Paramagnetic Anisotropy and Crystal-Field Splittings in EuAlO₃

L. HOLMES, R. SHERWOOD, AND L. G. VAN UITERT Bell Telephone Laboratories, Murray Hill, New Jersey 07974

AND

S. Hüfner* Institute für Technische Physik, Darmstadt, Germany (Received 13 August 1968)

The magnetic susceptibilities for orthorhombic EuAlO₃ have been measured between 1.5 and 300°K. The compound is paramagnetic and shows approximately 20% anisotropy in the susceptibilities below 100°K. The susceptibility along the b axis has a very broad maximum at $T \sim 60^{\circ}$ K. Optical fluorescence and absorption measurements show the ${}^{7}F_{1}$ levels for Eu³⁺ at 281, 359, and 479 cm⁻¹. The susceptibilities, extrapolated to $T=0^{\circ}$ K, are fitted with theoretical formulas based on the observed splittings of the ⁷F₁ levels.

INTRODUCTION

HE magnetic behavior of the ion Eu³⁺ has been of classic interest in the field of magnetism. The paramagnetic susceptibility was first explained satisfactorily when Van Vleck's formula¹ for χ was applied² to this ion. More recently, there has been extensive interest in the behavior of Eu³⁺ as a magnetic sublattice in europium iron garnet (Eu₃Fe₅O₁₂).³ The present experiments on EuAlO₃ are, to our knowledge, the first in which anisotropy has been observed in the magnetic susceptibility of Eu³⁺.

The magnetic properties of rare-earth ions in "distorted perovskite" structures are profoundly influenced by crystal fields.⁴ In these compounds, 15 parameters are needed to describe the splittings of the rare-earth levels. For the ion Eu³⁺, only two of these parameters affect the magnetic susceptibilities at low temperatures, to first order in the crystal field. The parameters involved are the coefficients of the second-degree rhombic field, which splits the ${}^{7}F_{1}$ manifold for Eu³⁺. To study these effects, single crystals of EuAlO₃ have been prepared and the positions of the low-lying energy levels determined from optical absorption and fluorescence. The (anisotropic) magnetic susceptibilities have been measured between 1.5 and 300°K and the results compared with theoretical formulas based on the crystalfield splittings.

RESULTS

Single crystals of EuAlO₃ were prepared from highpurity oxides using a PbO-PbF₂-B₂O₃ flux. Flux-free and colorless crystals were selected from two batches for the measurements.

178 576

The spectroscopic measurements were performed with a 2m-grating spectrograph. The samples were immersed directly in liquid nitrogen $(T=77^{\circ}K)$. The positions of the 7F_1 excited states (Fig. 1) were determined from absorption measurements of the ${}^7F_1 \rightarrow {}^5D_0$ transitions, and checked against those obtained from the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ fluorescence transitions. The results of these two measurements agreed within the experimental accuracy of ± 0.4 cm⁻¹. The measurements showed the ${}^{7}F_{1}$ level for the free-ion split into three singlets at 281, 359, and 479 cm⁻¹, respectively. The positions of four of the 7F_2 levels (Fig. 1) was determined from fluorescence measurements of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions. The transition to the fifth level was either too weak to be seen or degenerate with one of the other four. The center of gravity of the 7F_2 levels is at approximately 1000 cm⁻¹.⁵

Magnetization data in the principal crystallographic directions were obtained with a pendulum magnetometer. The curves (Fig. 2) show roughly 20% anisotropy below 100°K. The small C/T "tail" at low temperatures could be caused by trace amounts of almost any magnetic impurity. The magnitude of the tail corresponds to less than 0.005 at.% of divalent europium. By extrapolating from above 10°K, values are obtained

⁵This value may be compared with 1050 cm⁻¹ in europium ethylsulfate [E. V. Sayre and S. Freed, J. Chem. Phys. 24, 1213 (1956)] and 975 cm⁻¹ in yttrium gallium garnet [J. A. Koningstein, J. Chem. Phys. 42, 3195 (1965)].

^{*} Work partially done at Bell Telephone Laboratories, Murray

Hill, N. J. ¹ J. H. Van Vleck, *Theory of Electric and Magnetic Susceptibilities* ¹ J. H. Van Vleck, *Theory of Electric and Magnetic Susceptibilities* (Oxford University Press, London, 1932), p. 248.
² J. H. Van Vleck and A. Frank, Phys. Rev. 34, 1494 (1929);
³ 4, 1625 (1929).
⁴ For a review of this work, see J. H. Van Vleck, J. Appl. Phys.

³⁹, 1 (1968). ⁴ The magnetic properties of a number of these compounds are

described in a series of papers by various authors, J. Appl. Phys. 39, 1360-1374 (1968).

for the magnetic susceptibilities $\chi = \sigma/H$ at $T = 0^{\circ}$ K. The values are 5.68, 6.97, and 6.11×10^{-3} cgs emu/mole, respectively, in the a, b, and c directions.

INTERPRETATION

The crystal structure for EuAlO₃ is orthorhombic $D_{2h}^{16}(Pbnm)$.⁶ The rare-earth ions are on two magnetically inequivalent sites of monoclinic point symmetry C_{1h} . The principal magnetic axes for these sites are related by a mirror reflection in the a-c plane. We define the local magnetic axes as shown in Fig. 3, with the local z axis along the crystallographic c axis. The susceptibility along the c axis of the crystal measures the susceptibility X_z along the local z axis, whereas the susceptibilities along a and b give linear combinations of χ_x and χ_y for the two sites.

FIG. 3. Principal magnetic axes for the two inequivalent sites for Eu^{3+} in $EuAlO_3$. The z axis is coincident with the crystal-lographic c axis, while the x and y axes for the two sites are related by a mirror reflection in the *a-c* plane.

577

The ground state for Eu^{3+} is the singlet 7F_0 , and the first excited state is the triply degenerate ${}^{7}F_{1}$. At low temperatures, all of the susceptibility arises from second-order mixing of the ${}^{7}F_{1}$ levels into the ground state. For free ions

$$X(T=0^{\circ}K)=8N\beta^{2}/\Delta_{10},$$
 (1)

where Δ_{10} is the interval in energy between the J=0and J=1 levels.¹

In EuAlO₃, $\chi(T=0^{\circ}K)$ is influenced by crystal fields and by exchange interactions. The fractional increment in X produced by isotropic exchange at low temperatures may be written^{7,8}

$$\Delta \chi_{\rm ex}/\chi(T=0^{\circ}{\rm K})=16\sum_{j}J_{ij}/\Delta_{10},$$

where J_{ij} is the exchange parameter for neighboring Eu³⁺ ions. Using $J_{ij}/k \sim -0.07$ °K, as determined⁹ in GdAlO₃, we find

$$\Delta \chi_{\rm ex}/\chi(T=0^{\circ}{\rm K})\sim -1\%$$

which is within the experimental uncertainty. Anisotropic exchange, which can give a net isotropic coupling in a cubic crystal, has been examined by Van Vleck and Huang⁷ for Eu_2O_3 . There, the anisotropic contributions may be significant, but the isotropic exchange is also several times larger than in EuAlO₃. We shall neglect any exchange contributions to $\chi(T=0^{\circ}K)$.

In a crystal field, the degeneracy of the 7F_1 levels is lifted (Fig. 1). For a powder sample or for a cubic crystal, Eq. (1) is still valid to first order in the crystal field, providing only that Δ_{10} is replaced by $\overline{\Delta}_{10}$, the center of gravity of the ${}^{7}F_{1}$ levels.¹⁰ In EuAlO₃, which is orthorhombic, the susceptibility is anisotropic. A magnetic field along one of the local principal axes (Fig. 3) couples only one of the 7F_1 singlets into the ground state. The anisotropy is of the order of magnitude of the splitting of the 7F_1 levels (~100 cm⁻¹), divided by $\bar{\Delta}_{10}$ (~400 cm⁻¹), or 25%.

An approximation to $\chi_{\epsilon}(T=0^{\circ}K)$, where $\epsilon=x, y, \text{ or } z$, is obtained by including all contributions which are of first order in the crystal field. In principle, fifteen¹¹ crystal-field parameters V_n^m are required to describe the splitting of the Eu³⁺ levels in the monoclinic crystal field. Only the second-degree rhombic parameters V_2^0 and V_{2}^{2} contribute in first order to $\chi_{\epsilon}(T=0^{\circ}K)$. The second-degree rhombic portion $V^{(2)}$ of the crystal

⁶S. Geller and V. B. Bala, Acta Cryst. 9, 1019 (1956).

⁷ J. H. Van Vleck and N. L. Huang, to be published by the French Physical Society in the Jubilee book in honor of Professor A. Kastler.

⁸ W. P. Wolf and J. H. Van Vleck, Phys. Rev. 118, 1490 (1960).
⁹ J. D. Cashion, A. H. Cooke, J. F. B. Hawkes, M. J. M. Leask, T. L. Thorp, and M. R. Wells, J. Appl. Phys. 39, 1360 (1968).
¹⁰ M. Schieber and L. Holmes, J. Appl. Phys. 36, 1159 (1965);
A. Frank, Phys. Rev. 48, 765 (1935).

¹¹ It is always possible to choose the coordinate system in such a way that one of the parameters is eliminated. We have, for convenience, eliminated V_2^{-2} in that way. For a discussion of this point, see J. B. Gruber, W. F. Krupke, and J. M. Poindexter, J. Chem. Phys. 41, 3363 (1964).

potential may be written

$$V^{(2)} = \alpha_J V_2^{0} O_2^{0} + \alpha_J V_2^{2} O_2^{2}, \qquad (2)$$

where O_n^m are operator equivalents, $V_n^m \equiv A_n^m \langle r^n \rangle$ are the crystal-field parameters, and α_J is the Stevens constant.¹² The 7F_1 levels are split by $V^{(2)}$ into three singlets. The energy levels for these three singlets may be written Δ_{ϵ} , where $\epsilon = x, y$, and z:

$$\Delta_{x} - \overline{\Delta}_{10} = -\frac{1}{5} (V_{2}^{0} - V_{2}^{2}),$$

$$\Delta_{y} - \overline{\Delta}_{10} = -\frac{1}{5} (V_{2}^{0} + V_{2}^{2}),$$

$$\Delta_{z} - \overline{\Delta}_{10} = \frac{2}{5} V_{2}^{0},$$

(3)

to first order in $V^{(2)}$. In this approximation, a magnetic field along the local ϵ axis (Fig. 3) connects the ground state only with the ${}^{7}F_{1}$ singlet at energy Δ_{ϵ} . An expression for $\chi_{\epsilon}(T=0^{\circ}\mathrm{K})$ is derived in the Appendix. In terms of the first-order splittings (3) of the ${}^{7}F_{1}$ levels,

$$\chi_{\epsilon}(T=0^{\circ}\mathrm{K}) = \frac{8N\beta^2}{\Delta_{\epsilon}} \left(1 - \frac{\Delta_{\epsilon} - \overline{\Delta}_{10}}{\overline{\Delta}_{20}}\right)^2, \qquad (4)$$

where $\bar{\Delta}_{20}$ is the center of gravity of the ${}^7\!F_2$ levels. The factor in parentheses arises from mixing of the ${}^7\!F_2$ levels into the ground state by the crystal field.

The expression for χ_{ϵ} in (4) is accurate to first order in $V^{(2)}$. Additional second-order contributions arising from the mixing of levels with $J \ge 2$ into the J=0 and J=1 levels have been neglected. An estimate of the change $\Delta \chi$ produced by these terms is given by

$$\Delta \chi/\chi \sim \frac{1}{3} \sum_{\epsilon=x,y,z} \left(\frac{\Delta_{\epsilon} - \Delta_{10}}{\overline{\Delta}_{10}} \right)^2 \sim 5\%.$$

Taking $\overline{\Delta}_{20} = 1000 \text{ cm}^{-1}$, we calculate from (4) a spatialaverage or "powder" susceptibility of 6.10×10^{-3} cgs emu/mole, which is 2.5% smaller than the measured value of 6.25×10^{-3} in EuAlO₃.

The susceptibilities along a, b, and c are related to the susceptibilities along the local axes in EuAlO₃ as follows:

$$\chi_{a} = \chi_{x} \cos^{2}\phi + \chi_{y} \sin^{2}\phi,$$

$$\chi_{b} = \chi_{x} \sin^{2}\phi + \chi_{y} \cos^{2}\phi,$$

$$\chi_{c} = \chi_{z}.$$
(5)

The angle ϕ is the angle between the *a* axis of the crystal and the local *x* axis (see Fig. 3). To fit the observed anisotropies, we must choose $\Delta_x = 359$ cm⁻¹ (Fig. 1). Choosing $\Delta_x = 479$ cm⁻¹ and $\Delta_y = 281$ cm⁻¹ gives $\phi < 45^{\circ}$. Figure 4 shows a plot of Eqs. (5) for this choice of Δ_x and Δ_y , and with $\overline{\Delta}_{20} = 1000$ cm⁻¹. Subtracting $\chi_p = \frac{1}{3}(\chi_x + \chi_y + \chi_z)$ from the experimental and theoretical points (as done in Fig. 4) tends to minimize the second-order contributions which have been neglected. The best fit is obtained for $\phi = 38^{\circ}$. The calculated sus-

FIG. 4. Magnetic susceptibilities at 0°K along the *a* and *b* axes in EuAlO₃. Solid curves (theory): 1: $(\chi_b - \chi_p)$; 2: $(\chi_a - \chi_p)$. Dashed lines (experiment): 1: $(\chi_b - \chi_p)$; 2: $(\chi_a - \chi_p)$. Powder susceptibility, $\chi_p = \frac{1}{3}(\chi_x + \chi_y + \chi_z)$.

ceptibilities, summarized in Table I, show good agreement with the data.

MAXIMUM IN x

The magnetization for H||b| (Fig. 2) rises to a very broad maximum at $T \sim 60^{\circ}$ K. The susceptibility at the maximum is 7.21×10^{-3} cgs emu/mole, which is 3% higher than the extrapolated value at $T = 0^{\circ}$ K, and 1% higher than the value measured at 20°K. Since the effect is small, it is perhaps unwise to attach a great deal of significance to it. It is interesting to note, however, that a maximum in χ for Eu³⁺ was predicted from a theoretical study¹³ of dynamic spin-phonon coupling in the garnet structure. The effect was not observed in garnet. In EuAlO₃, the (anisotropic) susceptibility is more sensitive to the static crystal field than is the (isotropic) susceptibility in Eu garnet. It could be that dynamic spin-phonon coupling would also show up more clearly in EuAlO₃.

There may be other explanations for the maximum. The Van Vleck theory predicts a maximum (much smaller than we observe) at about 80°K for free ions,

TABLE I. Magnetic susceptibilities per mole extrapolated to 0°K in EuAlO₃.

	a axis		b axis		c axis	
	Expt	Theory	Expt	Theory	Expt	Theory
$\frac{10^3(\chi-\chi_p)^a}{10^3\chi}$	-0.57 5.68	-0.61 5.49	0.72 6.97	0.73 6.83	-0.14 6.11	-0.12 5.98

^a $\chi_p = \frac{1}{3}(\chi_x + \chi_y + \chi_z).$

¹⁸ R. Orbach and P. Pincus, Phys. Rev. 143, 168 (1966).

¹² M. T. Hutchings, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1964), Vol. 16, p. 227.

due to the influence of the 7F_1 levels.¹⁴ The predicted increase in χ over $\chi(T=0^{\circ}K)$ is about 0.09%. This effect would be enhanced by antiferromagnetic exchange interactions. An exchange field is more effective, relative to an applied field, for Eu^{3+} ions in the ground state than for Eu^{3+} ions in the 7F_1 states.⁸ To see how this goes, we have assumed an exchange field H_{ex} proportional to the average spin,14 and calculated the magnetization in external plus exchange fields, using the formula of Wolf and Van Vleck.8 The magnitude of $H_{\rm ex}$ was chosen to give a one percent decrease in $\chi(T=0^{\circ}K)$, which is the order of magnitude expected in EuAlO₃. In this case, the magnetization increases by about 0.095% between T=0 and $T=80^{\circ}$ K.

It should be mentioned that anisotropy in the exchange, as discussed by Van Vleck and Huang,⁷ would influence the 7F_1 and 7F_0 levels differently. This would also affect the dependence of χ on temperature. To fully explore these questions in EuAlO₃ would require a knowledge of all contributions to X at low temperatures from the static crystal field.

DISCUSSION

The magnetic susceptibility of EuAlO₃ is anisotropic because of the low (orthorhombic) crystal symmetry. The anisotropy is big enough to measure because of the anomalously large splitting of the 7F_1 levels in the monoclinic crystal field. The size of the parameters V_2^0 and V_2^2 , which split the 7F_1 levels, may be estimated from Eqs. (3). We find $V_2^0 \sim -35 \text{ cm}^{-1}$ and $V_2^2 \sim \pm 500$ cm^{-1} , with the axis of quantization along the c axis of the crystal (i.e., $\Delta_z = 359$ cm⁻¹). Transforming the axis of quantization into the *a-b* plane (to give $\Delta_{z'} = 479$ cm⁻¹) we find $V_2^{0'} \sim 265$ cm⁻¹ and $V_2^{2'} \sim \pm 200$ cm⁻¹. These values may be compared with $V_2^0 = (195 \pm 40)$ and (159 ± 40) cm⁻¹, respectively, deduced from Mössbauer absorption spectra in the isomorphous compounds DyFeO₃¹⁵ and DyCrO₃.¹⁶

In EuAlO₃, the local axes make an angle of approximately 38° with the *a* and *b* axes of the crystal. This may be compared to the angle 35° determined¹⁷ in TbAlO₃ and the angle 33° determined18 in DyAlO3. Other sources of comparison are the orthoferrites DyFeO₃ and TbFeO₃. In these compounds, the rare-earth moments order antiferromagnetically in the a-b plane at low temperatures. The Dy³⁺ moments lie 30° from the baxis,¹⁹ whereas the Tb³⁺ moments lie 40° from the aaxis.²⁰ Because of the highly anisotropic nature of the Dy³⁺ and Tb³⁺ ground states, these angles may be taken

- ¹⁴ E. D. Jones, J. Appl. Phys. **39**, 1090 (1968).
 ¹⁵ I. Nowik and H. J. Williams, Phys. Letters **20**, 154 (1966).
 ¹⁶ M. Eibschütz and L. G. Van Uitert, Phys. Rev. **177**, 502 (1966).
- (1969).
 ¹⁷ S. Hüfner, L. Holmes, F. Varsanyi, and L. G. Van Uitert, Phys. Rev. 171, 507 (1968); and references therein.
 ¹⁸ H. Schuchert, S. Hüfner, and R. Faulhaber, J. Appl. Phys.
- **39**, 1137 (1968). ¹⁹ G. Gorodetsky, B. Sharon, and S. Shtrikman, J. Appl. Phys.
- 39, 1371 (1968).
 ²⁰ J. Mareschal, J. Sivadière, G. F. DeVries, and E. F. Bertaut, J. Appl. Phys. 39, 1364 (1968).

as indicative of the angles between the local axes and the *a* and *b* axes of the crystal. Considerable variation in angle is observed from compound to compound, as might be expected if the orientation of the local axes is determined largely by the second-degree parameters V_2^0 and V_2^2 . These parameters depend sensitively on the details of the local environment.

The study of EuAlO₃ has provided new information on the crystal fields in the "distorted perovskites" and on the nature of the magnetic response for Eu³⁺.

ACKNOWLEDGMENTS

The authors are grateful to Professor J. H. Van Vleck for a preprint of his paper with N. L. Huang and for helpful discussions. We thank R. L. Barns for performing the x-ray orientation and W. Grodkiewicz for assistance in preparing the crystals.

APPENDIX

In this Appendix, Eq. (4) is derived for a magnetic field along the local z axis. The result, which is valid to first order in the crystal potential, may be obtained by including (1) the first-order splitting of the ${}^{7}F_{1}$ levels in $V^{(2)}$, and (2) the mixing of the 7F_2 and 7F_0 levels by $V^{(2)}$.

The rhombic field described by Eq. (2) splits the ${}^{7}F_{1}$ levels into three singlets which transform under proper rotations as x, y, and z, respectively:

$$\begin{aligned} |x\rangle &= (|1,1\rangle - |1,-1\rangle)/\sqrt{2}, \\ |y\rangle &= (|1,1\rangle + |1,-1\rangle)/\sqrt{2}, \\ |z\rangle &= |1,0\rangle. \end{aligned}$$

The notation $|J,M\rangle$ is used for the wave functions of the free ion. The corresponding energy levels are given in Eqs. (3).

To calculate the mixing of the J=0 and J=2 levels, we have used the technique described by Judd.²¹ It was first necessary to convert $V^{(2)}$ to a more general form,¹² since the operator equivalents in Eq. (2) are only valid within a given J-manifold. For the ground state we find

$$|\psi_0\rangle = |0,0\rangle - b_{20}|2,0\rangle - b_{22}(|2,2\rangle + |2,-2\rangle)/\sqrt{2}$$

to first order in $V^{(2)}$, where

$$b_{20} = 4V_2^0 / 5(3)^{1/2} \overline{\Delta}_{20},$$

$$b_{22} = 4V_2^2 / 15 \overline{\Delta}_{20}.$$

The magnetic susceptibility may be written¹

$$\chi_{z}(T=0^{\circ}\mathrm{K})=2N\beta^{2}|\langle\psi_{0}|(L_{z}+2S_{z})|z\rangle|^{2}/\Delta_{z}$$

where $\langle \psi_0 | (L_z + 2S_z) | z \rangle = 2 - (3)^{1/2} b_{20}$. On substituting from Eqs. (3), this reduces to Eq. (4), for $\epsilon = z$. The expressions for X_x and X_y are also given correctly by Eq. (4), as follows from a permutation of coordinates.

²¹ B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill Book Co., New York, 1963).