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Theory of Spin Resonance of Localized Moments in Normal Metals*
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The rf susceptibility of a normal metal containing one or a small concentration of magnetic impurities is
calculated. We use Anderson's model, the Hartree-Pock approximation for the ground state, and the random-
phase approximation for the susceptibility. The resulting g shift agrees vrith other semiphenomenological
analyses.

I. INTRODUCTION

'HE g value measured in ESR in a dilute alloy
containing paramagnetic impurities is derived

from Anderson's model' of such impurities. Our result
is independent of the parameters of the model when it
is evaluated for the Cu-Mn system studied by Schultz
et ul. ,' and agrees with the semiphenomenological
analysis~ based on the model of Hasegawa. 3

The idea of our calculation is that the physical system,
and Anderson's model, is invariant against rotations of
the spin degrees of freedom in the absence of a magnetic
field. (We neglect spin-orbit coupling, and therefore
omit spin-lattice relaxation from the theory. ) If the
conduction-band g value g, and the impurity state g
value g~ were equal, the total magnetic moment would
be proportional to the total spin, Larmor's theorem
would hold exactly, and there mould be no g shift. It
is therefore incorrect to view the resonance as a transi-
tion between the quite broad virtual bound states
associated with up and down spin whose energy
separation is largely correlation energy. The correct
view is that the whole structure that is the localized
moment, with its associated self-consistent 6elds,
precesses. If g, Wg~, there is some dephasing, leading to
an extra line width T2' ' which has nothing to do with
relaxation, and associated with this there is a g shift.
It is plausible, and true, that both T2' ' and the g shift
are smooth functions of g,/gd.

We start from the Hartree-Pock approximation for
the ground state. Then the desired precession of the
self-consistent 6eld and all of the good consequences of
that precession are automatically incorporated in the
random-phase approximation (RPA). In Sec. II, we
consider the problem of a single impurity, 6rst for a
nondegenerate virtual bound state, then for the realistic
degenerate case. For the mathematically simpler
nondegenerate case, we perform the calculation of the
rf susceptibility both by the summation of perturbation-
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theory diagrams, to pave the way for the discussion of a
6njte concentration of impurities in Sec. III, and by an
elementary sdf-consistent-deld method. When we
discuss the degenerate case, we modify the Hamiltonian
of Anderson' in a natural way to make it rotationally
invariant; we show simply that the original version'
is not rotationally invariant, and, as we have said,
rotational invariance is crucial for a correct theory of
spin resonance. In Sec. III, we discuss the problem of a
Qnite concentration of impurities, and in Sec. IV we
solve Eq. (3.24), which is the main result of Sec. III,
for the g shift.

~=P ekrCkr Ckr+P edeCdr Cde+g(VkdCkr Cdr+H C )

+UCd t Cd tCd t Cd 4 . (2.1)

Since a magnetic field H (~~Os) is applied to the system,

Ijs+s

est = ek+iisH p ddt = ed+tidIf y (2.2)

where ek=hs/2trt —Ee, ed is the energy of the free-atom
d level measured with respect to the Fermi energy Ep,
p, =-,'g,p~ and p~ ———,ggp~, g, and gg being the gyro-
magnetic ratios for an electron in the conduction band
and the d level, respectively.

It is worth noticing that in actual situations, due, for
instance, to the spin-orbit eGects, p, and p,~ are not
equal.

On the other hand, the transverse dynamic sus-
ceptibility is obtained by the usual linear-response
argument.

The Hamiltonian which couples the system to the
transverse field h+(r, t) is

1
K;„,= —— dsrtts (r,t)h+(r, t),

2
(2.3)

II. ONE-IMPURITY PROBLEM

A.. Nondegenerate Case

As we have already mentioned, we choose to represent
the transition impurity imbedded in the noble-metal
matrix by means of the Anderson Hamiltonian, ' which
is written, in the case of a nondegenerate d level, and
with the notation of Ref. 1:
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d, -e' where p~(r) is the d-level wave function. F(q) is the
form factor of the d level.

Fio. 1. Hartree-Pock self-energy
for one nondegenerate impurity. S(1234~0 ~

rJ T 8tQ r

d, a X(2'.L~r t'(r)~» (r)~r &'(0)~4t (0))) (2 10)

where m is the (—) component of the magnetic-
moment density operator.

This excitation induces a magnetic-moment density

(rtt+(r, t)) = d'r' dt'X(r, r', t—t')h+(r', t'), (2.4)

where

X(r, r', t—t') =-', i8(t—t')(Lm+(r, t), m (r', t')]). (2.5)

Here ( ) means the ensemble average on the equilibrium
state of the system;

The susceptibility (2.5) can then be calculated by means
of the standard thermal-product technique.

Let us de6ne the Fourier transform

We thus have to calculate four types of two-particle
Green's functions which describe the propagation of
electron-hole pairs with reversed spins; the electron
and the hole can belong either to the conduction band or
to the d level.

It is well known that, because of the presence of the
Coulomb term on the impurity site, the one-particle
Green's functions corresponding to the Hamiltonian
(2.1) cannot be calculated exactly. Various approximate
solutions' have been worked out; the simplest one
consists in treating the Coulomb term in the Hartree-
Fock approximation.

This corresponds to keeping in the self-energy only
the term corresponding to the diagram of Fig. 1.
We will con6ne ourselves here to this lowest-order
approximation.

The one-particle thermal Green's function for the d
electron is then given, from Anderson's original calcula-
tion, by

Gq, (s&„)=1/(i~„E,+iI' sg—nrem ) . (2.11)

X(q, q', &e) = d'r d'r' dt X(r,r', t)

X&—i(q r-q' r'}+inert
y

and the thermal product

P(r, r', r r') =-,'(T,Lrrt—+(r,r)m (r'r')]),

Here re = (2rt+1)rr2', where n is any integer; F=rrE(0)
X

~
V~2, where E(0) is the density of states in the con-

duction band at the Fermi energy for one spin direction;
and following Ref. 1 we assume that

( Vga ~'=
~
V ~' is a

(2.7) constant, for energies in the vicinity of Ep,
I

X(q, q', re) =P(q, q', —i~+8). (2.8)

It is easy to check that

P(q, q .)=-2L; r + S(kk-q k k+q lQ,)

+p,trgF(q)Q S(ddk'k'+q'~Q, )
k'

+p,trpF*(q')P S(k k—q dd
~
0.)

+tjg'F(q)F" (q')S(dd dd~0.)j, (2.9)

where r is the usual imaginary time and T, is the time-
ordering operator. One calculates the Fourier transform
P(q, q', 0„) with 0„=2m.T, where T is the temperature;
then one takes its analytic continuation P(q, q', 0).
The real frequency susceptibility is'

E,= eg, +U(e,), (2.12)

where (rt,), the number of electrons with spin —o, is
determined from the consistency equation (where we
assume T to be very small compared to all the other
energies in the problem, which are at least of the order
of 1 eV)

rt .=rr ' arc cot(E /1'). (2.13)

Once an approximatioo has been chosen for calculat-
ing the one-particle Green's functions —or the self-
energies —the way of evaluating the two-particle func-
tions appearing in the Eq. (2.9) of the susceptibility
is unambiguously de6ned. This follows from the fact
that the conservation laws (i.e., the Ward identities)
must be satisfied. In the present case the conserved
quantity of interest is the total spin of the system. This
in particular implies the well-known fact that, if

Fro. 2. Diagrammatic represen-
tation of S(dddd (g„l.

4A. A. Abrikosov, L. P. Gorkov, and J. E. Dzailoshinski,
j/Iethods of Quantum Field Theory in Statistical I'hysics (Prentice-
Hall, Englewood Clips, ¹ J., 1963).

~ J. R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412
(1965);L. Dworin, Phys. Rev. Letters 16, 1042 (1966).
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u.=@~=@and q= q'=0 (uniform susceptibility), then
the s-d interaction cannot induce any g shift (the
electronic resonance must take place at oi=2pB). This
condltlon CRQ bc Used on thc Gnal cxpI'esslon of thc
susceptibility as a check of the consistency of the
RpprOXH11atlOQS.

In this section we wi11 concentrate only on the
calculation of the d-d two-particle function $(dddd

~
Q„).

This 18 sufBclent to formany dcGnc thc RppI'oxlDlatlons j
furthermore, we are on1y interested in the Gnite concen-
tration problem for comparison with the electronic
resonance experiments.

It can be checked easi1y from the diagrammatic
expansion —and it is well known —that if 6 has been
calculated in the Hartree-Pock approximation, in order
to sRtlsfy th.c COIlscrvRtlon 1Rws onc must calcu1Rtc thc
two-particle Green's functions in the RPA scheme. In
the present case, representing S{dddd~Q„) by the
symbol of Fig. 2, this means that this quantity is the
sum of thc diagrams of Flg. 3.

In Pig. 3, each fuG 1ine is the Hartree-rock Green's
function (2.11),oi„, &0„', ~ ~ ~ are internal frequencies on
which sums have to be taken, so that the equation of
Fig. 3 can be rewritten as

S(dddd(Q„)=2 g Ggt(&o )GsI(oi +Q.)

XC1—US(ddddiQ„)j (2.14)

S(dddd)Q„) =Tg Ggt(oi„)Ggg(oi +Q.)/

~C1+U~r. G. (-.)G. (-.+Q.)j. (2.15)

Equation (2.14) can also be checked by making the
RPA approximation directly on thc cquRtlons of motion
of the response functions. However, in order to make
the physical content of our approximations clearer,
it is of interest to rederive (2.15) in a slightly diferent
way, which makes the treatment of the Hartree-Fock
Geld appear more direct.

Making thc Hartree-I'ock approximation on the
Hamiltonian (2.1) amounts to replacing the exact
teIm Ueqte~4, by an CGective one-particle Hamiltonian

XHp= U(est(esp)+esp(est) —ss+(sg )—sg (sg )),
(2.16)

VQth S~=Cgt &gpss g-=. &df &dt

This is the most general form of the CGcctive one-
particlc term, which makes no assumption on the
direction of the magnetic moment carried by the
impurity. Let us now assume, as above, that Rt equ11i-
brium this moment is along Os; then (ski.)=(ss }=0,
and the average fields (e~.) are defined by the self-
consistency conditions {2.13).

Lct us now apply R 8m'. transverse magnetic Geld

8h(r, t) to the system. If the Hartree-Fock Hamiltonian
were the exact Hamiltonian, the induced magnetization

dg d~

+ o ~ ~

d$
d$

Fio. 3. D~g ammat'o e~ansioa of S(due )a) io RPA.

would be given by the Kubo expression CEqs. (2.4) and
(2.5)], the correlation function (Cm+, m ]) being cal-
culRtcd Rs Rn RvcrRgc oQ thc HRltlcc-Fock stRtcs of
the system.

However, the presence of the excitation field bh~
modi6es the internal state of the system, including the
values of the average fields (riqt& (ss+); that is, bh~
lndUccs a motion of thc U11purlty moment. Thc colI'c-
spoQdlng vRllatlon of XHp Is

bX» U(Istic(——egg},+ngib(nest&, sg b(ss„}—i), (2.1'l)

where h(ss ), is obviously zero. Since we assume bh+ to
be very sma11 compared to the static Geld B, it can tilt
thc impurity Inomcnt only by R sIQR11 RQg1c, so thRt we
can assume b(esca) and b(wing) (i.e., b(ss, &) to be of order
(N+)', while b(ss~& is of order bh+, and can be calculated
as a linear response. '

Pinally, the total coupling between bh+ and the sys-
tCIQ ls

X; i+bXnp=Xi i—Usa (t)b(ss+)i. (2.18)

h(s~.) can itself be considered as the linear response of
ss~ to the excitation (2.18), so that it is given by the
Kubo formU1R

~(s~)-=-'(Cs~ m-l&»..'++-
+U(Ls s 3) . &(s ) (2 19)

which plays the role of a self-consistency equation.
Here (CA;87&np, „s is the Fourier transform of the
retarded product i8(/)(CA(r, t),B(r',0)j)», where the
ensemble average is taken on the Hartree-Pock equili-
brium state of the system.

It is clear that for 8k+ ——0 the solution of Eq. (2.19)
describes the precession of the impurity spin around the
static 6C1d.

FinaHy, the total magnetization induced by thc
perturbation (2.18) is given, with the help of (2.19), by

b(m+}„=- (Cm+, m j}»
2

(Cm+,s~j&». '(Cs~+,m-3&».-'+U She. . (2.20)
1—U(Css+ ss-j)», "

OThis mould no longer be true in zero static Geld, mhere the
moment mould align itself along bh+, and the present approxima-
tion mould describe only the hey»mg of the xnotion.
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The first term in (2.20) is the contribution to the
susceptibility due to the noninteracting Hartree-Fock
electron-hole excitations, while the second term is the
contribution due to the possible Qips of the impurity
spin (in other words, to its precessional motion).

The retarded products (LA,B])nF,„~ can be cal-
culated from the corresponding thermal products.
Since the Hartree-Fock Hamiltonian is of a noninteract-
ing-particles type, the two-particle Green's functions
involved are simply products of one-particle Green's
functions. It is then extremely easy to see that Eq.
(2.20) is identical to the RPA approximation of (2.9).

For instance, we can extract from (2.20) the d d-
contribution to the susceptibility, which is

Ess(tl, tl', 0„)

= —2p"F (tl)F*(tl') L2' r, Gs t(~.)Gs t(~-+fl.)!
XP+U2'Z G«(~,)G.t(~.+fl.)j, (2.21)

i.e., identical to the d-d susceptibility obtained from

(2.15) by means of the diagram summation.
Let us finally explicitly calculate Xss(g, q', o)), which

value will be of use in the following. For the low
temperatures of interest, we And

T P Gst(o)„)Gsi(c0„+0„)

hn 1V(0)
~

V(s

iQ„+Et Ei, (iQ„+E—t Ei,)(if'„+2ir+—Et—Ei)
~

~
~

(r—iEt) (r+iE&)
Xln ~, (2.22)

(n„+r—iE,) (n„+ryiE&)i
where

An=(et) (ni), Et —Ei = 21jsP Uhn—. — —

From (2.22), one immediately obtains Xs„(q,tl', o)).
Since we will be dealing with frequencies co«1', we

expand Xss to first order in o)/F. However, we do not
expand expressions of the type o)+Et E&. (This is-
connected with the fact that the Hartree-Fock approx-
imation does not give a reasonable value of the low-fj, eld

static susceptibility, which will oblige us later to
reinterpret Et Ei.) We then get—
Xss(Q~tl )o))

= —2p, 'P (g)P"(g ') (DN—
1v(0) )

v~'~

(si+)r)~s, —~r))

UX(0) i
Vis

X or —2IJ,dII— (2.23)
(E +iF) (Ei—iF)

Let us note finally that, for H= 0, xss(co) goes to infinity

when co —+ 0, as it should, since this simply means that
in zero Geld the system &s rotationally invariant.

B. Degenerate Case

The treatment of the single degenerate impurity case
follows very simply from the one of the nondegenerate
case. The only interesting question arises from the choice
of the generalization of the Hamiltonian (2.1) suited
to this situation.

The following Hamiltonian has been proposed by
Anderson and used by several authors to describe the
Coulomb and exchange terms on an impurity atom when
one takes into account the orbital degeneracy of the
d-wave functions~:

X=-,'U P n„.n„, .+-,'(U —J) P n„.e„.„(2.24)
mm', o mmmm', o

where m and m' are indices dedning the d orbitals. 3'.~
can be rewritten as

Xg ———,'U Q (n„t+n„t)(n„ t+n„ i)
mgml

+-', UQ(n t+n„i)' (e —t+n„i)

X XA J Q (smgS~'~+s~sS~'s) ~

m/ml
(2.26)

This keeps the meaning of J and U unchanged with
respect to (2.24), and is simply the original Dirac
formulation of Hund's rule. K' can be rewritten as

X'=-,'U Q n .n .+-', (U—J) Q e„,n„,
mmmm', tr

~me rm e~m' e~m'n ~ —(2.2—7)

mm'o

The one-particle Hartree-Fock Green's functions are
still given by Anderson's expressions. For instance, when
one neglects crystalline-held eGects and orbital magnet-
ism (which we will do in all that follows), the ones

~ Following Anderson, we have made the approximation that
U ~ and J are independent of m and m'. In fact the U's and
J's are related to Slater's 1ntegrals Lsee J. C. Slater, Qgoniem
Theory of Atomic Structure (McGraw-Hill Book Co., ¹wYork,
1960).j, and the above simplification violates the sum rules that
U ~ and J ~ have to satisfy. In the present case where one is
only interested in spin magnetism this approximation is not
crucial. It has very important consequences in the case of orbital
magnetism (see Ref. 11).

This lack of invariance also appears in the fact that, if one
uses 3!g to perform an RPA calculation of the transverse suscep-
tibility, one Gnds the unphysical result xzz '(B=co=0)&0.

—-',J g P-,'(n„t+n i)(n t+n .i,)

+2s„.s„,j. (2.25)

The Hamiltonian describing the impurity must
obviously be rotationally invariant. X& is invariant
under a space rotation. However, it is clear from (2.25)
that the term —Jg „s,s ., is not invariant
under a rotation of the spin coordinates. '

3'.z thus has to be replaced by an invariant Hamil-
tonian which we will take to be



describing the d electrons ares expansion in is/I'):

with
(U+4J))V(s~ )

21,—II —
~

. (z.33)
l (F.t+sI') (F.s sI'—))

F.,= ss,+SU(is„}—(U+4J)(n .), (2.29)

and I'=sE(0)
~

V~ s. LPrecisely speaking, this choice of
I" corresponds to the expression for Vt, Thus Xgg has exactly the same structure as in the

nondegenerate case; i.e., it is obtained from (2.23) in
the case g= q'=0 by making the formal replacement
U —& U+4J, and multiplying by an extra factor of
(21+1)=S, which comes from the orbital 6vefold
degeneracy.

We also note that Xss '(q, q', P=a&=0)—0, which
con6rms that 3C' is invariant under spin rotations.

where the spherical harmonics Fi„(Q) are normalized,
so that J'(dQ/4~)

~

I'i (Q)
~

s=1.] (is .) is the H««ee-
I"ock occupation number of one single Orbitet with spin
o, and(e„)=(N g}+(I i.).

The transverse susceptibility is now Lwith the same
notation as in (2.9)j the continuation Df III. FINITE CONCENTRATION PROBLEM

G~ts'~(&gs) =$~~'/(j(g~ F~+sI sgnios) x 0 0 10
X(0) ( V)'is

—=&..«.'(~.), (2.») ' '
& (Z, —'1)(Z,—'I))

F(q,q', Q„)= —2(p, s Q S(k k—q k' k'+q'iQ. )

+li,lis p F„(q)S(miN k'k'+q'~Q, )

+p,,ass P F„e(q')S(kk—qmm(Q. )

+lu„' P F„(q)F„.e (q') S(tsiism'm'
( Q,)).

%e consider here the more realistic problem of R

dilute alloy with a random distribution of impurities.
As in Sec. II, and for reasons of simplicity, we will 6rst
study in detail the case of orbitally nondegenerate
impurities, of which the degenerate case will be a very
simple generalization.

A. Nondegenerate Case

The Hamiltonian (2.1) is now rewritten

(2.30) &=Z ssscsu csr+Z ssscir cin+Z(Vticse cia+H c )
Thc cvRluRtlon of thc vRl'ious 5 functions goes exactly

along the same lines as in the nondegenerate case. One
simply has to include the RPA diagrams corresponding
to the J' terms in 3.", so that S(iissism'te'~Q„) is now
given by

S(ming'm') Q,)= & P Gs~'(~.)«~'(~.+Q.)

&&(8„„.—US(~mm'Ns'i Q.)

-~ Z S( " " ' 'IQ))

which glvcs
JA(Q,)

1+(U+4J)A. (Q„)J

x(Q„)
(2.32)

1+(U—J)A(Q„)

A(Q,)= & Q «t'(ie )«i'(io +Q.).

We can then obtain, for instance, Xss(0,0,re) within the
same approximation as in Sec. II A (low temperature,

See, e.g., B. Carpi, thesis, University of Paris, IN' (un-
published); eud J.Phys. Chem. Solids 28, 142/ (1967).

+U P c;t'c;tc;i'c;s. (3.1)

The index i= 1, ., e labels the impurities, V„;=V,q
g'"'R, where R; is the position of the ith impurity atom
and V~g is the same as in Sec. II. The interatomic
interaction terms between different impurity atoms are
neglected.

The multiple scattering problem corresponding to
the Hamiltonian (3.1) has already been studied by
Zuckermann'0 in the dilute limit. In order to clarify
the calculation of the susceptibility, let us 6rst recall
very briefly how one obtains the average one-particle
Green's functions

~..=((~,t:".( )".(0)j»...,

0';.=(O'L '.( );.(0)l»;.„
where the bar on Gg and the ( ); p on the ensemble
averages mean averaging over the positions of au.
impurities. In G;; it means that the average is taken on
the positions of all the impurities other than i and. j.
The calculation of the 6's follows the same lines as in
the well-known case of the one-band scattering. ' Thc
only difference is that, since V~; cannot bc treated, here
in the Born approximation, one has to retain diagrams

'0 M. g. Zuckermann, Phys. Rev. 140, A889 I'4965).
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like the one of Fig. 4(a), including any number of
scattering processes on the same impurity atom.

We also neglect diagrams of the type of Fig. 4(b) in
which dashed lines corresponding to scattering on
diferent impurities intersect; their contribution would
as usual be of order I/pal compared to diagrams
without intesecting lines (p~ being the Fermi momen-
tum and l the conduction-electron mean free path).
Here, because of the fact that we are dealing with
resonant scattering, l can be rather strongly energy-
dependent, and l(Ep) could be very small in the case
of a very narrow d level centered very close to the Fermi
energy. Thus one would have to be careful about the
above approximation (especially when dealing with f
instead of d impurity levels and not very dilute alloys),
but this sort of problem does not arise for the very
dilute d type of impurities that we consider here.

Finally, we will take

Gg=6'gag, (3.2)

that is, we neglect the interactions between impurities
(we assume T to be well above the ordering temperature
of the impurity spins). With these approximations we

Gnd that Gz and 6'z obey the coupled system of equations

R.(~.)=G~.'(~.)+~
l
&

l
'G~.'(~.)Ga.(~.)G~.(~.),

G"( .)=G.'( .)+ I
I'I'G.:( -) (3.3)

2 G"( .)G .( .)
where c is the impurity concentration,

G„.'(co„)= (iv)„e1,.) —',

Gg.'= (ia „—eg, —U(~ .))-'.
As in Sec. II, the Coulomb term is treated in the
Hartree-Fock approximation.

From (3.3), we obtain

neglect the change in this density of states due to alloy-
ing, we get

Gg. ((o„)=—Gg. ((o„)= (~„—E.+iI' sgns) ) ', (3.5)

(this is equivalent to neglecting the change in I', which
is anyway a rather poorly known quantity"),

G~ = (iver ~1,
—cl vl'Gd. ) '. (3.6)

Let us now proceed to calculate the dynamic suscep-
tibility. Because of the translational invariance of a
disordered alloy, it is obviously of the form

&(q,q', ~) =—&(q,~)~~q,

where X(q,&o) is the continuation of

P(q,Q„)= —2l p, 'P S(kk —qk'k'+ql&„)

(3 &)

+p,pgF (q)p(S(iik'k'+q lQ,)e-'&'a');,

+p,paF*(q) Q($(kk —qii l n„)e-'& R');,

+pg F(q) l2+(s(iijglQ„)e'&'("~' ')); g. (3.g)

The 5's are dined as in (2.9) and the bar and ( ); ~
again mean averaging over the positions of the impuri-
ties. As usual, even in the absence of interactions, the
average of the two-particle propagators is not equal to
the product of the averages of the corresponding one-
particle propagators.

Finally, we will calculate only the uniform suscep-
tibility X(0,co) which is sufhcient to interpret measure-
ments of Tm and of the g shift. (The generalization to
Snite q would be algebraically heavy but straight-
forward. ) Let us de6ne

r,=I,p S(kkk'k'l a„)ya. g 8(kkiil n„),

G"=((G.-') '—
I
I'I'Z |"")'. (3 4)

I'&=p, g S(iik'k'l&„)+pz P $(iijj lQ„). (3.9)

In Anderson's approximation (i.e., neglecting the
energy shift due to the scattering), P& G&~= —is%(0)
Xsgn&v„, where lV(0) is the density of states in the
conduction band of the alloy at the Fermi level. If we

Then, keeping in the calculation of the I"s only dia-

I

&/

/
/

/
/

r /
J I

ka ir k a ia ko
{aj

I j
4

/ i //
//

/ ' ) /

/K/X

(b)

FzG. 4. Typical diagrams for
the conduction-electron Green's
function. The dashed line corre-
sponds to a V~ (or V;I,) scattering. FIG. S. Integral equations for the vertex functions. Solid

lines represent renormalized average Green's functions.

"See, e.g., B. Coqblin, thesis, University of Paris, 1967 (un-
published); and B. Coqblin and A. Blandin, Advan. Phys.
17, 28i (1968).



ESONAg CF OF OCALI7F 0

td

MOMFN T

FIG. 7'. In
&, the do5 to F

passing from Flg.

mg of this d
ouble count

avoid d
gram Inust

pf Fj $
t eI'e Is pD]y one d

. . as showII jII F&g ~ @

IS appIpxi~
~ . e Same IIII ~

~

of rh
' " » good b

'~) 'n«rsect

e st consist
eca&se the DI

Ing the Dpt

U IPe

+o+Q„" ~u

FIG, Q R rrangenmnt f e«ex «nct,.

gI ams cpIIsISt
evan

~

't'l the a

defined so th
g' Here p~o(~ ) d

s3"e«In @pe get.

&a are

S~'(4 )=G&t (~n)Ggi ((g„+Q )

Sg {(jy ) g"'(" )gi i(s&„+Q)

'l ~l's, (~„)gS (

A (Q) )— ~(~n)/l $—p( )

(3.12)

& (&n)=ping"' "("")G (.+Q)

Td cv~ =p 0

"+~ l~l'G. ,(.„)

T' ("")+'l~l's

~i(&~+Q„)gg, ( s)ggi (fg +Q ) (

'+)ZSg(Q) ) O'T S (Xl'g ((g

(-.+Q,)l-

'"-)= "(-.)+,l&.

~+e~l vl2

S&(&n)Sg (&g„)PT
jg l

—I&I'US„„„S~ "-) („)„((
3 Q)

&(O,Q,)= (Pg Q I'q+g~„p )

I'

XG

&nd p~= T g
@t(~n,)Ggi((g +Q")j t (3.$ $)

h: &a), Fg=TW
Af

~"T~(~a). Thee
~

ter solving E
eqUatipns

qs.
s&sceptib&~&t

the 'Qg jfp~

~IF T g g(~"-)- i~l li+»& s(.) q-

E
1(T

~—p
f(& )S (~„))(„)j

'"~ "l~l'Tgg
I
i+or '~")

)a f—p(

calculation of th uThe exphcit

1+UT Q-
Sg GP&

emperature re
e vaI'loUs sU

gion Lwhere T -f(~ )~
in q (314

(3.&4
R

, one as to be careful in the o

g stI'aightfpI'~ard j

, one as to ecalculat on of TP

g StI'aI jII t

because of the slo~ co
i y ealt vnth

Q A(eu )=T g(A(&y„—

e s ovr convergence of the e

~~' —g Gpt'(co )G

o t e expression T

n; e exact calculation of the s ere slowly conver ereront) second tererm ls tl'1Vlal.



606

(3.1&)U'FI{~~—~)jReL~ g
—Gl

F REFDK

Cnt
~

h theP=MX (6 . '
variance

QOt R

(b)
t t,onal mv

h t (jy, Is
pole o .

{315),it » ea
hc suscePt' ''"y' . ,yto»ow ""resslOQ

cro reSI(iue-

ls obtainec resonance fre 'QCQcfore, the
cond lt lo

Olfe +G1r

d$

ga
' f the vertex fu nctiona m8 Integral equa fuations forFXG, . UR

(m, m)

hat

V g|rg,Va,G .Ie J +6, = g

x(0,o))

cF'I2U{AE~—~)
—UFI(&o, a))J-GD@ CA—

N{0)(u,+cFI(DE@—~

8QCMt8 C

encralize t. c pxtrcIQcly easy to geQcIt ls Qow cxtrcIQc y
he case of fu y e lm un 1results to t e

orbital mag
"

c anetls111.

to an interaIn urity site coon each xmpu co

a arne assumptions'-.. dg'. ':"aking the same as s
t 6„~an g,

FI(AEs—(o)
G „,V q,Gg,),Gg, —— a.'(1+cr Vg„G „, (3.18)

—M —UFI (ld q
—(d)COg
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—UFI (co.—a))GPg fd—

e, =- e, ~~8%'I1Cl C Qe, tg
=%' Cr e, = e,8+)
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'
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From these equations. we obtain (with notation
analogous to that used in Sec. III A)

I'-'(~.)=I'-"(~-)+5'e'(~.) (o 2 I l'»-I '5'»'(~. )

X l'» il a»1"' I s(& )—J Z I" I I
tsg+ fPt

—Ui"„„),
(3.21)

I'»'(~-)=I'»"(~.)+o~»'(~-)5'e'(~-) 2 P'» l' »

X(g &» &» I'»'(~. )

Defliling I'e'(&a„) = +„1'„„'(M„),Eqs. (3.21) reduce to

I'e'(~-) =I'e"(~-)+~e'(~.) (&(21+1) I
l'I '

XQ 8»'(&o„)I'e'((o.)—(U+4J)1'e'), (3.22)

2 I'»'(~ )=2 I'»" (~-)+e5'e'(~-)2 5'»'(~-)

X((21+1)I V
I

' P 1'» '(~.)

Equation (3.25) has many roots in generaL We shaH

calculate the real, or almost real, root ~ which we
expect to be near e, and cog. The imaginary part of co

cs T2' ', the lmewidth caused by the dephasing of the
electron spm precession as ct hops getween the conduc-
tion band, where it precesses with circular frequency
co„and the impurity levels, where it precesses with the
slightly diBerent circular frequency ~g. This is expected
to be a minute fraction of the total line width Tg' '
+TI', 110'tc that splIl-latt1cc rciaxatlon TI llas bcc11
omitted from our theory. Now the total line width is
small: Im~/Rh=hro/~=~/P=0. 01. We are there-
fore justifie in looking for a real root a& of (3.24).

The precise result for ~ wiB depend only on rough
orders of magnitude of the parameters of the model.
We take U+4J =4 CV, I"=0.5 eV, ZI+EI = -1.8 eV,
and all other parameters directly from experiment.
Wc 6nd that, for thc desired root co DcRr e, and aug,

the second term in Q is overwhelmingly larger than the
flrst, and further that (EI+EI+a&)/S"'&1 for temper-
atures under 100'K. Once these facts are accepted, we
can forget thc values of the parameters.

We have

(4.1)

I'e (~-)= (2~+1)6e5'"(~-)

+~ I
I'I'~.'(~.)Z 5'»'(~.)), (3 23)

2 I'»"(~-)= l.~.+&~e(2~+1) I ~l '5'e'(~-) jZ 5'»'(~-)

o ~ o(2l+1),
U~ U+4J. (3.24)

Moreover, Ae is now to be understood as referring to
ole sI'lee orbitu/. It is then obvious that x(0,&o) has the
same properties as in the nondegeneratc case, namely,

(R) Fol' IIg=pfe=14) tile ulllfoHI1 sllsceptlb111ty llas Its
only pole atco=2IIH (b) I '(q=co=H=O)=0. (c) For
p, »gpg, co=co» ls not a pole of X and thc resonance
frcgucncy 18 given by

RCLcoe—ao —(U+4J)l'I'(a), —(o)j=0. (3.25)

p is obtained from (3.16) by the tl'Rllsfol'nlR'tloll (3.24).

Finally, and after some very simple algebra, we Qnd
that x(O,ra) is given by an expression completely
analogous to (3.15).That is, x for the degenerate case is
obtained from (3.15) by making everywhere the
transformation

so~[ V[ (m,—~)

X(0)(a

5o(U+4J)i'~N

ggg 3E»

g.' (U+4J)I'Me
(4 2)

or
a&e or+ (M,/Me) ((e,——&o) =0

Mecoe+M~,
(4,4)

This is exactly the result of the semiphenomcno-
logical theory of Schultz et e3.,~ based on the model of
HRSCgaWR.

II
(U+4J) I'Me

where M„Mq are the conduction-electron and impurity
magnetizations per lattice site. We have put gge/g, 1=1
111 golIlg f1oI11 (4.2) to (4.3) which Involves Rn clTol' of
order lg, —ge[/g, =1% in I', and an error of order

I g,—ge['/g, '=10 ' in the g value. Finally,


