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Coherence and Polarization Effects in Mcissbauer Absorption by Single Crystals
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The polarization dependence of the absorption cross section must generally be taken into account in
calculating Mossbauer absorption spectra of single crystals @which exhibit hyper6ne splittings. A method
for doing this in an experimentally interesting ~lass of cases is described. In these cases, the incident radia-
tion beam can be divided into taro components, each having its own complex index of refraction. A number
of conditions under vrhich this division is abvays possible are described in terms of crystal symmetry con-
siderations. Also, a practical method of computing the po1arization of the cross section in terms of the
hyper6ne interactions for arbitrary nuclear transitions is described. A representation of the polarization in
terms of a 2&2 density matrix is introduced &which is convenient in cases vrhere two or more nuclear transi-
tions overlap in energy and in cases vrhere resonant nuclei are located at several different or crystallographi-
cally equivalent but di6erently oriented sites in the crystal. A method for applying these results to an
analysis of data to obtain electric-6eld-gradient parameters, mean square displacements, and magnetic
structures is outlined.

I. DITROBUCTION

"OSSBAUER absorption intensity measurements
on single-crystal samples can be used to obtain

several types of information. Most obviously, they can
be used to obtain the parameters which describe the
mean square displacement (MSD) of the resonant
nuclei as a function of direction. ' They may also be
used to obtain the parameters which describe the elec-
tric-imld-gradient (KFG) tensor at the sites of the
rcsonRIlt nuclei. Also particularly ln conjunctloQ with
polarized sources, they may be used to obtain infor-
mation on. the magnetic structure of magnetically
ordered materials. '

If R MossbRucx' Rbsorptlon lcsODRncc ls split by clcc-
trlc-quadrupole or magnetic-dipole lnteractlons, then
the absorption cross sections in a single-crystal sample
will, except along certain special directions, be polari-
zation-dependent. This dearly will Reject the resonant
absorption intensities if the source radiation is polarized.
It also Rejects the absorption intensities even for un-

polarized source radiation if the absorbing crystal has
6nitc thickness so that saturation effects must be taken
into Recount.

For a polarized absorber, intensities saturate with
thickness ln R manner qultc cMercnt thRQ they do foI' RQ

unpolarized absorber. ' This may be CRSBy seen by con-
sidering the case of an isolated completely polarized
absorption line and an unpolarized source. ' No Inatter
how thick the absorber is made, Qo more than half the
1QcldcDt I'RdlRtlon CRQ bc rcsonRQtly Rbsol bed. In
addition, the dispersion associated with resonant
absorption must also be considered in an absorber of

~ P, Zory, thesis, Carnegie Institute of Technology, Pittsburgh,
Pa. , 1964 (unpublished).

~ U. Gonser, R. %. Grant, H. Kiedersich, and S. Geller, Appl.
Phys. Letters 9, 18 (1966).

'%e have recently discussed a case vrhere this was very signif-
jcant. R. M. Housley, U. Gonser, and R. K. Grant, Phys. Rev.
I.etters 20, 1279 (1968).

4 R. H. Nussbaum and R. M. Housley, Nucl, Phys. 68, 145
g.965).

finite thickness. ' It produces birefringencc which canp

for example, cause the plane of polarization of an inci-
dent plane polarized beam to rotate and thus cause it
to experience a di6'erent absorption coefBcient with
depth in the absorber. ' These CGects alter the relative
as well as the absolute intensities of absorption lines in
a single crystal of finite thickness.

Our principal objective in this paper is to provide a
procedure for analyzing experimental data in order
to obtain hyper6ne interaction parameters and MSD's.
To this end, we erst 6nd the measuremcnt conditions
under which the analysis will be simplest. Wc then
derive explicit forIQulas useM in carrying through this
analyslsq particularly ln thc CRsc where thc absorption
lines are well resolved. Ke also derive R density matrix
describing the polarization of the cross section for
radlatlon lncldcnt 1D RDy dlrcctlon fol RQ Fc Duclcus
in an EFG with arbitrary asymmetry parameter. The
use of most of these results is illustrated in the follow-

ing paper~ in which the MSD is found and the EFG
parameters re6ncd for the Fe positions in sodium
nitroprusside.

In Sec. II of this paper, wc describe a method for
representing the polarization of both the dispersion and
the absorption cross section in terms of 2&2 density
Inatl 1CCS.

In Sec. III, several cases are exp1icitly described in
which these are both diagonal in the same basis system.
In these RQd only these cases~ thc 1QcoInlng p-ray bcaIQ

may be decomposed into two components having orthog-
0QRl polarlzatlonsq which independently pI'opRgRtc

through the crystals with their appropriate complex
indices of refraction. ' The real parts of these indices of

P. Imbert, Phys. Letters 8, 95 (1964).
6 An analysis of the general case is given by M. Blume and 0.C.

Kistner, Phys. Rev. 171, 417 (1968).
7 R. W. Grant, R. M. Housley, and U. Gonser, foOowing paper,

Phys. Rev. 178, 523 (1969).
8 The necessity of this condition vras 6rst pointed out to us by

Dr. M. Blume,
9 R. M. Housley and U. Gonser, Phys. Rev. 171, 480 (1968).
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refraction will, in general, be different and will lead to
birefringence effects (Faraday effect, double refraction,
etc.)."The imaginary parts of the indices of refraction
determine the absorption line intensities, which is our
main interest in this paper. Also, in Sec. III, we discuss
possible effects of coherent scattering out of the forward
direction and define conditions in which they can be
ignored.

In Sec. IV, we present some convenient formulas for
the absorption area in well-resolved lines as a function
of the fractional polarization of the lines and the thick-
ness of the sample.

In Sec. V, we express the polarization of y radiation
emitted during transitions among general nuclear states
in a convenient form. We specialize the general results
to the case of a magnetic-dipole transition between I=

~

and I=—', nuclear levels as is appropriate for Fe". For
a pure quadrupole interaction, we give explicit formulas
for the polarizations of the absorption cross section in

any direction with respect to the principal axes of the
EFG tensor.

Pll ao a8 P12 a8 a8, P21 aoa~ P22 a8 a8 (1)

where the * indicates complex conjugation, completely
specify the polarization of the wave. From their defi-
nition, one can see that

p11p 22 p12p21 p

and if we, without loss of generality, take a& real

(2)

ao=gpll and a„=p12/gpll (3)

Therefore, the description of the polarization by Eq.
(25) and by the density matrix

!

P11 P12)

P21 P22i

are completely equivalent. Falkoff and MacDonald"
have pointed out that a quantum-mechanical treatment
of the radiation leads to an equivalent density matrix

"D. L. Falkoff and J. E. MacDonald, J. Opt. Soc. Am. 51,
861 (1951}.

II. DESCRIPTION OF POLARIZATION IN TERMS
OF DENSITY MATRICES

The polarization of radiation emitted in a definite
multipole transition is a function of direction with re-
spect to the quantization axis, but is completely de-
termined in any specified direction. From a classical
viewpoint, this polarization can be described in terms of
the direction of the electric-field vector. This in turn can
be specified in terms of a pair of orthogonal basis vectors
both of which are orthogonal to the propagation direc-
tion as in Eq. (25). If the generally complex coefficients
of the basis vectors are called att and a~, then it can be
seen that the set of numbers

to describe the polarization and have shown the corre-
spondence between this density matrix and the four
parameters originally introduced by Stokes" to describe
partially polarized light.

In case two or more of the multipole transitions have
the same energy, as will occur, for example, for a pure
quadrupole interaction, then the radiation is an inco-
herent superposition of all the contributions with the
same energy. Fano" has given arguments to show that
the most convenient description of the polarization of
the resulting beam is obtained by adding the density
matrices for the individual transitions. At energies
where two or more resonances overlap, because of their
inherent linewidths, the polarization will also be de-
scribed by a properly weighted sum of the individual
density matrices.

For the sum density matrix, Eq. (2) must be replaced
by

p11p12+p12p21 ~ (5)

The sum density matrix may be broken up into an un-
polarized part, which is a multiple of the identity
matrix, and a completely polarized part

This division is the density matrix equivalent of a
statement originally made by Stokes that the most
general state of polarization of electromagnetic radi-
ation can be described as a superposition of an un-
polarized intensity and an elliptically polarized
intensity

This density matrix notation is also suitable for de-
scribing the polarization dependence of scattering ampli-
tudes and total cross sections. In fact, the density matrix
describing the polarization of radiation emitted with
wave vector k due to a particular nuclear transition is
proportional to the 2&(2 matrix defined in Sec. III to
describe the forward coherent scattering due to the
transition.

III. OPTIMIZATION OF EXPERIMENTAL
CONDITIONS

We first consider coherence of the radiation scattered
in other than the forward direction. As is expected in
analogy with x ray and neutron diffraction for crystals,
this coherence leads to generally destructive interference
except along Bragg directions (of the crystallographic
or magnetic space group) where strong constructive

'~ For a description of Stokes' work on polarized light, see S.
Chandrasekhar, EaChatine Transfer (Dover Publications, Inc. ,
New York, 1960), pp. 24-35.

"U. Fano, Rev. Mod. Phys. 29, 74 (1957).

(Pll P12 poo O t pll poo p12+!,(6)
~p21 p22 0 poo ~ p21 p22 poo

where poo is chosen to restore the condition

(Pll Poo) (P22 Poo) P12P21 ~
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interference occurs. If we imagine a slab of single-crystal
absorber thin enough that saturation eRects are negli-

gible, the total cross section for the slab can differ from
the sum of the individual nuclear cross sections because
of these coherent effects. Where the total cross section
is decreased, there is a corresponding decrease in the
resonance linewidth and conversely an increase where
the total cross section is increased. These effects have
been discussed extensively by Trammell" " whose
results we use.

Again in analogy with neutron diffraction, it is pos-
sible to define a coherent scattering cross section ~, for
Mossbauer scattering. If we, for simplicity, consider a
single resonance line unsplit by hyperfine interactions
and a single resonant nucleus per unit cell, then

1 2I,+1 f'Ror

2~I, Ip(+1 2I—p+1 1+n

where I, and I, are, respectively, the excited- and
ground-state nuclear spins, o. is the internal conversion
coeKcient, f' is the Debye-Wailer factor here assumed
isotropic, E is the isotopic abundance of the resonant
species, and (rr= f Rap is the average total resonant
cross section per site, 0.0 being the fixed nucleus cross
section. The ratio ~,/or is a measure of the importance
of coherence since the actual cross section of a thin slab
is reduced by that fraction for an observation direction
not corresponding to any Bragg direction. If a,/~r is
small, then even for an observation direction corre-
sponding to a Bragg direction, the usual beam spread of
a few degrees is probably sufficient to insure that any
apparent change in cross section due to coherence is
small. Hyperfine splittings and the existence of more
than one resonant nucleus per unit cell will tend to
further reduce the effects of coherence. Therefore, as
can be seen by inserting numerical values in Eq. (8),
coherence effects may be ignored in a wide variety of
experimental situations. However, for highly enriched
Fe' or Sn'" absorbers, for example, they must be
considered.

When coherence effects change the total cross section,
it is clear that these changes will complicate attempts to
measure f' values. Since 0,/or will generally be different
for each component of a hyperfine split spectrum, they
wi}l also complicate attempts to determine magnetic
structures and electric-field-gradient parameters.

By controlling the isotopic abundance of the resonance
species, coherence can always be made to have a negli-

g.ble effect on the total cross section. We will therefore
assume this to be the case in our following analysis.

Let us now again consider a p-ray beam of some
definite polarization and energy incident on a thin slab
of single-crystal absorber. If the energy of the beam

"G. T. Trammell, in Chemicul sects of Egclear TrarIsfor-
matzoes (International Atomic Energy Agency, Vienna, 1961),
Vol. I, p. 75.

~4 G. T. Trammell, Phys. Rev. 126, 1045 (1962).

corresponds to a resonant frequency, then resonant
modes of the nuclei in the crystal will be excited. These
excited nuclei will reradiate with an angular distribution
of intensity and a polarization determined by the hyper-
fine interactions and the multipole character of the
transitions. In the forward direction, a large fraction of
the scattered radiation is coherent with the incident
beam, but, in general, the polarization of the radiation
forward scattered by a particular nucleus will be dif-
ferent from that of the incident beam.

For simplicity let us consider a resonance line which
is separated by &100 natural linewidths I' from any
other resonance lines and a crystal with only one reso-
nant nucleus per unit cell. Then the complex index of
refraction for the material is given by"

where k and k' are the wave vectors of the incident and
scattered radiation, respectively, E is the number of
resonant nuclei per unit volume, and F(k,k') is the
coherent scattering amplitude for a single nucleus. This
expression exactly corresponds to that which can be
derived from the classical electron theory for dipole
radiation. '

The quantities Ii and hence n are, in general, not
sample scalars. In fact, as recently discussed by Blume
and Kistner, ' they may be represented by complex
2X2 matrices. These may be defined in terms of arbi-
trarily chosen orthogonal basis polarizations. If an
incident beam having the first of the basis polarizations
is imagined, then F» is the projection of the coherent
forward scattering amplitude on that polarization, while

F~2 is its projection on the orthogonal basis polarization.
The matrix elements F» and F» are similarly defined
with respect to the other basis polarization. From this
definition, it can be seen that the elements of the co-
herent forward scattering amplitude matrix are pro-
portional to the elements of the density matrix de-
scribing radiation emitted in the same direction if both
are expressed in terms of the same basis system.

It is natural to try to choose a basis system in which
the complex index of refraction is diagonal. For the
simple case under consideration (single isolated reso-
nance line, only one resonant site per unit cell), this is
always possible since both the real and imaginary parts
of Ii have the same polarization.

Generalization of the above to complicated crystals
having several resonant nuclear sites per unit cell, each
with its own hyperfine interactions, is trivial. We
merely replace Kq. (9) by

2' 2'
n = 1+—P E,F,(k,k) =—1+—F,(k,k),

k' ~ k'
(10)

where the sum runs over all the sites. In saying this, we
have assumed that the electromagnetic interaction is so

"M. I.ax, Rev. Mod. Phys. 23, 287 (1951).
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weak that the index of refraction has a negligible
influence on an incident beam in a distance of order of
the unit cell dimensions. In practice, this appears to
always be the case, even for resonant scattering.
Similarly, neglect of polarization effects in a random
powder is strictly correct only if each grain absorbs a
negligible fraction of the beam.

Expressed in terms of the density matrix notation
introduced in Sec. II, Eq. (10) becomes

0'0 pn" pu ' N~ f~

2k ~i p
'&'

p " (x—x,,)'+1

o p pgg'& p~2'& )N; f,'(x 'x,,)—
(11)

2k a~. pm'&' p2g"I (x—x;,)'+1

where sites are labeled by j and hyperfine components of
a resonance by i. The quantity x is related to the energy
E by x= 2E/I' and the x,,'s correspond to the resonant
energies at the different sites. The assumption that all
lines have Lorentz shapes of natural width I' is inessen-
tial and has only been introduced to keep the formulas
simple. The Debye-Wailer factors are no longer assumed
isotropic but are the ones appropriate for the direction k.
The normalization for the density matrices may be
found by imagining the hyperfine splittings of the dif-
ferent sites to collapse to zero. Then the cross section
must be unpolarized and of magnitude f,'o 0. This gives

2 pl2 Z p21 (12)

and
2 pn"= Z p22"=1 (13)

It is easy to see from Eq. (11) that, in general, the real
and imaginary parts of n cannot be diagonalized at the
the same time, even if there is only one resonant site
per unit cell, since the differently polarized contribu-
tions depend on energy in different ways.

Blume and Kistner' have derived a general expression
for the intensity of a beam transmitted through a slab
of material of any thickness having an index of refrac-
tion described by a complex matrix. In addition, they
have shown how this index of refraction matrix can be
calculated if the nuclear wave functions, the multi-
polarity of the transition, and the Debye-Wailer factor
are known. While this procedure is straightforward, it
appears that inverting it in the general case to obtain f'
values and nuclear wave functions (and hence EFG
parameters or magnetic structures) would be dificult.

In the special cases where e is diagonal, an incident
radiation beam may be decomposed into two com-
ponents with polarizations corresponding to the basis
polarizations in which n is diagonal. Each of these beams
may be regarded as separately propagating through the
crystal with its own index of refraction.

An effective thickness matrix a. may be defined from
Eq. (11) and will be diagonal when n is diagonal

0'n &&2 p&i ' ps~ ' n f'
0'n a22 '~ pn" p22" (x—x'j)'+1

where n, are the number of resonant nuclei of type j per
unit area. When n is diagonal, the matrix elements of o-

can be extracted from experimental line intensities in
a straightforward manner if the spectra are we11 re-
solved. Procedures for doing this are discussed in Sec.
IV. These matrix elements can then be related to the f'
values and nuclear wave functions. Assuming enough
independent measurements are available, these equa-
tions can be solved for the parameters of interest.

Fortunately, several restrictions can be placed on the
index of refraction matrix from crystal symmetry con-
siderations alone. These allow an experimentally inter-
esting class of cases to be found in which it can be con-
cluded that n is diagonal in a basis system which is
defined in terms of symmetry elements of the crystal.
Since magnetic hyperfine splittings are important in
magnetically ordered crystals, the symmetry operations
we must consider are those of the magnetic space group
of the crystal. "' These involve combinations of time
reversal, which inverts k, with the more familiar ele-
ments of rotation, reQection, etc.

To derive these restrictions, we imagine an infinite
crystal with a plane wave or Bloch wave of propagation
vector k and polarization P traveling through it. Any
symmetry operation of the crystal which also leaves k
and P unchanged must leave the resultant coherent
forward scattering amplitude F„ofEq. (11)unchanged.
By applying this test for various k and P, we arrive at
the following general conclusions.

1. If the crystal contains an anti-inversion center,
then for any original linear polarization P there can be
no elliptical component in the scattering amplitude.
Although any linear polarization is unchanged by the
operation, an elliptical component would be reversed
in sense. Therefore, a crystal containing an anti-
inversion center cannot be optically active. In a non-
magnetically ordered crystal, an inversion center and an
anti-inversion center are equivalent.

2. If k is in a mirror or glide plane, then polarizations
normal and parallel to this plane are unchanged. This
applies, in particular, to both the real and imaginary
parts of the forward scattering amplitude. Therefore,
the index of refraction is diagonal in a system having
basis polarizations normal and parallel to the plane.

3. If k is along a three-fold or higher simple rotation or
screw axis, then a P corresponding to right or left
circular polarization is unchanged by the rotations.
Then both real and imaginary parts of F,(k,k) must

"M. Atoji, Am. J. Phys. 33, 212 (1965)."G. Donnay, L. M. Corliss, J. D. H. Donnay, N. Elliott, and
J. M. Hastings, Phys. Rev. 112, 1917 (1958).
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have circular polarization and n must be diagonal in
a system with right and left circular basis polarizations.

4. If k is normal to a 2-, 4-, or 6-fold axis of rotary
inversion or normal to a mirror plane which contains a
2-, 4-, or 6-fold rotation or screw axis, we can conclude
that P's parallel or normal to the axis will be unchanged
by the symmetry operation of rotation by f80' followed

by inversion or reflection. Therefore, n will be diagonal
in a system with basis vectors parallel and normal to
the symmetry axis. Also, if k is normal to a 2-, 4-, or
6-fold axis in a nonmagnetically ordered crystal so that
time reversal is a symmetry element, then n will be
diagonal in the same system.

We have thus found three classes of k directions in
which n can always be diagonalized, namely k in a
mirror or glide plane, h along a 3-fold or higher rotation
or screw axis, and k normal to a suitable 2-, 4-, or 6-fold
rotation axis.

Since the above considerations are independent of
wavelength, these conclusions must hold at all wave-
lengths, including the visible. These directions are
experimentally generally convenient and frequently
measurements along them will be sufhcient to determine
the desired parameters to the extent that this is possible
from absorption measurements.

If the multipolarity of the transition and the type of
hyperfine interaction are specified, additional symmetry
restrictions may be found. For example, if there are
only two lines in the spectrum as occurs for an I= 2 ~ -',

or -', -+ -', nuclear transition in a pure quadrupole field
gradient and only one resonant site per unit cell, then
the index of refraction may be diagonalized for any h
direction.

It should be mentioned that there is an intrinsic
dB5culty in any attempt to determine hyperfine-field
parameters, for crystals containing more than one
crystallographically equivalent resonant site per unit
cell, from transmission measurements alone. Although
a set of equations may be found which, when applied
to the experimental data yield a number of sets of inter-
nal field parameters equal to the number of resonant
sites, there is nothing to identify which internal Geld

corresponds to which site.
This identification could, in principle, be made from

resonant scattering measurements. In practice, it can
sometimes be made with some confidence from the local
symmetry and known chemical properties of the reso-
nant atom.

It seems plausible that if the initial p-ray beam is
unpolarized, changes in polarization due to the real part
of the index of refraction will not become important
until a substantial polarization has built up due to the
polarization dependence of the absorption. This can be
verified by expanding Eq. (5) of Blume and Kistner. '
The attenuation in this case is given correctly to second
order in the thickness by keeping only diagonal elements
in the index of refraction matrix. Therefore, if the

incident radiation is unpolarized and the absorber is thin
enough, for example, to be adequately described by the
erst two terms of Eqs. (20) and (21) of Sec. IV, it be-
comes unimportant to restrict measurements to
directions in which n can be diagonalized. In other
cases, it may be very important.

p» ' pu ' &tft
(15)

2a k, l p p2g (x—xgi 0) +1
where I is the total intensity due to the transition of
interest and r~ is the fraction of the emitting nuclei in
site /. The source resonance energies x~~ and site po-
sitions / will not generally correspond to those in the
absorber. The quantity e describes the Doppler shift in
the resonance energies due to relative motion of the
source and absorber. The normalization of the density
matrices is the same as given by Eqs. (12) and (13),
which accounts for the 2 in the denominator on the right.
Generally, sources are used in which all sites are equiva-
lent and the different lines are well resolved.

The general expression for the transmitted intensity
at a particular energy x when radiation from a source
described by Eq. (15) is incident on an absorber de-
scribed by Eq. (14) can easily be found since S» gives
the projection of the unshifted source intensity on one
of the basis polarizations and S22 that on the other.
We get I

j(g,v) =—LS»e-~»+Smpe»$ (16)

which is similar to the corresponding expression for
unpolarized radiation except for containing two terms
instead of one on the right. It may be subtracted from
the incident intensity S»+Sum and the result integrated
over x to obtain the fractional absorption dip at any
Doppler velocity e. This may then be integrated over e

to obtain the total dimensionless area in the absorption
spectrum.

IV. ABSORPTION BY POLARIZED OR PARTIALLY
POLARIZED ABSORBER

In this section, we assume that we have a p-ray beam
that can be described as a plane wave incident on a
slab of homogeneous absorbing material of uniform
thickness.

Ke also assume one of the conditions of the previous
sections holds so that we may describe absorption
without considering dispersion. It is natural to work in
the basis system where 0 of Eq. (14) is diagonal. We can
describe the polarization and intensity of the unshifted
component of the source radiation at any energy by a
density matrix S in the same basis system
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The unknown parameters of the experiment are
contained in the 0's and hopefully can be extracted from
measurements made in different directions and/or with
different thickness absorbers. This extraction is greatly
simplified if the absorption lines are well resolved. In
that case we can define individual areas for each one,
and assuming both source and absorber resonance
lines have natural widths, these are given simply by a
generalization of Eq. (11) of Bykov and Hein. 's For the
overlap of the kth source line from site l with the ith
absorber line from site j, this gives

A;;"'=S»(xst) o it(x;;) expLart(x~;. )/2](Iot o»(xo)/2]
+It[art(x, ;)/2)}+Sos(xs()on(x, ,) expLoss(x, ;)/2]

X {Iotass(x', )/2]+IrLon(x, ,)/2]), (17)

where Io and I~ are the zeroth- and first-order Bessel
functions of imaginary argument. When different ab-
sorber lines have the same energy, their contributions
are added in the arguments of the functions in Eq. (17).
The dimensionless area A;;~' is related to the background
corrected experimental area 8 by

A '= 28/rrF . (18)

A simpler approximate formula which underestimates
A,,"' by less than 1% for o rt, oos(2 is

&11 &ij 022 Xs,
A;,"=Str(xsi)— +Sos(xsi) . (19)

1+o tr(x;;)/4 1+ass(x;;)/4

For relatively thin absorbers, power-series expansions
of Eq. (17) are useful. If we restrict ourselves for sim-

plicity to a single line unpolarized source S»= Sos= f/2
and if we define the average cross section on resonance
p=Larl(xjj)+Dn(xrj)]/2 and fractional polarization
a=(art oss)/(err+0/2) of the absorption, we may
write

A =p —s(1+a')p'+ —'o(1+3a')p'
—(5/384) (1+6a'+ a4)p4+ (20)

or inverting Eq. (20)

p =A+-,'(1+a')A'+ —,', (1+a'+ 2a')A '

+ (5/384) (1+a'+6a')A 4+, (21)

where A =A;,/f. We notice that the lowest power of
the fractional polarization which enters is the square.
Therefore, for a reluti7)ely thin absorber, the effects of
polarization may be quite small unless the fractional
polarization becomes large.

Equations for area ratios which have previously been
used in analyzing experimental data" " can be ob-

"G. A. Bykov and Pham Zuy Hien, Zh. Eksperim. i Teor. Fiz.
43, 909 (1962) /English transl. : Soviet Phys. —JETP 16, 646
(1963)g.' P. Zory, Phys. Rev. 140, A1401 (1965).

~0 J. Danon and L. Iannarella, J. Chem. Phys. 47, 382 (1967)."R. Ingalls, K. Ono, and L. Chandler, Phys. Rev. 172, 295
0968).

tained by dropping all but the 6rst terms in Eqs. (20)
or (21).

V. POLARIZATION OF MOSSBAUER LINES

A. General

The polarization of the hyperfine components of
Mossbauer p rays has previously been discussed by
Frauenfelder et al.25 and by Dehn, Marzolf, and Sal-
man. "They primarily considered the case of magne-
tized simple ferromagnetic materials without quadru-
pole splitting. Therefore, they have (1) only considered
a pure magnetic hyperfine interaction such that the
nuclear states could be described by the quantum
numbers I and m& in a suitable coordinate system. A
quadrupole interaction with an EFG tensor not having
axial symmetry or a noncolinear mixed magnetic and
quadrupole interaction do not satisfy this requirement.
(2) They have not considered the case where different
nuclear transitions have the same energy which always
occurs for a pure quadrupole interaction. (3) They have
only considered the case where all nuclei are in a field
having the same direction as well as magnitude. This
will not generally be th~ case if there is more than one
resonant nucleus per unit cell. When conditions (2) or
(3) are violated, the cross section will be only partially
polarized and something equivalent to our density
matrix method of description is required.

In order to derive the results we need in as simple a
manner as possible, we make use of the fact that the
polarization of the scattering amplitude due to a given
transition is the same as the polarization for emission
with the same k. We start out following the methods of
Blatt and Weisskopf. "We choose a system of coordi-
nates which is convenient for the description of the
nuclear states at one site and make a multipole expan-
sion of the amplitude of the electric-field vector of the
radiation field.

8(r)=P P ag(l, m) Kg(l, m, r)

+a (sl,r)mEsr(l, m, r), (22)

where r is the position vector, E~(l,m, r) and EM(l,m, r)
are, respectively, the electric and magnetic multipole
fields of order I, m, and arr(l, m), and asr(l, m) are the
source terms for the multipole fields and depend on the

"Pham Zuy Jien, Zh. Eksperim. i Teor. Fiz. 49, 1576 (1965)
[English transl. : Soviet Phys. —JETP 22, 1080 (1966)g."S.V. Karyagin, Fiz. Tverd. Tela 8, 1739 (1966) LEnglish
transl. : Soviet Phys. —Solid State 8, 1387 (1966)].

24S. V. Karyagin, Fiz. Tverd. Tela 9, 2514 (1967) /English,
transl. : Soviet Phys. —Solid State 9, 1979 (1968)g.

2' H. Frauenfelder, D. E.Nagle, R.D.Taylor, D. R. F. Coehran,
and %. M. Visscher, Phys. Rev. 126, 1065 (1962).

~' J. T. Dehn, J. G. Marzolf, and J. F. Salman, Phys. Rev. 135,
a1307 (1964).

27 J. M. Slatt and W. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley Bz Sons, Inc. , New York, 1952), Chap. XII, pp. 583—
600 and Appendices A and B.
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time variation of the charge and magnetization dis-
tribution in the nucleus.

The multipole fields are defined in terms of products
of spherical Bessel functions and vector spherical
harmonics which are in turn defined in terms of the
scalar spherical harmonics and the complex unit vectors

e i= (1/%2)(e, i—e„), Ps= e„et= —(1/%2)(e,+ie„). (23)

The expression Eq. (22) for the polarization of the
radiation can be simplified by transforming to a new
system of coordinates in which the s' axis is parallel to
the direction of propagation k of the radiation. Since
electromagnetic radiation is transverse, we expect the
coefficient of e„ to be zero."A simple way to specify
such a new coordinate system is to perform a rotation
of p about the s axis followed by a rotation of 8 about the
resulting y axis, where 8 and q are the usual polar
angles describing the direction h. The unit vectors in
this new system are the usual spherical unit vectors r", 8,
and y. For further simplicity we will write our result
directly in terms of these unit vectors rather than in
terms of the transformed complex unit vectors. The ex-
pressions for our original complex unit vectors in terms
of these new unit vectors are easily obtained by per-
forming this transformation and the two rotations in
succession.

values for the u(l, m) involved in a particular transition
m, —+ ns, in terms of Clebsch-Gordan coeKcients

a(l,m)-C, r,(I„m., m, m,), (26)

where the subscript e stands for the nuclear excited state
and g for the ground state. If more than one multipole
order is involved, the a(l,m) for each should be weighted
in proportion to the experimentally determined ampli-
tude mixing ratio X, =E2/M1, for example.

For the more general case where m, is not a good
quantum number to use in describing the nuclear states,
we wi11 write the angular part of the ith excited and the
jth ground-state nuclear wave functions in terms of
expansions in ns as

and

Ie) = g n'(m, ) (m.)
mg lg

(2'I)

Ig);= P n, (m, ) im, ).
mp~Ig

&rom this we see that in the nuclear transition
~
e), ~

~ g), the relative values of the diiferent a(l,m) are

ax;;(l,m)-X Q n, (m, )n, *(mg)
me—mg=f+

e g

e~

~eo

1 —z 0 ' cos+
1/v2 —1 —i 0 sing

0 0 v2. . 0
cos8

X 0
.—sin8

e '& cos8 —ie '~

1/v2 —e'v cos8 —ie'"
,—V2 sin8 0

—sing 0
cosp 0
0 1.

0 sin 8 8
1 0 P (24)
0 cos8. J.

e '&sin8 8
—e'& sin8

%2cos8 . .r.

and
X Cir(I., m„mme) (29)

asr, ,(l,m) P n, (m,)n;*(mg)Cii, (I.,m„m, m, ) . (30)

By substituting Eqs. (29) and (30) in Eq. (22), we can
determine the coeflicients in Eq. (25) except for a con-
stant factor which to a very good approximation we can
assume is the same for all hyperfine components of a
given nuclear transition.

Substituting Eq. (24) in Eq. (22) and dropping terms
which fall off faster than r ' and do not contribute to
the radiation, "we get the simple form

~(r) =~(r)l:«(8,~)8+o (8,~)~7 (».)
We must now see how to determine the coefficients

as(8,&) for an arbitrary nuclear transition. The coeffi-
cients aa(l, m) and air(l, m) in Eq (22) are. defined in
terms of reduced nuclear matrix elements which can-
not be explicitly evaluated at the present stage of nu-
clear theory. In the case that the s projections m& of
the nudear spin I are good quantum numbers for the
angular part of the nuclear wave functions, we can
apply the vector addition law of angular momenta to
the radiation of any multipole order and obtain relative

~ This is strictly true for the magnetic-multipole fields and is
true for the radiation component of the electric-multipole fields.
However, in the transition region the electric-multipole fields
have a radial component which falls o8 as 1/r'. See, for example,
W. K. H. Panofsky and M. Phillips, Classica/ E/ectricity and
j/Iagnetism (Addison-Wesley Publishing Co, , Inc. , Reading,
Mass. , 1955), Sec. 13-6.

B. Fe" Quadrupole Interaction

The 14.4-keV Mossbauer level of Fe"has very nearly
pure magnetic dipole character. For pure M1 radiation
Eq. (22) becomes

8(r) =R(r)fair(1, 1)e'"('8+i cos8 j)+air(1,0)iV2 sin8p

+air(1 1)s- "(8—i co's8io—)7, (31)

where numerical factors have been absorbed in R(r).
Rewriting this in the form of Eq. (25), we have

~(r) =~(r)(Losr(1, 1)e*"+assr(1, —1)e '"87
+iLojr(1, 1)e' cos8+a (1,0)VZ sin8

—iisr(1, —1)e '"' cos87P) . (32)

We now consider the case where the nucleus is subjected
to a pure quadrupole interaction. We specify our co-
ordinate system to be the principal axis system in which
[ V,.

~

&
~ V„„~&

~
V,

~
and define ii= (V„—V„„)/V„.

It is clear that 0&&&1. In this system one can show"
that the angular parts of the wave functions for the
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I=-,'nuclear excited state are TABLE I. Multipole source terms.

(33)
a~(i, i)
a~(1,0)
a (1, —1)

A. Transitions with energy L&'2

lk&~ Ik& I2&~ I-4& I-2&~ ll& I

0 0
0 V2b/v'3 @25/vS

S/43 0 0

8/v3
0

where

3

V2 3+g'I

a (i,i)

(34) SM (1to)

a~(1, —1)

B.Transitions with energy &z

0 0
0 —V2~/V3 —~2~/~3

—v/& 0 0

—y/V3
0

and the states have been labeled by the m& values which
become good quantum numbers when p=0. The 6rst
two states have the energy Ea ——(e'gQ/4)(1+vP/3)'I'
while the second two have the energy Ei —(e'gQ/4)——
X(1+i)'/3)'I', where Q, is the nuclear quadrupole
moment and g is U„/e. Transitions between these
excited states and the doubly degenerate ground state
have equal probability. If we, without loss of generality,

label the ground-state wave functions with their m
values ~-',

& and
~

——',), we can use Eqs. (28) and (30) to
evaluate the aM(l, m) appearing in Eq. (32). We take
X=0.

For the groups of states having energy X&3 and Ez,
we find that the u~(l, m) values are, respectively, pro-
portional to the quantities tabulated in part A and part
8 of Table I. From the definition of the elements of the
density matrix, Eqs. (25) and (1), we have in the 8, &p

pii'=~ P [~ ii~(1,1) ~'+
~
a~(1, —1)~'+a~'(1, 1)aM(1, —1)e "&+a~(1,1)a i(f1,

—1)e"&],
p22'= c P [~ a~(1,1)

~

' cos'8+2
~
a~(1,0)

~

' sin'8+
~
aM(1, —1)

~

' cos'8+a~*(1,1)a~i(1 0)V2e "sin8 cos8
—a~*(1,1)a~(1, —1)e ""cos'8+a~"(1,0)a~(1,1)v2e "sin8 cos8—a~*(1,0)a~(1, —1)v2e '" cos8 sin8

u~*(—1, —1)u~(1, 1)e"& cos'8 —a~*(1,—1)a~(1,0)%2e'& sin8 cos8], (35)

pi2& =p2i*' ic'P [~ a—~—(1,1) ~' cos8+aiii*(1,1)a~(1,0)v2e '& sing —a~*(1,1)a~(1, —1)e ""cos8

+a~*(1, —1)aii(1,1)e"~cos8+ais*(1, —1)a~(1,0)V2e'" sin8 —
~
a~(1, —1) ~' cos8],

where the sums extend over the group of states with
the same energy. The various sums over products of
air(l, m) appearing above are tabulated in Table II where
the definitions in Eqs. (34) have been used to eliminate

y and b. Using these results and the normalization con-
dition Eq. (13), the above equations simplify to

lipticity in the polarization in any direction, the lines
being only partially linearly polarized. The fractional
polarizations along several interesting directions as a
function of g are

pii'=-,'&4[3/(3+g')]'"(1+i) cos2q),

p2~' = 2~ 4[3/(3+ g')]'~'(1 —3 sin'8 —i) cos'8 cos2&p),

pu'= p21'= W (p/4) [3/(3+ i)')]'12 cos8 sin2&p, (36)

where the upper signs correspond to the E3 transitions
and the lower ones to the Ej transitions.

It is interesting to notice that p»& and p»' are always
real for this case which indicates that there is no el-

3—n
y: a=-

4[3(3+~')]'"~(1+8)

2g
8=

4[3(3+v')]"'+2

x+y+x: a=-,',

(37)

TABLE II. Sums over products of source terms for pure quadrupole interaction.

El~~(t, t) I'
& I

am(1, —1) I'
Z I ~~(t o) I'
Pa~*(i,1)a~(1, —1)
pa~~ (1,1)a~(1,0)
Pa~*(1,0)a~(1, —1)

2+-'~'=-'+-'I:~/(3+v') j'"
~2+ &)2 2+1

t 3/(3+~2) gl/2

:4s'=l l[3/(3—+.*)3'"-
(»v/~) =l.[3/(3+~') j'"

0
0

~'+l~'=-: —l P/(3+") j'"
g2+ 1~2 2 &{ 3/(3+~2) j1/2

44~2 2 + 2 [3/(3+~2) jl /2

(»7/v3) = i3yl [3/(3+ 9&)

0
0
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.9

.8

the appropriate rotation angles 0,; in terms of the
parameters describing the fields at the nuclei is a
straightforward geometrical problem. The new density
matrices can then be found by applying the standard
similarity transformation used to express a matrix in a
rotated coordinate system.

.7

.6

0

~ 5

C0

.4
O
O
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Asymmetry porameter q

F»G. 1. Fractional polarization of radiation emitted by Fe'7 in
a pure quadrupole 6eld gradient as a function of asymmetry
parameter g for three high-symmetry directions. Radiation from
the excited states with m= &-, when q=0 is indicated by 3 and
similarly that with vs= +& by 1.The other quantities in parenthe-
ses indicate, respectively, the observation direction and the
polarization direction.

where again the upper signs correspond to the E3 and
the lower to the E» transitions. These results together
with the directions of the polarization are shown in
Flg. 1.

When the crystal of interest contains more than one
set of nuclei whose electric and/or magnetic fields have
different directions, we must add the density matrices
from all these sites. In general, for a given observation
direction, the 8 and cp directions for each site will be
different. It is therefore necessary to transform all the
density matrices to a common basis system. Calculating

VI. SUMMARY

Our analysis has been motivated by the desire to
obtain information on hyperfine fields and lattice dy-
namics from the analysis of Mossbauer absorption
measurements on single crystals. Therefore, we have
attempted to find conditions in which the relations be-
tween these quantities and the experimental intensi-
sities are as simple as possible, taking into consideration
coherence, polarization, and saturation effects. We
found three general types of situations in which the
relation can take a simple form. (1) The absorber is so
thin that effects higher than second order in the thick-
ness can be neglected. (The second-order saturation
correction must still be made. ) (2) There are only two
lines in the spectrum and one site per unit cell. (3) The
wave vector k is along a suitable symmetry direction in
the crystal.

This last condition appears to be the most important
since it applies even if there are several resonant sites
in the unit cell, each with a complicated spectrum.

As an outline of how our results can be used, we
suggest the following. (1) Make measurements along
symmetry directions in the crystal where the index of
refraction matrix is known to be diagonal if possible.
Otherwise, use very thin samples. In the special case in
which the spectrum contains only two lines and there
is only one resonant site per unit cell, these restrictions
are not necessary. (2) H the spectra are well resolved,
obtain the average cross section p and fractional polari-
zation a values from the equations of Sec. IV. Using
the techniques described in Sec. V„relate these to the
unknown parameters whose values are to be determined.
This procedure is used in the following paper on Fe in
sodium nitroprusside. '
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