relativistic theory for A» in
cesium is in very good agreement (about 95%) with
experiment. The situation for rubidium is not as good,
the theoretical result now being about 50% of experi-
ment. Possible reasons for this discrepancy mill be dis-
cussed in Sec. IV. Again, the ratio of relativistic and
nonrelativistic results is perhaps of greater interest
than the speci6c agreement with experiment. %e notice
from Table IV that relativistic effects increase A12 by
about 16% for rubidium and 60% for cesium. These
corrections are more than twice as large as those ob-
tained for the Knight shift, which is not unexpected,
since squares of hyper6ne matrix elements are again
involved as in the case of relaxation times. Since the
dominant contribution to A12, and hence the major
relativistic correction, arises from the s component of
the conduction electron wave function, it again appears
that the main relativistic effect in these metals is of the
mass-velocity and Darwin type,

D. Pseudo-Diyolar Interaction

Various contributions to PD coupling constants are
listed in Table VI for both metals together with results
from NR theory and experiment" for comparison.
Equation (40) consists of four terms. These terms in-
volve the products of the (s~/2 —s~/2) matrix element
with the diagonal (pa/2 —ps/2) and (p~/2

—
pq/2) terms

and the nondiagonal (p3/2 pg/2) and (pg/2 p3/2)
terms. The nondiagonal terms are grouped together
in the fourth column of Table VI, while the diagonal
terms are given separately in the erst two columns. All
three terms are seen to be comparable in magnitude
with each other and corresponding terms in A12",
because the latter involves products fEq. (33)$ of
similar matrix elements. The results in both metals
are found to be more than an order of magnitude smaller
than experiment, as was the case with nonrelativistic
theory. Thus, relativistic corrections cannot alone pro-
duce agreement with experiment, and the source of
discrepancy has to be sought elsewhere. %e shall dis-
cuss this point further in Sec. IV. A comparison of
relativistic and nonrelativistic results indicates that
there is about 5.5% increase due to relativistic effects
in rubidium and about 14% in cesium. These correc-
tions are comparable to those for the Knight shift,
which is not surprising, since the major relativistic
effect is associated with the contact term, which occurs
linearly in both the Knight shift and PD interaction.

Tmr, E V. Relativistic results for A» in cycles compared with
experiment and nonrelativistic theory.

Metal A i200

A12 =
A iaoo+A iÃ

A iP Relativistic

A is
Non- Ai2

relativistic Experiment

Rbes
Cc111

24.08
187.85

0.37 24.45 21.00 50+ 5
1.79 189.64 117.55 200 &10

IV. COmCLUSIom

A formalism for relativistic analysis of hyper6ne
properties of metals has been developed and applied
to two alkali metals, rubidium and cesium. The results
clearly demonstrate the importance of including
relativistic effects for heavy metals. The improvement
found over the results of nonrelativistic analysis in
these metals was observed to decrease signi6cantly
from cesium to rubidium as expected. While it was
sufhcient for the case of alkali metals to deal with a
single occupied band, the expressions derived in this
paper can be easily extended to include more than one
band, which will be necessary in the analysis of the
hyperlne properties of heavier polyvalent metals such
as lead, thallium, and platinum; in particular, the RK
and PD interactions in these metals. Also in our
analysis, we have utilized relativistic '. single-OPW
functions, which is a good approximation for the
monovalent alkali metals except lithium. Since our
primary interest here was in the assessment of the im-
portance of relativistic effects, rather than in obtaining
good agreement with experiment, we have not sought to
analyze the effect of using more than one-OPW func-
tions. The use of many-OP% functions is expected in
general to reduce the s character somewhat and, there-
fore, our estimates of the Knight shift and RK parame-
ter. On the other hand, the PD parameter 812 should
not be affected significantly by the use of many-OPW
functions, since any decrease of s character is likely to
be compensated by the gain in the p character of the
wave function. Further, since relativistic effects on
hyper6ne properties arise primarily from the core
region, the percentage wise corrections over NR theory
should not be expected to change appreciably in going
from single- to many-OP% wave functions for both
relativistic and NR theories.

As far as comparison with experiment, relativistic
effects appear to improve the results for the Knight
shifts, relaxation times, and RK parameters, and pro-
duce good agreement with experiment. The agreement
with experiment is not as good for the RK parameter in

Txax,z VI. Results for PD coupling parameter 8» expressed in cycles.

Metal

Rbss
Slg3

($1/2$] /2 Sl /2$1/2)

—0.12—0.69

Jll, 11
($1/2$1/2 P1/2P1/2)

+0.65
+3.66

JG, 1%+Jll, 21
($1/2$1/2 P1/2P3/2)

+ ($1/2$1/2 —P3/2P1/2)

—0.08—0.42

Total 812 '
(Rel)

0.45
2.65

(NR)

0.40
2,33

~12
Experiment

11&2
35a5

& The entries in this and previous columns include the numerical factors of Eq. (42).
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rubidium, while for the PD constants in both metals,
there is a rather strong disagreement between theory
and experiment. In making a final assessment between
theory and experiment, it would be necessary to include
other mechanisms that could inhuence the magnitudes
of hyper6ne properties. Two possible important
mechanisms are core-polarization ' "and core-conduc-
tion correlation effects. A quantitative analysis of the
core-conduction correlation effects would be rather
dificult. However, in view of the dynamic independence
of core and conduction electrons, '4 its effect may be
expected to be small. For the core-polarization effects,
one could make use of one-electron procedures available
in the literature. ""It would be interesting to in-
vestigate these effects particularly for the RK and PD
interactions, as they involve products of hyperhne
matrix elements leading to an enhancement in the
importance of core polarization as was also found in the
case of relativistic effects. A definitive assessment of
agreement between theory and experiment can be made
only after an analysis of CP effects is available. However,
it does not seem to us that the order-of-magnitude dif-

ference between present theory and experiment for the
PD constant can be removed by inclusion of core-
polarization and core-conduction correlation effects.
It would be helpful if some remeasurements of the PD
constants were carried out, perhaps using powerful
echo techniques. Similar results for the RK parameter
in rubidium would be also helpful in explaining the
much less important difference between theory and ex-
periment. In addition, further light can be shed on the
experimental-versus-theoretical situations by calculat-
ing RK and PD parameters in heavier metals like lead, 2'

platinum, " and thallium, '~ " where accurate experi-
ments have been carried out.
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APPENDIX: SECOND-ORDER ENERGY EXPRESSIONS IN THEORY OF
INDIRECT NUCLEAR SPIN-SPIN INTERACTION

For the sake of brevity in the text and retaining continuity in the discussions, the second-order energy expressions

occuring in the theory of indirect spin-spin interaction among nuclei will be presented in this Appendix.
Using Eq. (11)for the hyperfine matrix elements in the second-order energy expression in Eq. (25), we obtain the

following expression for hE» which holds for a Fermi-surface of any general shape.

DRs ——2e'vi, ps, P Q Le(ko) —e(k'a')] ' Q P P (—)"'I'„"*(k)I'„"'(k')Fz, *(Ris)j„(kRis)j„(k'Ris)
LM pv p'v'

(2u+1)(2~'+1)(2L+1) '" ~' L v !(~'

4m —v' M v ~0 0 0 ~i~sui ~s~4v4

X a„„,*(k',a') a.,„,(k, a)A ...,&'& ...,v 4[W„,„,(k,k')+ W...,(k', k)]LW.„,(k,k')+ W...,(k', k)] (A1)

In Eq (A1), t.he band indices n and e' are dropped for brevity and will be recalled wherever necessary. For the
alkali metals, no specification of e and n is required because there is only a single occupied band.

Equation (A1) can be reduced further by introducing the definition of a„„in Eq. (8) and carrying out angular

integration in k space. Equation (2'7) results in this manner with T,. is&(k, k') given by

16 (li 0 li (li 0
T..&"(k,k') =—Q (—1)"I'o'"(As)! !(2~+1)sj.(k~&s)j.(k'~»)

s- v kv 0 —v ~0 0 0)
(2li+ 1)(2ls+ 1)(2ls+1) (2ls+ 1)

X Z Z (—1)"+" ' " (—1)'+" '"'C*(Jilji;~i-a, a)
Kl K21l 1 Ke KQl 4 4x

4 li l4 li 1i l4)
XC(ls-,'js, pi a', o')C(ls-,' js, ii4 o', a')C(/4-',j4,. ii4 a, a)A.,„, A..., '

0' pl v p4 0' 0 0 0

X ( W...,( kk') +W.„,(k', )k)(W„,„,(k', k)+W...,(k',k)). (A2)
0'—py v p4—0' 0 0 0

22 M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys. Soc. (London) 75, 811 (1959).
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