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The rf susceptibility of a normal metal containing one or a small concentration of magnetic impurities is
calculated. We use Anderson’s model, thé Hartree-Fock approximation for the ground state, and the random-
phase approximation for the susceptibility. The resulting g shift agrees with other semiphenomenological

analyses.

I. INTRODUCTION

HE g value measured in ESR in a dilute alloy

containing paramagnetic impurities is derived

from Anderson’s model' of such impurities. Our result

is independent of the parameters of the model when it

is evaluated for the Cu-Mn system studied by Schultz

et al.? and agrees with the semiphenomenological
analysis? based on the model of Hasegawa.?

Theidea of our calculation is that the physical system,
and Anderson’s model, is invariant against rotations of
the spin degrees of freedom in the absence of a magnetic
field. (We neglect spin-orbit coupling, and therefore
omit spin-lattice relaxation from the theory.) If the
conduction-band g value g, and the impurity state g
value g4 were equal, the total magnetic moment would
be proportional to the total spin, Larmor’s theorem
would hold exactly, and there would be no g shift. It
is therefore incorrect to view the resonance as a transi-
tion between the quite broad virtual bound states
associated with up and down spin whose energy
separation is largely correlation energy. The correct
view is that the whole structure that is the localized
moment, with its associated self-consistent fields,
precesses. If g,5% g4, there is some dephasing, leading to
an extra line width 7%~ which has nothing to do with
relaxation, and associated with this there is a g shift.
It is plausible, and true, that both T»"~! and the g shift
are smooth functions of g,/gq.

We start from the Hartree-Fock approximation for
the ground state. Then the desired precession of the
self-consistent field and all of the good consequences of
that precession are automatically incorporated in the
random-phase approximation (RPA). In Sec. II, we
consider the problem of a single impurity, first for a
nondegenerate virtual bound state, then for the realistic
degenerate case. For the mathematically simpler
nondegenerate case, we perform the calculation of the
rf susceptibility both by the summation of perturbation-
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theory diagrams, to pave the way for the discussion of a
finite concentration of impurities in Sec. III, and by an
elementary self-consistent-field method. When we
discuss the degenerate case, we modify the Hamiltonian
of Anderson! in a natural way to make it rotationally
invariant; we show simply that the original version!
is not rotationally invariant, and, as we have said,
rotational invariance is crucial for a correct theory of
spin resonance. In Sec. ITI, we discuss the problem of a
finite concentration of impurities, and in Sec. IV we
solve Eq. (3.24), which is the main result of Sec. ITI,
for the g shift.

II. ONE-IMPURITY PROBLEM
A. Nondegenerate Case

As we have already mentioned, we choose to represent
the transition impurity imbedded in the noble-metal
matrix by means of the Anderson Hamiltonian,! which
is written, in the case of a nondegenerate d level, and
with the notation of Ref. 1:

=3 €xoCio kot 2, €aoCas Cast 2, (Vidcrs'castH.C.)
ko a ko

(2.1)
Since a magnetic field H (]|02) is applied to the system,

+ Ucarfearcastcas.

ext=¢r ~pusH, €gt=es—usH,
€xl = Ek+,usH, €1} = €d+ﬂdH, (2-2)

where €,=Fk?/2m— Ep, €4 is the energy of the free-atom
d level measured with respect to the Fermi energy Er,
pe=3%gup and us=%gaun, g and gs being the gyro-
magnetic ratios for an electron in the conduction band
and the d level, respectively.

It is worth noticing that in actual situations, due, for
instance, to the spin-orbit effects, u, and ug are not
equal.

On the other hand, the transverse dynamic sus-
ceptibility is obtained by the usual linear-response
argument.

The Hamiltonian which couples the system to the
transverse field 4.(r,t) is

1
i — [Erm_sO(r), (2
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d,-0
Fic. 1. Hartree-Fock self-energy
u for one nondegenerate impurity.
4,0 4,0

where m_ is the (—) component of the magnetic-

moment density operator.
This excitation induces a magnetic-moment density

(m+(r,t))=/d37’/ ax(r, v’ t—iNh ('), (2.4)
where -

X(r, ', t— 1) =50 (t— ) [ms (), m_( ) ]).  (2.5)

Here ( ) means the ensemble average on the equilibrium
state of the system;

0(t—t")=1 for >
=0 for i<t.
The susceptibility (2.5) can then be calculated by means

of the standard thermal-product technique.
Let us define the Fourier transform

X(q,q",w)= /dsr d3r’/ di X(x,1r't)
X e“i(q cr—q’ o’ )+iwt ,

(2.6)
and the thermal product

P(r, v, r— 1) =KTLm(r,)m_(x'7)]), (2.7)

where 7 is the usual imaginary time? and 7', is the time-
ordering operator. One calculates the Fourier transform
P(q,q',2,) with Q,=2yxT, where T is the temperature;
then one takes its analytic continuation P(q,q’,Q).
The real frequency susceptibility is*

X(qiquw)=P(qu,7 _u"+6) . (28)

It is easy to check that
P(q,q'0)=—2[n’} Skk—qk k'+q'|2)
kk’
FuouaF (@) S(dd k' k'+-q'|Q,)
k'
+pspal* (Q')Z S(k k— q ddlﬂ,)
k

+ra’F (QF*(q')S(dd dd|2,)], (2.9)

Flq)= f Breivt| gu(m)]?,

4A. A. Abrikosov, L. P. Gorkov, and J. E. Dzailoshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Englewood Cliffs, N. J., 1963).
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where ¢4(r) is the d-level wave function. F(q) is the
form factor of the d level.

YT
S(1234]|2,)=— / dr ¢i%r

0

X(TLert!(7)cas (r)east (0)car (0) ). (2.10)

We thus have to calculate four types of two-particle
Green’s functions which describe the propagation of
electron-hole pairs with reversed spins; the electron
and the hole can belong either to the conduction band or
to the d level.

It is well known that, because of the presence of the
Coulomb term on the impurity site, the one-particle
Green’s functions corresponding to the Hamiltonian
(2.1) cannot be calculated exactly. Various approximate
solutions® have been worked out; the simplest one
consists in treating the Coulomb term in the Hartree-
Fock approximation.

This corresponds to keeping in the self-energy only
the term corresponding to the diagram of Fig. 1.
We will confine ourselves here to this lowest-order
approximation.

The one-particle thermal Green’s function for the 4
electron is then given, from Anderson’s original calcula-
tion, by

Gas(wn) =1/ (iwn— E;+1T sgnw,). (2.11)
Here w,= (2n-+1)xT, where # is any integer ; I'=7N (0)
X | V|2, where N (0) is the density of states in the con-
duction band at the Fermi energy for one spin direction;
and following Ref. 1 we assume that | Viq|2=|V|%isa
constant, for energies in the vicinity of Er;

Ev= €d<7+ U(”——a) 3y

where (n_,), the number of electrons with spin —o, is
determined from the consistency equation (where we
assume T" to be very small compared to all the other
energies in the problem, which are at least of the order
of 1 eV)

(2.12)

n_,=7"tarc cot(E,/T). (2.13)

Once an approximation has been chosen for calculat-
ing the one-particle Green’s functions—or the self-
energies—the way of evaluating the two-particle func-
tions appearing in the Eq. (2.9) of the susceptibility
is unambiguously defined. This follows from the fact
that the conservation laws (i.e., the Ward identities)
must be satisfied. In the present case the conserved
quantity of interest is the total spin of the system. This
in particular implies the well-known fact that, if

dat td
d Z dy

5J. R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412
(1965) ; L. Dworin, Phys. Rev. Letters 16, 1042 (1966).

Fi16. 2. Diagrammatic represen-
tation of S(dddd|Q,).
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ue=pg=p and q=q'=0 (uniform susceptibility), then
the s-d interaction cannot induce any g shift (the
electronic resonance must take place at w=2uH). This
condition can be used on the final expression of the
susceptibility as a check of the consistency of the
approximations.

In this section we will concentrate only on the
calculation of the d-d two-particle function S(dddd|%,).
This is sufficient to formally define the approximations;
furthermore, we are only interested in the finite concen-
tration problem for comparison with the electronic
resonance experiments.

It can be checked easily from the diagrammatic
expansion—and it is well known—that if G has been
calculated in the Hartree-Fock approximation, in order
to satisfy the conservation laws one must calculate the
two-particle Green’s functions in the RPA scheme. In
the present case, representing S(dddd|Q,) by the
symbol of Fig. 2, this means that this quantity is the
sum of the diagrams of Fig. 3.

In Fig. 3, each full line is the Hartree-Fock Green'’s
function (2.11), wn, ws/, «+ + are internal frequencies on
which sums have to be taken, ) that the equation of
Fig. 3 can be rewritten as

S(dddd|Q)=T 3 Gat(wn)Gas (@ntD)

X[1—U S(dddd|9,)] (2.14)
or

S(dddd|Q)=T Y Gat (wn)Gas (wat,)/

X[1+ ur Z Gdf (wn)Gdlr (wn+ﬂy)]. (2.15)

Equation (2.14) can also be checked by making the
RPA approximation directly on the equations of motion
of the response functions. However, in order to make
the physical content of our approximations clearer,
it is of interest to rederive (2.15) in a slightly different
way, which makes the treatment of the Hartree-Fock
field appear more direct.

Making the Hartree-Fock approximation on the
Hamiltonian (2.1) amounts to replacing the exact
term Ungtnay by an effective one-particle Hamiltonian

3ear="U (nat(na1)+nas(nat)—sai{sa_y—saLsas)) ,
(2.16)
with sap=cattcas, Sa-=caitcat.

This is the most general form of the effective one-
particle term, which makes no assumption on the
direction of the magnetic moment carried by the
impurity. Let us now assume, as above, that at equili-
brium this moment is along Oz; then (sq.)={(s¢-)=0,
and the average fields (n4,) are defined by the seli-
consistency conditions (2.13).

Let us now apply a small transverse magnetic field
Oh(r,b) to the system. If the Hartree-Fock Hamiltonian
were the exact Hamiltonian, the induced magnetization
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qt qt
dat  dt dt o
n+
d) dl wn+l, [d ol 7,
dt
dt dt
! Qm "
d)
d} 7

Fi6. 3. Diagrammatic expansion of S(dddd|2,) in RPA.

would be given by the Kubo expression [Egs. (2.4) and
(2.5)], the correlation function {{m,,m_]) being cal-
culated as an average on the Hartree-Fock states of
the system.

However, the presence of the excitation field 8/,
modifies the internal state of the system, including the
values of the average fields (#g1)- - -{(say); that is, ok,
induces a motion of the impurity moment. The corre-
sponding variation of ¥uy is

03Cur=U (na1d(nas)s+nas8(nat)e—sa-8(sar)), (2.17)

where 8(s4—); is obviously zero. Since we assume 8%, to
be very small compared to the static field H, it can tilt
the impurity moment only by a small angle, so that we
can assume &nat) and &(nq1) (i.e., 8(sa.)) to be of order
(8k,.)?, while 8(s4..) is of order 8%, and can be calculated
as a linear response.®
Finally, the total coupling between 6/, and the sys-
tem is
5Cint+65{:ﬂllg3€int— USJ_ (t)5<3d+)¢ . (2.18)

8(sa3) can itself be considered as the linear response of
say to the excitation (2.18), so that it is given by the
Kubo formula

8sap)o=3{sar,m-Dur, ol
FU([sa1,5a-Dmr,o®(sat)a, (2.19)

which plays the role of a self-consistency equation.
Here ([4,B])m¥,.® is the Fourier transform of the
retarded product 0(¢){[4 (r,t),B(r’,0) ¥, where the
ensemble average is taken on the Hartree-Fock equili-
brium state of the system.

It is clear that for 64, =0 the solution of Eq. (2.19)
describes the precession of the impurity spin around the
static field.

Finally, the total magnetization induced by the
perturbation (2.18) is given, with the help of (2.19), by

1
som)a= {<[m+,m_J>HF.wR

([my,5a-Drar, X [sar,m-Dur, oF

1— U([S@,Sd—])HF wR

6 This would no longer be true in zero static field, where the
moment would align itself along 84,, and the present approxima-
tion would describe only the beginning of the motion,

. (2.20)
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The first term in (2.20) is the contribution to the
susceptibility due to the noninteracting Hartree-Fock
electron-hole excitations, while the second term is the
contribution due to the possible flips of the impurity
spin (in other words, to its precessional motion).

The retarded products ({4,B]rr,.® can be cal-
culated from the corresponding  thermal products.
Since the Hartree-Fock Hamiltonian is of a noninteract-
ing-particles type, the two-particle Green’s functions
involved are simply products of one-particle Green’s
functions. It is then extremely easy to see that Eq.
(2.20) is identical to the RPA approximation of (2.9).

For instance, we can extract from (2.20) the d-d
contribution to the susceptibility, which is

Pdd(q7qliﬂi)
=—2pF (QF*(q)[T X Gat (wn)Gai(wnt+D)/

X [1+ ur Z Gt“' (wn)Gdl (wn+9v)] s (2.21)

i.e., identical to the d-d susceptibility obtained from
(2.15) by means of the diagram summation.

Let us finally explicitly calculate X44(g,q",w), which
value will be of use in the following. For the low
temperatures of interest, we find

T3 Gat(wn)Gas (@n )
" NO)| V|
T Er—Ey (i@ E1—E1) (0,4 2T+ Er—Ey)
(T—iE+) (T+iEy)
n((ﬂ,+I‘—iE1)(Qy+I‘—l—iEs)

) , (2.22)

where

An={n1)—(m), Et+—Ey=—2usH—Uln.

From (2.22), one immediately obtains Xas(q,q’,w).
Since we will be dealing with frequencies w<T, we
expand Xgq to first order in w/I'. However, we do not
expand expressions of the type w-E+—E;. (This is
connected with the fact that the Hartree-Fock approx-
imation does not give a reasonable value of the low-field
static susceptibility, which will oblige us later to
reinterpret E+ —E;.) We then get

Xda (q;q,)w)

N(0)| V%
=—2pa?F (Q)F (q)(A"“(ET.Hp)(E,—ir))/
UN(0)| V| %
g . (2.23
X( 2uqH (E1+iP)(E‘_ZT)) (229

Let us note finally that, for H=0, Xas(w) goes to infinity
when w — 0, as it should, since this simply means that
in zero field the system is rotationally invariant.

CAROLI,
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B. Degenerate Case

The treatment of the single degenerate impurity case
follows very simply from the one of the nondegenerate
case. The only interesting question arises from the choice
of the generalization of the Hamiltonian (2.1) suited
to this situation.

The following Hamiltonian has been proposed by
Anderson and used by several authors to describe the
Coulomb and exchange terms on an impurity atom when
one takes into account the orbital degeneracy of the
d-wave functions’:

H=3U Y #udtm et (U—=T) X #mettms, (2.24)

mm’,o m#Em’ o
where m and m’ are indices defining the d orbitals. 3¢,
can be rewritten as

3a=3U 3, Bmt+nms) Bumt+nm1)

m#Em’

FLU Y (Bt 2mi)2— (Bt 1ms)

—3J 2 Bnttnms) @m t+nm)
m#Em’
+23mzsm’s] .

The Hamiltonian describing the impurity must
obviously be rotationally invariant. 3C4 is invariant
under a space rotation. However, it is clear from (2.25)
that the term —J Y uum/SmeSmrz 1S not invariant
under a rotation of the spin coordinates.®

JC4 thus has to be replaced by an invariant Hamil-
tonian which we will take to be

(2.25)

3'=3C4—J 3, (SmzSmratSmySmry).  (2.26)

m#Em’

This keeps the meaning of J and U unchanged with
respect to (2.24), and is simply the original Dirac
formulation of Hund’s rule. 3¢’ can be rewritten as

%':%UZ nmqnm'—a"l‘%(U“‘J) Z Bmellm’ o
mm'e m#=m' o
—-3J 2 Cma Cm—oCmi—o Cmr s (2.27)
m#=m’

The one-particle Hartree-Fock Green’s functions are
still given by Anderson’s expressions. For instance, when
one neglects crystalline-field effects and orbital magnet-
ism (which we will do in all that follows), the ones

7 Following Anderson, we have made the approximation that
Umm: and Jpmm: are independent of 7 and /. In fact the U’s and
J’s are related to Slater’s Integrals [see J. C. Slater, Quantum
Theory of Atomic Structure (McGraw-Hill Book Co., New York,
1960).], and the above simplification violates the sum rules that
Uumm and Jmm: have to satisfy. In the present case where one is
only interested in spin magnetism this approximation is not
crucial. It has very important consequences in the case of orbital
magnetism (see Ref. 11).

8 This lack of invariance also appears in the fact that, if one
uses JC4 to perform an RPA calculation of the transverse suscep-
tibility, one finds the unphysical result xaa 2 (H =w=0)#0.
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describing the d electrons are?

Gum o (0n) =8mm/ (lwn— Es+iT sgnwy,)
= 8mm'Gd¢r' (wn) )

Ea= edd+SU<nm>_ (U+4])<’ﬂm¢> ’

(2.28)
with
(2.29)

and I'=7N(0)| V|2 [Precisely speaking, this choice of
T corresponds to the expression for Vi,

Vim= VY2m(Qk) ’

where the spherical harmonics ¥, ({) are normalized,
so that /" (dQ/47) | V1, (Q)|2=1.] (#m.) is the Hartree-
Fock occupation number of one single orbital with spin
o, and ()= Bmt)F{#ms).

The transverse susceptibility is now [with the same
notation as in (2.9)] the continuation of

P(q,q',2)=—2(u2 Y Skk—qk' k'+q'|2)
kk’
tia 2 Fu(@)Sonm k' K'+q'|2)
+I‘aﬂd kz Fm* (q,)S(k k— q mm ‘ Qv)

Ftd? P ur*(@)S ('’ |2,)).
(2.30)

The evaluation of the various S functions goes exactly
along the same lines as in the nondegenerate case. One
simply has to include the RPA diagrams corresponding
to the J terms in 3¢/, so that S(mmm'm’|Q,) is now
given by

S(mmm'm’|0)=T 3 Gar' (wn)Gai' (0nt+D)

X (Bmmr— US (mmm'm’ | Q)

—J X Sim'"m'"m'm'|Q)), (2.31)
m!’Em
which gives
JA(Q)
S (mmm'm’|Q,) = (8mm/—————~—————~————)
14+ (U+41)A (@)
A(Q,
@) (2.32)

X— )
1+ {U—-T)A )
A(Qy) =T Z GdTI(wn)Gdu(wn'i“Qv) .

where

We can then obtain, for instance, X44(0,0,0) within the
same approximation as in Sec. II A (low temperature,

9 See, e.g., B. Caroli, thesis, University of Paris, 1966 (un-
pubhshed) ,and] Phys. Chem. Solids 28, 1427 (1967).
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expansion in w/T):

) N(O)| V%
Xga (0,0,w) =—10uq (Anm—— (Et"‘"l:r) (E;—’LI‘))/
(U+4)|V

| %0
w—2 — . (2.33
X( wl = i) (E;—iI‘)) )

Thus X4 has exactly the same structure as in the
nondegenerate case; i.e., it is obtained from (2.23) in
the case q=¢q'=0 by making the formal replacement
U— U44J, and multiplying by an extra factor of
(2141)=35, which comes from the orbital fivefold
degeneracy.

We also note that X457 (q, ¢/, H=w=0)—0, which
confirms that 3¢ is invariant under spin rotations.

III. FINITE CONCENTRATION PROBLEM

We consider here the more realistic problem of a
dilute alloy with a random distribution of impurities.
As in Sec. II, and for reasons of simplicity, we will first
study in detail the case of orbitally nondegenerate
impurities, of which the degenerate case will be a very
simple generalization.

A. Nondegenerate Case

The Hamiltonian (2.1) is now rewritten

= z ekackntcka_'—z €doCic 610+Z(Vkick0 Gw+H C. )

kio

+UZ caleircalens.  (3.1)

The index ¢=1, -- -, n labels the impurities, Vi;=V,q
e Ri where R; is the position of the ith impurity atom
and Viq is the same as in-Sec. II. The interatomic
interaction terms between different impurity atoms are
neglected.

The multiple scattering problem corresponding to
the Hamiltonian (3.1) has already been studied by
Zuckermann' in the dilute limit. In order to clarify
the calculation of the susceptibility, let us first recall
very briefly how one obtains the average one-particle
Green’s functions

Gyo= «Tr[Ckv ("')CkaJr (O) ]» imp
Gija = «T'rl:civ (T) Cja.r (O)]»imp )

where the bar on Gy and the { )imp on the ensemble
averages mean averaging over the positions of all
impurities. In G; it means that the average is taken on
the positions of all the impurities other than ¢ and j.
The calculation of the G’s follows the same lines as in
the well-known case of the one-band scattering.? The
only difference is that, since V,; cannot be treated here
in the Born approximation, one has to retain diagrams

10 M. J. Zuckermann, Phys. Rev. 140, A889 (1965).



604 CAROLTI,
like the one of Fig. 4(a), including any number of
scattering processes on the same impurity atom.

We also neglect diagrams of the type of Fig. 4(b) in
which dashed lines corresponding to scattering on
different impurities intersect; their contribution would
as usual be of order 1/prl compared to diagrams
without intesecting lines (pr being the Fermi momen-
tum and ! the conduction-electron mean free path).
Here, because of the fact that we are dealing with
resonant scattering, ! can be rather strongly energy-
dependent, and I(Er) could be very small in the case
of a very narrow d level centered very close to the Fermi
energy. Thus one would have to be careful about the
above approximation (especially when dealing with f
instead of d impurity levels and not very dilute alloys),
but this sort of problem does not arise for the very
dilute d type of impurities that we consider here.

Finally, we will take

Gij=édaij; (3.2)
that is, we neglect the interactions between impurities
(we assume T to be well above the ordering temperature
of the impurity spins). With these approximations we
find that G and G, obey the coupled system of equations
Gku(wn) = Gkvo(wn)+6 l Vl szao (wﬂ)@dn(wn)G-ka(wn) )
édv(wn) = deo (wn)+ l Vl ZGdWO(w")

2 G-kv(wn)édv(“’n) ’
k

(3.3)

where ¢ is the impurity concentration,

Gkvo (0),.) = (u"ﬂ_ Ek,)""‘ )
and
Gio= (twn— €3,— Ul{n_s))™".

As in Sec. II, the Coulomb term is treated in the
Hartree-Fock approximation.
From (3.3), we obtain

Gdo'= ((deo)—l_ l V[ 2 § éka 1L, (3.4)

In Anderson’s approximation (i.e., neglecting the
energy shift due to the scattering), >_x Gio=—17N (0)

Xsgnwa, where N(0) is the density of states in the
conduction band of the alloy at the Fermi level. If we

7,
//// “\\
i \
i [N
7’ 7 1
s’ N
’ / \ \
7 / \ A
ke ic ke ic ko Fic. 4. Typical diagrams for

(a) the conduction-electron Green’s
function. The dashed line corre-
sponds to a Vi (or Viz) scattering.
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neglect the change in this density of states due to alloy-
ing, we get
Gao(wn) =G, (wn) = (iwn— E,~+il sgnw,)™?, (3.5)

(this is equivalent to neglecting the change in T, which
is anyway a rather poorly known quantity'),

Gro= (lwon— exo—c| V |2Gas) ™.

Let us now proceed to calculate the dynamic suscep-
tibility. Because of the translational invariance of a
disordered alloy, it is obviously of the form

X (q:q’:“’) =X (qy‘*’)ﬁq‘I’ )
where X(q,w) is the continuation of

P(q)=~— 2[/-‘3233 S(kk'— qk’k’+q ] )

(3.6)

(3.7)

+uspaF (II)%(S (k'K q| Q) e Riyimg
+ papaF* (‘1);(5 (kk— qdz | Q)¢ Riyimy,
+uaF ()| 22(S (i 77| Q)e't ®RiTR))imp ] (3.8)
ij

The S’s are defined as in (2.9) and the bar and { Yimp
again mean averaging over the positions of the impuri-
ties. As usual, even in the absence of interactions, the
average of the two-particle propagators is not equal to
the product of the averages of the corresponding one-
particle propagators.

Finally, we will calculate only the uniform suscep-
tibility X(0,w) which is sufficient to interpret measure-
ments of T2 and of the g shift. (The generalization to
finite q would be algebraically heavy but straight-
forward.) Let us define

Te=p, 3 S(kkk’k’|Q,)+Q4 3 S (kkii|Q,),
k’/ %

Ta=p, 2 S@k'K |Q)+ua X SGj512).  (3.9)
k/ H

Then, keeping in the calculation of the I's only dia-

Twn) d Ty (wp) d
wp wp

Dy =@ ST D=
d d

Ty (wp) T (wn) :Jn Ty (wp)

F16. 5. Integral equations for the vertex functions. Solid
lines represent renormalized average Green’s functions.

1 See, e.g., B. Cogblin, thesis, University of Paris, 1967 (un-
published); and B. Coqgblin and A. Blandin, Advan. Phys.
17, 281 (1968).
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Fic. 6. Rearrangement of the equations for the vertex functions.

grams consistent with the approximations used in the
evaluation of the G’s, in particular treating again U in
the RPA, we find that the I'’s satisfy the coupled system
of equations of Fig. 5. Here I's°(w,) and I'’(w,) are
defined so that

T2 (wn) =udGat (@n)Gas (@ntD)Fpe| V|2Gat (wn)
XGat (@at D) Git (wn)Grs (@at92,), (3.10)
x

T (wn) =Gt (0n)Gxd (0n+ D) [pet-cpa| V|2
XGat(wn)Gas (@at+D)], (3.11)
andTy=TY nTx(wa), Ta=T X s T'a(ws). The equations

P(0,2)=—2(us T Ttcuala),
k
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F16. 7. In passing from Fig.
5 to Fig. 6, the double count-
ing of this diagram must be
avoided.

of Fig. 5 can be rewritten as shown in Fig. 6. Note that
there is only one driving term in each equation [i.e., a
diagram like the one of Fig. 7 must not appear in
T'4(w,) because it is already included in T'¢®(w,) ].

We also neglect in 'y (w.) diagrams where dashed and
U lines (referring to the same impurity) intersect.
This approximation is good because the modification
of the self-consistent field of the impurity (which is
localized mainly in its atomic cell) due to the multiple
scattering is negligible.

Using the notation

Sd (wn) = Gd t (wn)Gd ) (wn+9v) )
Sk (w,,) = gk 1 (wn)GYk { (wn"l‘ﬂv) ]

Bwn)=c| Vl“Sd(wn)% Sk(wn), 3.12)
A(wn)= Zkl Se(wn)/[1—B(ws)],
we get
I‘d(w")=I‘d°(w,.)+c| V‘ 4Sd(w,,)
XTq4 (wn)ZE,Sk (wn)—UT4Sa(ws),
Ti(wn) =T (@n)+c| V]4Sk(@n)Sa (wn)gl‘k' (@n)
—¢| V|2USk(wn)Sa(wn)Ta.  (3.13)

After solving Egs. (3.13), we obtain for the uniform
susceptibility

__ w{r; A(wn)—[cl vie/ (1+ Zd> E%)](Tz A(wn>sd<wn>>2}
—2uapa2e| V|2T § A (wn)Sa(wn) / (1+ ur % if_d—:;’%)
~20i TS l—s_i’% / (1+ TS %‘;—)) . (3.14)

The explicit calculation of the various sums involved in Eq. (3.14) is completely straightforward in the low-
temperature region [where T3 f(wa) =/ (dw/27) f(w)].2

12 As usual, one has to be careful in the calculation of T'3°»4 (w.) because of the slow convergence of the expression T' 35, x Gt (wn)

X Gy (wn+). This is most easily dealt with by writing

T A(wn)=T X4 (wn)—z:_‘, Grt®(wn)Gri®(wn+2))+T § Grt%(wn)Gri(watQ,).

The first term in the right-hand side is rapidly convergent; the exact calculation of the (slowly convergent) second term is trivial.
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Fi6. 8. Integral equations for the vertex functions in
the degenerate case (see Fig. 5).

We finally obtain

X(0,w)
) NO)ws+cTI(AE;~—w) ' 12U (AE;—w) )
He ( ' wg—w— Ul (w,—w)

W W

. TI(AE;—w)
— 2CU s,
# awd-——w—- UTI (ws—w)

An+TT (w,—w)
+2cpq® , (3.15)
wg—w— Ul (0,—w)
where wg,q=2u,,dH, AEq=E;—Ejy,
1 . (Et‘*-El,—w—‘\/:D
I= n
7(ws—w)/D \Er+Eit+w—a/D
Ert+Eitota/D
Er+Ey—o+/D

4| V|2 (AEs—w)

) , (3.16)

D= (AE;—w—2T)’—

Ws—w

Some checks can be made on Eq. (3.15):

(a) Let us assume first that u,=ups=u. We obtain
after some manipulations

2uHN (0)+cAn
X(0w)=2p*—,
2uH—w

i.e., for =0 the electronic resonance shows no g shift
and T5'=0, which is in agreement with the condition
of conservation of the total spin.
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(b) XY (q=H=w=0)=0, in agreement with the
condition of rotational invariance.

(c) When p,7u4, one can check that w=uw, is not a
pole of the susceptibility. [Although it appears as a
pole on expression (3.15), it is easy to show that it has
a zero residue. ]

Therefore, the resonance frequency is obtained from
the condition

Re[fws—w—UTI (ws—w)]=0. (3.17)

B. Degenerate Case

It is now extremely easy to generalize the preceding
results to the case of fully degenerate impurities without
orbital magnetism. The exchange and Coulomb effects
on each impurity site correspond to an interaction term
3¢ [Eq. (2.27)]. Taking again Gum,ij=Gnmwds;, and
making the same assumptions as in Sec. III A, we find
that G'mm and G satisfy the system of equations

émm',ar:Gdalo(amm"l‘ Z mGékkamxémxm’w) )

kmy
Cuo=G'(14+¢ Z VinGrm oV miGia) (3.18)
with -
(G4 '=twn— €ao— SU{nn)+ (U+4T) M me) = i0n— E,.
Equations (3.18) are solved by

G-!mm'w (wn) = Gdo’ (wn)amm’
=0 mm/ (fwn— E,+iT sgnwy) ,

éka (“’n) = [iwn"' €ko C(2l+ 1) I 14 l Ga,’ (wn):l_l )

(3.19)

with I=2 (for a d level).
The uniform susceptibility is now obtained from

.P(O,Qv)= _Zﬂx Z Iy'— 2cﬂd Z Pmm,,
k m

where

T'=p, ¥ S(kK'K | Q)+ g 3 S (Khmam|2,),
w in (3.20)

Pmm'=ﬂ, Z S(mmz,-k’k’!ﬂ,)—l—yd Z S(m;m.m,-’m,-’]ﬂ,) .
kl J‘ml

The index m; refers to the mth orbital on the ith
impurity atom. The equations satisfied by the Is in
the RPA are represented graphically in Fig. 8.
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From these equations we obtain (with notation
analogous to that used in Sec. IIT A)

Pmm, (wn) = rmmlo (wn)'l"Sd, (wn) (Ck E l Vkm‘ 2Sk' (wn)

mim2

XVkm;szkr,mlmz(wn)_J Z P,m1m1

mi#Em

F'mm) ’

(3.21)
| ¥% (wn) =Ty (wn)+CSk' (wn)Sd’ (wn) Z' VemVmx

X Ve Vierme T ()
k’

- Urmm"+]6mm' Z Pmlmll)'

miFEm
Defining T'd' (wn) =2 m Tmn’ (@), Eqgs. (3.21) reduce to
T/ (0n) =T4"(wa)+Sa’ (@a) (c(2+1)| V]*
X2 S’ (@a)Td (0a)— (U+4N)Td"),  (3.22)
k

T T/ ()= T (0n)+eSi (@n)Z Sk’ ()
X(@ADIVI*E T’ (@)

= |V [2(U+4))rd).
The driving terms I'"? are given by
T'q"(wn)= (241)(uaSd’ (wn)
+ua| V| 254’(%)2:, Si'(@a)), (3.23)

Z;I T (@n)=[pstcua(2+1)| V| ’Sd’(wn)]Zk: Sk’ (en) -

Finally, and after some very simple algebra, we find
that X(0,w) is given by an expression completely
analogous to (3.15). That is, X for the degenerate case is
obtained from (3.15) by making everywhere the
transformation

c— c(214+1),

U—U+4J. (3.24)

Moreover, An is now to be understood as referring to
one single orbital. It is then obvious that X(0,w) has the
same properties as in the nondegenerate case, namely,

(a) For pu,=pa=p, the uniform susceptibility has its
only pole at w=2uH. (b) X"} (q=w=H=0)=0. (c) For
e ud, w=w, is not a pole of X and the resonance
frequency is given by

Re[wa—w— (U+4NTI (ws—w)]=0. (3.25)
I’ is obtained from (3.16) by the transformation (3.24).

SPIN RESONANCE OF LOCALIZED MOMENTS

607

IV. DISCUSSION

Equation (3.25) has many roots in general. We shall
calculate the real, or almost real, root w which we
expect to be near w, and wg. The imaginary part of
is 72", the linewidth caused by the dephasing of the
electron spin precession as it hops getween the conduc-
tion band, where it precesses with circular frequency
ws, and the impurity levels, where it precesses with the
slightly different circular frequency wq. This is expected
to be a minute fraction of the total line width T,"!
+T17; note that spin-lattice relaxation T'y~* has been
omitted from our theory. Now the total line width is
small: Imw/Rew=Aw/w=AH/H=~0.01. We are there-
fore justified in looking for a real root w of (3.24).

The precise result for w will depend only on rough
orders of magnitude of the parameters of the model.
We take U4-4J=4¢eV,I'=0.5 eV, E++Ey=—1.8 ¢V,
and all other parameters directly from experiment.
We find that, for the desired root v near w, and wq,
the second term in D is overwhelmingly larger than the
first, and further that (E1+ Eid=w)/DY2< 1 for temper-
atures under 100°K. Once these facts are accepted, we
can forget the values of the parameters.

We have

4w

I'=4——-—ro 4.1
T(ws—w)D 1)

w
" Sor|V|¥AEi—w)
N(O)w
 Se(U+4T)TAn’
p M
gt (U+4)TM,’
M,

I (4.3)
(U+47)TM 4

(4.2)

where M, M are the conduction-electron and impurity
magnetizations per lattice site. We have put gga/g2~1
in going from (4.2) to (4.3), which involves an error of
order |g.—ga4|/8s=1% in I’, and an error of order
| ge—ga|?/g*=10"* in the g value. Finally,

wd"'w+ (Ml/Md) (ws’—w) =0
_Mawa+M.w.

W=

Md+Mc

This is exactly the result of the semiphenomeno-
logical theory of Schultz ef al.,2 based on the model of
Hasegawa.?

or

)



