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E and T1, an indication of diferent mechanisms for E
and T1. This is compatible with the analysis of Silber-
nagel et al.' showing that T1 is governed by electron-
spin correlation sects, while E is caused by conduction
electrons (6rst-order effects) as well as the localized
moments via the conduction electrons (second-order
effects). Also, the fact that the Tr values in the LnAls
compounds (as well as in P-UHs) are in the msec range
while in UP they are one order of magnitude shorter
is suggestive that pair-correlation sects are not as
effective in UP. In addition it should be pointed o«
that the validity range for the model proposed in Ref.
27 is for temperature higher than four or 6ve times Te
or TN, whereas the measurements reported here for UP
are at T 2T~.

Measurements on UP are now being extended to the
UP-US solid solutions, Upr Q . For UPo. ssSo.os and
UP p.gpSp. ip indications are that the generalized Korringa
formula PEq. (8)j describes the relation between E and

T&, with slightly increased values of the constant p.
The complete results of the study on "P in the para-
magnetic state of the UP& S, system will be published
elsewhere.
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Sonm Properties of a Zeen1an Laser with Anisotropic Mirrors
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A laser subject to an axial magnetic 6eld and having one end mirror which exhibits x-y-type loss a»sot-
ropy of an arbitrary degree is described from two points of view: (1) the resonance condition for a complete
round-trip pass, and (2) the self-consistent-Geld equations with distributed loss. The behavior of thecentrally
tuned frequency-locked modes of linear polarization is described in detail as an illustration of the fact that
these two theoretical methods are in general not equivalent. Except in the limiting case of weak anisotropies,
where the differences become negligible, a correct description must be based on the resonance condition.

'HE properties of lasers which are subject to
external magnetic fields and whose end mirrors

exhibit intrinsic anisotropies have been dealt with in
varying degrees of thoroughness by a number of authors.
There are two approaches which have been followed.
The first is based on the condition of resonance for a
complete round-trip pass; i.e., a wave which is reQected
from one mirror, propagates, is reflected from the second
mirror, and finally propagates back to its original posi-
tion, is required to reproduce itself exactly. This treat-
ment takes account directly of the properties of the
mirrors and was discussed by de Lang. ' Other authors' "

' H. de Lang, Philips Res. Rept. 19, 429 (1964)~

2 M. I. D'Yakonov, Zh. Eksperim. i Teor. Fiz. 49, 1169 (1965)
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3 H. Pelikan, Phys. Letters 21, 652 (1966).
4 C. H. F. Velzel, Phys. Letters 23, 72 (1966).
~ W. Culshaw and J. Kannelaud, Phys. Rev. 141, 228 (1966).
6 H. Pelikan, Z. Physik 201, 523 (1967).
~ W. Van Haeringen, Phys. Rev. 158, 256 (1967).
8 M. Sargent, W. E.Lamb, and R. L. Fork, Phys. Rev. 164, 436

(1967).' M. Sargent, W. E.Lamb, and R. L. Fork, Phys. Rev. 164, 450
(1967).

W. I.Tomlinson and R. L. Fork, Phys. Rev. 164, 466 (1967).j' B. L. Zhelnov and V. S. Smirnov, Opt. i Spektroskopiya 24,
355 (1968) LEnglish transl. : Opt. Spectry. (USSR) 24, 185
(1968)j.

have treated asymmetries by generalizing the Lamb
self-consistent field equations. "In the scalar theory of
Lamb the losses due to the mirrors are treated as if they
were distributed in a continuous fashion, becoming in
effect a property of the medium. (The motivation for
using such a procedure is that one thereby avoids the
boundary value problem. ) The scalar theory may be
generalized by writing analogous equations for each of
the electromagnetic vector field components. A generali-
zation which is often made is to assign different Q values
to x and y polarizations. Phase properties, including
anisotropies, may be introduced by allowing Q to be
complex.

Our purpose here is to point out that in general these
two formalisms are not equivalent, although they may
be nearly so if the anisotropies are weak. However, for
strong anisotropies the descriptions are quite diferent.
With the first method, in which a wave must satisfy the
condition of self-reproducibility on a complete round-
trip basis, there will nevertheless be a significant change
in its state of polarization upon reflection from a
strongly anisotropic mirror. The original state of
polarization is then restored through a compensating

"W. E. Lamb, Phys. Rev. 134, A1429 (1964).
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change, also large, which must be CGected either at the
other mirror or through propagation. On the other hand,
if the properties of the mirrors (losses, phase shifts, and
anisotropies in either or both) have been described as
properties of the medium, then the eigenstates of the
self-consistent Geld equations satisfy the condition of
self-reproducibility on a differential basis, that is, the
eigenstate is preserved as it propagates from s to
s+M, for any s, and an arbitrarily small d». So this
description is a good approximation only when no
major changes are experienced in r

exsection

(and
propagation), i.e., when the anisotropies are weak.

Hy way of illustration of the above discussion, and
also because the results are of some intrinsic interest
themselves, we shall discuss the case of a laser subject
to a constant axial magnetic field and having one end
mirror which displays x-y-type loss anisotropy, the other
mirror being assumed isotropic. This problem has been

lscusscd ln thc llteraturc2, 3,6,9,&o,u, w foI thc c8sc o
small, residual-type anisotropy, because assumption
of this conGguration predicts the kind of behavior which
has been observed" "in small magnetic Gelds, namely,
that for central tuning a single frequency-lacked mode
of linear polarization is observed, the direction of
polarization rotating through an angle of about 45' as
the Geld is increased from zero to some critical value B„
beyond which the single-mode regime ceases to exist.
We shall be concerned only with the single-mode
operation. It will be shown that if the anisotropies are
not small, the two formalisms outlined above lead to
vcly diGcrcnt predictions. However, clthcl onc ls
adequate for the limiting case of weak anisotropy.

Let us Grst consider the problem from the point of
view of the resonance condition for a complete round-
trip pass. Since one mirror is being assumed isotropic
we shall lump its reAection coeKcients in with those for
the anisotropic mirror. We assume that in the presence
of an axial magnetic Geld the propagation is described
by exp( —jP~s) for right and left circular components.
The condition for resonance is (with )I =1)

s2zm=xm,

where I"describes propagation back and forth through
a cavity of length I, and E is the rcQcction matrix for
the anisotropic mirror. In the circular basis

')
where

=g&P+"Ig-&iP+'&

P+'=PsL1+ sX+'3

P~"=sPoX+" ~s

"M. I. O'Vakonov and S. A, Fridrikhov, Usp. Fiz. Nauk. 90,
565 (1966) LEnglish transl. : Soviet Phys. —Usp. 9, 837 (1967)g.

'4 H. de Lang, Physica BB, 163 (1967'}.
"H. de Lang and G. Bouwhuis, Phys. Letters 19, 481 (1965)."%'. Culsham and J.Kannelaud, Phys. Rev. 136,A1209 (1964).

Here Po =esjc for a wave of frequency rs; X~' and X~"
are the real and imaginary parts of the susceptibilities
for right and left circular polarizations; and O.o is a
phenomenological loss term (representing diGraction
losses, etc.). The reliection matrix is diagonal in the
Gartesian basis:

(here r, and r„are assumed to be real). When trans-
formed to the circular basis it becomes

s b)—
where

o=—s(r*+rv), &=—s(r*—rv)

The transformation is R= TR'T ', where

t'
T=2 '~sj

1 —jf
Note that the eigenvectors of Eq. (1} represent the
dectric Geld vector just before it is rejected.

We solve the eigenvalue problem of Eq. (1) working
in the circular basis. Setting the eigenvalues X equal to

Fn. 1. The right and left circular components of the sus-
ceptibility x=p'+ jp" for the case of equal g factors and an axial
magnetic Geld, The abscissa is the frequency of oscillation, and
there is one set of these curves for each value of the mode intensity
(Ref. 17). ln the absence of magnetic Geld the function y" (co) is
symmetric about the natural atomic resonant frequency duo.
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unity, we obtain the oscillation condition for each of the
two possible modes:

1 o+1/o (o —1/a)s
+1

ear 2e 4e'

sin'(-,'P) & e'.

The phase condition then becomes

2PoL= 2mq,

(15)

(16)
where

and e is the asymmetry parameter

e= fi/a=—(r, r„)/—(r,+r„).
The eigenvectors are

(9)

(10)

where g is an integer (the mode number). Since the
cavity resonant frequency ro, must satisfy 2ro,L/c= 2s g,
we see that if the cavity has been tuned to the center of
the unshifted Doppler line (ro, =&os), the solution ro=aos
does then satisfy the phase equation. This solution is
valid for a range of magnetic Gelds 0~&H &~H„corre-
sponding to 0&~P&&$„wherets

—(o —1/o) (o —1/~)'
+1

2e 4c'

The oscillation condition (8) is really two conditions,
one for the phases (which determines the frequency of
oscillation) and another for the magnitudes (which
determines the intensity). If the levels involved have
equal g factors, the right and left circular components of
the susceptibility are as shown in Fig. 1, where the
amount of splitting is proportional to the magnetic
Geld."We consider the phase part of Eq. (8), and we
shall show that if to=roe (central tuning) is the solution
when there is no magnetic field, then this solution per-
sists for a range of Gelds 0~& B&~H„where H, is some
critical field. We need only to assume that X~'(res) and
X~"(&os) obey the following symmetry relations:

(12)

It is not necessary to make any further assertions about
the dependence of X on either the intensity E' or the
frequency ~.

To verify that ~=coo does indeed allow the phase
condition to be satisGed, we Grst observe that with the
relations (12) o may be written

where

g —pic/2

s4= X '—(too)—poL

(13)

"If the g factors are not equal, the right and left circular
components of susceptibility each contain more than one frequency,
so y~' and y~" become a superposition of the forms shown in Pig.
1.However, even in this case we shall assume that the symmetry
relations (12) still hold. In Fig. 1 the susceptibility is to be con-
sidered as the net response of all atoms, i.e., an integral over the
complete Doppler distribution. The susceptibility is a function
both of intensity (through which it shows the eGects of saturation)
and frequency. Thus there are really many sets of curves of the
type shown there, one for each value of the mode intensity. The
particular value of intensity which actually results is such as will
allow the magnitude part of the oscillation condition [Eq. (22l]
t:o be sq, tj.defied,

Now we note that the phase of the left side of Eq. (8)
(i.e., the phase of r ') is simply 2PpL, independent of
magnetic Geld, whereas the right side is real provided

g /g —~ei(4+~)ls

where [cf. Eq. (15)j
sin (-,'«) —= sin (-',y)/e.

(18)

(19)

Equation (18) says that the modes are linearly polar-
ized. In zero magnetic field (&=0)E+/E=—+1, so the
upper (lower) sign refers to the mode which in the
absence of magnetic GeM is polarized in the x direction
(y direction). We shall refer to this as the X mode
(V mode). Generally, only one mode oscillates, the
other mode being either below threshold or quenched by
mode competition effects (see below). From Eq. (18)
we see that in the presence of magnetic Geld the direc-
tion of linear polarization has been rotated from its
zero-Geld value through an angle 0, where

0=-', (y+x). (2o)

The maximum rotation angle 8=8, occurs for p=p„
whence (assuming for the sake of definiteness that
$)0 and e)0, i.e., r,)r„)

(21)

'8 The exact dependence of @upon H may be quite complicated,
although it is suggested qualitatively in Fig. 1(b). It can be seen
that in general there will be a second critical 6eld H,'&B, such
that @(H,') =@(H,), so that for II)B,' the condition (15) will
again be satis6ed, i.e., there will be a second region for which
central tuning is accompanied by frequency locking and linear
polarization. If the maximum value of g '(co) is such that sin'($@)(e' for all magnetic 6elds, then the two frequency operation
pyogld nqvgr Qe qbserved g,t cq=cop.

sin'(-,'y, )=es,

since the phase condition remains unaffected for values
of p in this range. The solution to =&os is, of course, valid
for both of the modes indicated (&) in Eq. (8). Al-

though, in general, it would be expected that a magnetic
Geld would split the mode into two frequency compo-
nents, in this case the modes are degenerate in fre-
quency. If H&H, two frequency operation becomes
possible, ' but we restrict our considerations here to the
single frequency regime.

Although the two modes are degenerate in frequency,
they are not degenerate in polarization. From Eqs. (11)
and (13) we find that
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lim(-', y,)s=e'
4&&1

(23)

and (2) the rotation angle for the direction of polariza-
tion is given by

Thus, as H is varied from zero to H„ the X mode is
rotated by sis+-„'p„while the (nonoscillating) I' mode
is rotated through the complementary angle in the
opposite direction, so at H=H, the two are collinear. "
The maximum rotation angle for the X mode is slightly
more than 45' for weak anisotropy (s«1), whereas it
approaches 90' in the limit of strong anisotropy (e -+ 1).

The magnitude part of the oscillation condition (8)
may be written

expDloL&y (too) —2a.oL]
=(a cos(-,'$)+b cos(-,'rr)) ', (22)

where the left side represents the net gain experienced
through propagation and the right side represents the
loss at the mirrors. It is easily verified that in zero
magnetic field the mirror loss is r ' for the X mode and
r„' for the P mode. When H =H, the mirror loss is the
same for both modes and is equal to the geometric
mean of the zero-6eld losses, namely (r,r„) "'. The
variation of the mirror loss with magnetic Geld is clearly
a geometric effect which is associated with the rotation
of the direction of linear polarization (as may be
verified directly through calculation of the reflection
coeflicient for a wave incident at an angle 8). We note
that at the critical field H, there is complete degeneracy
between the two modes, in frequency, polarization,
gain, and loss.

If the above results are taken in the limit of t.((1 we
find that (1) the critical field H, corresponds to a value
p„where

wave experiences a rotation 8„(the authors assumes«1):

lim 8„=e sin28.
e«1

(26)

tan8, = tan8
1+tan'8+ e (1—tan'8)

(27)

The requirement that the angle 8„be equal to the
Faraday rotation —,'p leads to the same expression for 8

that was given above in Eq. (20).
If this problem is approached from the point of view

of the self-consistent field equations with distributed
loss, then different Q values are assigned for the x and

y directions (Q,NQ„). These equations have been
handled in simplest fashion by O'Yakonov2 for an
arbitrary degree of anisotropy. The asymmetry param-
eter e is expressed in terms of Q, and Q„ through

e= sPoL(1!Qo 1/Q.)— (2g)

It is found'" that for central tuning there exist fre-
quency locked modes which are linearly polarized if the
magnetic field lies in the range 0~& ~H

~
~& ~H, (, corre-

sponding to 0& )P~ &~[q4~, where (in the present
notation)

(l4.)'=" (29)

The direction of polarization is rotated from its zero-
field value through an angle 8 given by

If we equate the Faraday rotation to the refIection
rotation we then obtain Eq. (24b), and also the corollary
results (23) and (25), as shown in Ref. 13 [see especially
Eq. (5.7)]. This same argument is, of course, valid for
asymmetries which are not small. In the general case,
8„ is given by

26

which can also be written

(24a) sin28= &P/2e,

the maximum value 8, occurring when H =H, :
8,= +~@.

(30)

(31)
lim sin28= +P/2e.
@&&1

(24b)

At H=H, we have 8=8„where

lim 8,=+~+. (25)

' In the second region of linear polarization {see Ref. 18) the
rotation angle 8 would start at 8=8, for EI= EI,' and then decrease
toward zero as EI was further increased. If sin'{-,'@)&e' for all
magnetic fields the maximum amount of rotation wogld bg deter-
mined by the maximum value of g '(cy)s

These results for weak anisotropy are in agreement with
observation'4 "and with previous calculations

A physical interpretation has been given by
D'Yakonov and Fridrikhov. "They observe that in the
presence of a magnetic Geld a linearly polarized wave
experiences Faraday rotation of an amount —',@. At the
same time if this wave is incident at an angle 8 upon
mirrors with unequal refIection coefFicients, the reflected

These results are to be compared to those fEqs. (17),
(20), and (21)]which were obtained from the resonance
condition (1).It is seen that, in general, the two sets of
results do not agree except in the limit of small anisot-
ropy Le«1; cf. Eqs. (23)—(25)]. An especially signifi-
cant difterence concerns the amount of rotation which
has been achieved when H=H, . In the self-consistent
fieM calculation this is always —„x,but in the calculation
based on the resonance condition this maximum rota-
tion could be anywhere between 4x and -,'x, depending
on the value of o Lsee Eq. (21)$.

Thus, we have illustrated through a specific example
the remarks made earlier concerning the nonequivalence

~ It may be veri6ed through direct calculation that the results
using the self-consistent field equations are also obtainable by
equating the differential Faraday rotation to the differential
rotation induced when a wave propagates with unequal decay
constants $o, &o„,o Ps/2Q, deca=y~exp( os)], consid—ering only
t;he propagation from g to @+de.



of the two methods. The solution to the self-consistent
Geld equations was an eigenstate characterized by a
particular direction 0 t'Eq. (30)j.However, if the mirror
18 highly RnlsotI'oplc thc wRve suGcrs R signi6cant
amount of rotation upon reflection t cf. Eq. (27)J, so a
8lnglc dlI'cctlon of PolRllzRtlon ls) ln this casey not Rn
adequate kind of description. If the anisotropy is weak,
thc rcQection x'otation is small, Rnd it, then becomes a
good Rpproxlmatlon to say thRt thc wave 18 RlwRys 1Q

one particular direction.
Lasers having mirrors which show a weak loss anisot-

ropy have been studied experimentally, "" but no
studies have been reported for the case of a substantial
loss anisotropy. H observations were to be xnade for this
lattcI' CRsc Rnd CGDlpRlcd to thc results pl'cscQtcd hcx'c,

it shouM be remembered that the wave which is
described ln Eq. (1) is 'the wave incident upon the
RnlsotI'oplc Inlx'lox'. To 6nd thc tlansmlttcd wRvc onc
Inust tRkc Recount of thc trRQSID1881GQ IQRtllx fol thc
anisotropic mirror (assuming, as is most likely, that the
output is taken there)

IQ suD11nary, then, wc have consldclcd ln dctall R

centrally tuned laser subject to an axial magnetic 6eld
Rnd having onc end mirror which shows an x-p-type
of loss anisotropy. It was found that the behavior of the

frequency-locked modes of linear polarization is to a
large extent independent of the complex details of the
nonlinear interactions, with the result that the mathe-
matics required to describe these modes is relatively
siInple. " Thus, a consideration of these modes is
especially RppI'opx'1Rtc to the puI'pose of lllustrRt1ng
through a concrete example the differences between two
theoretical bases, namely, (a) application of the reso-
nance condition for a round-trip pass, and (b) the use
of the self-consistent 6eM, equations with distributed
loss. In general, the former method (a) should be used,
although the diGerences between the two become
negligible in the limit of small asymmetries. In the
cxaIQplc considered herc thc theory predicts ln thc CRsc

of mirrors with R strong loss anisotropy, some new
features which have yet to be observed.

~1 This Inathcxnatlcal slnlpllclty 1t should be noted, derives froID
the fact that the symmetry relations I'12) allow for a rather fuH
treatment of the eigenvalue problem; in particular, the solutions
for the frequency of oscillation and the eigenstate of polarization
do not depend on the details of the nonlinearities, which are con-
tained in the susceptibility X. Thus for the frequency-locked
modes of linear polarization the simplicity of their physical be-
havior is rejected in the mathematics. The situation would, of
course, not be so simple for other con6gxrations (e.g., two fre-
quency operation, detuning of the cavity from linc center, the
lncluslon of phase anlsotroplcs).
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Syi~-Lattice Reigxa, tiog, Of y Centers in Alkali Halides: Theory and
Optlcstl Measurements to 50 k6*
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%'e have measured the ground-state spin-lattice relaxation «F centers in KSr and KI over the range of
magnetic Geld from 0 to 50 ko, and at the temperature of f.6'K. Essentially continuous measurement over
this large Geld range was made possible by a detection technique in which the magnetic circular dichroism
of the optical absorption band was monitored. In the range 10 to 50 kG, the relaxation rate is predominantly
that of single F centers. Here, the 6eld dependence of the relaxation rate followed very closely a curve of thc
form (AHg+BH'}coth(gpH/2KT) The 6rst term re.presents a mechanism involving phonon modnlation ol
thc hypcrGIlc contact mtcYactlon with nclghbor1ng nuclei, and ls the lalgcx term fox Ho+ 25 ko, Thc second
terxn is due to relaxation via the Kronig-Van Vlcck process. A theoretical evaluation of that part of the rate
due to the hyper6ne mechanism has produced close agreement with experimental results. In the evaluation,
the interaction with the second shell of nuclei (halogcns) was found to be of greatest importance for KBr and
KI.

I. DTTRODUCTION

A T vcI'y low temperatures, where the RRIQan
pI'occss 18 fl'ozcn outy spin-lattice I'elRxRtlon of F

centers in alkali habdcs takes place by the direct
ploccss. l IQ its gI'ound stRtc, thc F-center clcctI'on mRy

~ Supported in part by the U. S, Atomic Energy Commission.
Report No. UCB-34P20-I36.

)Visiting Research Fellow of the Consejo Nacional de In-
vestigaciones Cienti6cas y Tecnicas, Argentina.

1 For a good collection of papers~ scc Sps@-IQNk'8 g84gpARt SN

be RpproxiInately described by RQ s-type wave function
which spreads out over many lattice sites. At all but
thc highest 6elds, a relaxation process by way of
modulation of the hyper6nc interaction may pre-
domlnatc over thc common mechanism of modulation
of thc cI'ystal Geld) which fol an s-type clcct1'on Should
be very small. From measurements of 6,eld dependence

longo SoHdg, edited by A. A. Manenirov and R, Orbach (Harper
snd Row, New Pork, 1966).


