
AND 1'2 FOR ORBACH RELAXATION P ROCESSES

T13,31 (40) = T24 42+(o1) = i3 (4o)B,/2

T14,41 (o1) T23,32 (4e) —p(o2)82/2 q

T13,41+(&0)= —p'24, 32+(o1)g'= q (&2)C/2,

T32,13(4o) = —LT41,24+(o1)]*=y (&o)D/2,

(85)

(86)

(87)

(88)

where the t; designate the odd integers associated with
the states. The use of (84) and (21)-(24) reduces the
number of independent spectral densities associated
with the pair of Kramers doublets to just six. These are

T24,»'(~) = LT»,42'(~)7=
3 (~)~/2,

T23,41+(4o) = [T14,32+(te)]*=32 (4s)P/2,

(89)

(810)

where 32(o1) is a function that is n(~ fto&~) for positive
arguments and n(~ Ao1~)11 for negative arguments.
Two other nonzero spectral densities a,re

T23,31 (o1) T24, 41 (o1) p (811)

T41,13 (&) T42, 23 (o1) ) (812)

but they enter the master equation so as to cancel.
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This paper reports the results of an EPR study of Cr'+ single ions in BiI& and SbI3, and exchange-coupled
pairs of Cr'+ ions in BiI3. The spectrum for Cr'+ single ions in BiI3 can be Qtted by the spin Hamiltonian
GCg=gpH S+DS,~, where g=2.058 and D= —0.5 kOe. The spin Hamiltonian for Cr'+ single ions in SbI3
is given by X8=gl&pB,S,+g&(B,S +H„S„)+DS,, where g» ——2.078, gz

——2.088, and D =+3.85 kOe. The
spectrum for exchange-coupled intralayer pairs of Cr'+ ions in BiI3 can be 6tted by a spin Hamiltonian which
has the terms JS1, S2+)J,SI,S~,+4E)SI+S2++St S2 j in addition to the single-ion terms for each Cr'+ ion.
In the above expression J is negative, J,+34 kOe, and E=2.0 kOe. Two of the results are rather unusual:
a g value greater than 2, and an anisotropic exchange parameter about —,

' the isotropic exchange parameter.
Explanations which involve the quite high covalent bonding and the extremely large spin-orbit constant
on the halogens are given for both unusual parameters. The relevance of the EPR results to the magnetic
anisotropy in the chromium trihalides is discussed. Also observed and included in this paper is the Cr'+
single-ion spectrum of BiI3.' Cr. The spin Hamiltonian for the Cr'+ transitions is given by X',z =gpH S+DS,'
+E(S '—S„'),where g = 1.98, D= 6.9 kOe, and E= 1.6 kOe.

L INTRODUCTION TO THE CHROMIUM
TRIHALIDES AND THE ISOMORPHIC

SERIES BiI3, SbI3, AND AsI3

«HE chromium trihalides (CrC13, CrBrs, and Cr13)
appear to be an isomorphic' ' series of compounds

with very interesting magnetic properties. CrC13 is an
antiferromagnet with a transition temperature of
16.8'K. The spins lie in the plane perpendicular to the
three-fold c axis. CrBr3 and CrIS are ferromagnets
with the spins lying along the c axis and with transition
temperatures of 32.5 and 68'K, respectively. The site
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Chem. Solids 27, 1531 (1966).

~ B. Morosin and A. Narath, J. Chem. Phys. 40, 1958 (1964).

symmetry at the Cr site is C3 and the space group is
E3. If an external 6eld of a few kOe is applied, CrC13
also becomes ferromagnetic and almost isotropic. ' The
anistropy constants in CrBr3 and CrI3 are given at
1.5'K as —6.86 4 and —28.6 kOe, ' respectively. The
chromium trihalides thus display quite a diverse set of
macroscopic magnetic parameters, considering that they
are isostructural and have lattice constants increasing
by about 6—

10%%u~ going from CrC13 to CrBrs, and from
CrBr3 to CrI~. In order to better understand these
macroscopic parameters it is necessary to know more
about the more basic interactions of a single magnetic
Cr'+ ion with the nonmagnetic part of the lattice and of
one Cr + ion with another. It is possible to get a signi6-
cant amount of information about these interactions
by measuring the paramagnetic resonance spectra of
isolated Cr3+ single ions and isloated Cr'+-Cr'+ pairs of

' J. F. Dillon, Jr., and J. P. Remeika in 3fagnetic and Electric
Resonance and Relaxation edited by J. Smidt (Wiley-Interscience,
Inc. , New York, 1963), p. 480.

4 J. F. Dillon, Jr., J. Appl. Phys. Suppl. 33, 1191 (1962).
~ J. F. Dillon, Jr., and C. E. Olson, J. Appl. Phys. 36, 1259

(1965).



498 R. W. BENE 178

ions, which can be created by doping a suitable host
material with a small amount of chromium. A suitable
host material is one which satisfies three requirements:
(1) It must be isostructural to the chromium trihalides,
(2) it must be a diamagnetic material, and (3) it must
be capable of being doped with chromium.

BiI3, SbI3, and AsI3 are also of space group R3, and,
being diamagnetic, are possible hosts for studying the
single-ion pair spectra of a few percent chromium substi-
tuted in place of the diamagnetic metal ions. It turns
out to be quite possible to dope chromium into BiI3
and possible to a somewhat lesser extent to dope chro-
mium into SbI3.

Crystals were grown at Stanford's Center for Mater-
ials Research in the central crystal growth laboratory
under the direction of R. Fiegelson.

SbI3 and BiI3 were grown from the melt by the
Bridgman method in quartz crucibles sealed under
vacuum. Reagent grade SbI3 had to be puri6ed by
multiple sublimations to a purity of 99.999%.Bismuth
iodine was synthesized from elemental bismuth
(99.9999%) and I2 (99.999%) by passing I2 vapor (in
an argon carrier gas) over the Bi sample at 220'C. The
product resulting from this synthesis was sublimed
several times to remove unreacted bismuth.

The furnace used for crystal growth was a multizone
wire-wound resistance type with a cylindrical core. For
BiIq growth, a steep gradient of 30'C/cm was used,
and with SbI3 about 25'C/cm. Boules were 3 cm long
by 1.25 cm in diam. Both SbIS and BiI3 exhibited good
cleavage. In the case of SbI3 easy basal plane cleavage
caused single crystals to delaminate easily like mica.
The c axis in SbI3 was perpendicular to the growth
axis.

No attempt was made to grow AsI3.

II. EXPERIMENTAL RESULTS: PARAMAGNETIC
RESONANCE SPECTRA OF Cr DOPED

INTO BiI3 AND SbI3

A. General

The EPR spectra of single crystals of BiI3 and SbI3
doped with chromium have been measured at 24 and
35 6Hz in magnetic Gelds up to 18 kOe. Measurements
were taken over a temperature range 1.5-77'K, but the
bulk of the data was taken at 4.2'K. The spectrometers
were standard EPR spectrometers employing magnetic-
6eld modulation and phase-sensitive detection. A re-
cording was made of the Grst derivative of the absorp-
tion. Concentrations of chromium in various crystals,
as determined by spectroscopic analysis, were as
follows: In Cr,Bi~,I~, x is varied from 0 to 0.2. In
Cr,Sb~ I3, x is varied from 0 to 0.001. The maximum
x value for Cr,Sb~,I3 represents the maximum amount
of chromium that the crystal-growing lab was able to
get into SbI3 using the same techniques that were used
for BiI3. Cr.

B. BiI3 '. Cr

The spectrum of chromium doped into BiI3 consists
of a fairly complex assortment of lines. The spectrum
is decoded as follows: There is a 6ve-line Cr + single-ion
spectrum, a nine-line Cr'+ single-ion spectrum, and a
four-line Cr'+ pair spectrum. The 6ve-line spectrum for
a single Cr'+ ion in the BiI3 host can be Gtted by a spin
Hamiltonian of the form

H, =gpH s+DS,',
where g= 2.058+0.01 and D= 0.5~0.02 kOe. Figure
1 shows the energy-level diagram for II along the c axis
(H,) and the pertinent transitions. The three~solid
arrows are the allowed transitions and the dashed
ones are not allowed for this direction of H Geld but are
observed at other angles. The +2 —+——,

' transition is
not observed, presumably due to the small D value. The
+2-+—~ and +-,'-+—

2 transitions are also weak due
to the small D value, but are observed easily at the
high Cr'+ concentrations. Their observation is made
easier by overloading the microwave cavity with a large
sample and thus deforming the rf magnetic field inside
to give a component parallel to IIO, the static field. The
linewidth of the +2~~—

2 transition is about 135 Oe
at low chromium concentration and 4.2'K. The other
Cr'+ single-ion transitions have linewidths of about 175
Oe. The linewidths increase with chromium concen-
tration and become badly distorted at 10% concen-
trations, where the linewidth is about 300 Oe. Other
small lines appear among the single-ion lines at moderate
to large concentrations (1.5% and up), but because the
single-ion lines are so large and close together, it is
impossible to sort out this additional absorption spec-
trum. These extra lines, the distortion of the line shape,
and the extra linewidth are absent at temperatures as
high as 77 K. It is presumed that these lines are due to
exchange-coupled pairs with small anisotropy, such as
the interlayer pairs.

The nine-line Cr + single-ion spectrum is the sum of
three three-line spectra of Cr'+ ions in three di8erent
environments. These environments are connected by
threefold rotations about the c axis. Each three-line

MAGNETIC F IELD ~
FIG. 1. Energy levels of H, =gpH S+DS,' for B=P,.
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spectrum can be Gtted by a spin Hamiltonian

H =gPH S+DS '+E(S,' S„—'),

with g= 1.98+0.02, D+6.9+0.1 kOe, and Z= 1.6+0.1
kOe and S=2. The s axis is about 20 from the c axis
and the x axis is the projection of the a axis on the plane
perpendicular to the s axis. The D and E are ambiguous
within a sign; i.e., they are either both positive or both
negative.

The assumption that this spectrum is due to Cr'+ is
inferred from the following considerations:

(a) The spectrum is fLtted by an S=2 spin Hamil-
tonian.

(b) For a axed chromium concentration in Bi13, the
intensity of both the Cr + single-ion transitions and the
Cr'+-Cr'+ pair transitions are correspondingly low when
the intensity for the Cr'+ transitions is high.

(c) No other impurities are found by spectroscopic
means in some of the crystals, and when they are found
they have no correlation with the intensity of the Cr'+
lines.

(d) Crystals grown under higher iodine pressure
(favoring Cr'+ over Cr'+) do not show the nine-line

spectrum.

I I I

4 6 8
MAGNETIC FIELD

I
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I

l2

spin Hamiltonian of the form

Fro. 2. Energy levels of H, =gpn S+DS,'+E(S,'—S„')
for S=2 and H =H, .

I

l4

The linewidth of the Cr'+ lines is about 125 Oe. The
linewidth is somewhat uncertain due to overlapping of
the spectra from the three environments. The observed
transitions are shown in I'ig. 2.

A remark concerning this Cr'+ spectrum is in order
here. This spectrum represented an undesired compli-
cation in the earlier samples used in this experiment. An
attempt to Gt the spectrum to an S= ~ spin Hamilton-
ian failed speciGcally for the low Geld transition
(+1—+ —2). It was thought that the g value required to
fit the frequency variation of this transition [g=2.35
for a (+—,')-to-( —s3) transition within S=-,'] was un-
realistic. Even assuming this g value, the remaining
transitions could not be Gtted into the S= ~3 manifold.
As indicated by the rather large error limits of the spin
Hamiltonian parameters and the absence of an upper
limit on the S4 term, we have not established the Cr'+
spin-Hamiltonian parameters to the same extent as for
the Cr'+. The fact that this Cr'+ spectrum is incidental
to the interactions in the chromium trihalides as well

as the experimental diKculties in aligning the external
magnetic Geld along the Cr'+ principal axis and in
following the small Cr'+ transitions underneath the
generally much larger Cr'+ transitions are the main
contributors to this situation. Nevertheless, a large
amount of data over all angles of the applied Geld was
consistent with the spin-Hamiltonian parameters given
above. The value of IDI is smaller than one might
expect for a Cr'+ spectrum. We do not know the reason
for this.

The four-line Cr'+-Cr'+ pair spectrum is fitted by a

H, =gpH S+D(SrP+Sr2')+ J(Sg S2)
+-2JgSg.S2,+-',E(Sg+S2++Sg Sm ), —

where g= 2.058+0.02 and D= —0.5&0.25 kOe are the
same as the Cr'+ single-ion parameters (except tha, t
there is a larger uncertainty in values because of the
more complex interaction). J,=+34+2 kOe, K=2.0
&0.25 kOe, and J is negative (ferromagnetic). The I
axis is the c axis of the crystal. The negative value for
J is consistent with the 5=3 manifold being the only
one populated at low temperatures, and with the known
ferromagnetic intralayer exchange on the order of 14
cm ' for chromium tri-iodide. J, can be unambiguously
assigned a positive value from the temperature depen-
dence of the spectrum, and since E must have the same
sign as J to Gt the positions of the lines, both are un-
ambiguous. The dipolar interaction has been neglected
since the ious are about 4.5 A apart; thus the dipolar
Geld is about 100 Oe and is smaller than the linewidth of
the transitions and is within the error brackets of the
other parameters. The four-line Cr'+-Cr'+ pair spectrum
is really a six-line spectrum, two transitions from each of
three separately situated pairs. The lower Geld tran-
sition from each of these pairs (the three pair-bond
axis are related by a three-fold rotation about the c
axis) is observed only over a very restricted range of
angles of the external static magnetic Geld. Thus in the
course of an experiment in which the magnetic Geld is
rotated in a plane, the lower Geld transition of only one
of the three diGerently situated pairs is observed at any
given angle. The high Geld transitions are seen at all
angles so that in the course of an experiment we observe
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so that Cr'+-Cr'+ pairs are not seen. A Cr'+ single-ion
spectrum is not seen in this material.

1 I

~ KOe l2 Roe MAGNETIC F IELD ~
FtG. 3. Energy levels of pair Hamiltonian for S=3

and FX along z axis of pairs.

four transitions due to the pairs. Figure 3 shows a plot
of the energy levels for the S=3 manifold for the two
coupled 5= —,

' Cr'+ ions. The external field is along the s
axis of the pairs (perpendicular to the plane containing
the Cr'+-Cr'+ pair and the two halogens through which
the dominant superexchange interaction takes place).
The two transitions which are seen are indicated in
Fig. 3.

The linewidth for the —1 to 1 transition is about 110
Oe. The narrowest linewidth for the 0 to 1 transition is
about the same, but the absorption broadens very
rapidly as the external field moves away from true
alignment with the s axis, since the 0 and —1 energy
levels become almost parallel in this region of magnetic
field.

The ratio of the intensity of the pair lines to the single-
ion lines follows approximately a c (concentration) de-
pendence for chromium concentrations less than about
5%. The exceptions are the crystals for which Cr'+
lines have large intensity; for these crystals the pair to
single-ion intensity ratio is less than would be expected
from the concentration given by spectroscopic analysis
for total chromium content.

The background noise in the spectrum of BiIS.Cr is a
conglomeration of small, fairly broad (70 Oe or more)
lines. It is possible that these absorptions are due to
triads and interlayer pairs under the single-ion lines,
since they seem to increase in relative intensity with the
concentration of chromium.

III. THEORETICAL INTERPRETATION OF
EXPERIMENTAL RESULTS

A. g Value

Two of the most surprising features of the experi-
mental results are the g value and the large anisotropy
of the exchange interaction.

Simple ionic crystal field theory leads one to the con-
clusion that the g value for an ion with a less than half-
filled shell should be slightly less than the free spin
value (2.0023). For the present case of the Cr'+ ion, the
configuration is d', so that we might expect a g value of
less than 2, as is indeed usually observed in the oxides.
The presently observed values are 2.058 in BiI3, and
2.07 in SbI3. The key to the discrepancy lies in the large
spin-orbit constant on the halogens and the fact that
these materials are quite covalent.

In the present case we take the unit structure as a
Cr'+ ion surrounded by six halogen (H ) ions in an
octahedral coordination. Figure 4 shows this unit struc-
ture, the coordinate system, and the numbering of the
halogens. There is a reasonably large overlap between
the Cr'+ single electron 3d orbitals and the halogen p
orbitals, so that we must take combinations of the d
orbitals and the halogen p orbitals as the basic one-
electron orbitals. Convenient forms for these, which
have the correct site symmetry, are the molecular
orbitals.

An example of such an orbital which transforms as the
xy component of the t2, representation of cubic sym-
metry, is shown in Fig. 5, where the center orbit is a
d,„orbit of Cr'+ at A, and the others are halogen p, or
p„orbitals centered at positions 1, 2, 4, and 5.

There are actually two orbitals that might be repre-
sented by the above picture, the antibonding t2, (xy)
orbital and the bonding t2, ~(xy) orbital.

2 '( y)=V "—-'( —V')"'t P P+P P3- —
b(zy) —ry[p p +p p J+(1 y2)r/2d A

The y is close to 1, and both the above cases describe m

bonds, since the p orbits are perpendicular to the bond
axis. Clearly the antibonding orbital is mainly of d',„

C. SbI~'. Cr

The spectrum of SbI3.Cr is a fairly straightforward
six-line spectrum arising from single Cr'+ ions. In this
case the D value is large enough that the 2

—+—
2 tran-

sition is easily seen. The spin Hamiltonian is given by

H, =
gl MPH, S.+gg(H, S,+H2S2)+DS, 2,

M (4)

Cr A H (I)

r cr B

with g~t=2.078&0.01, g =2.088&0.01, and D=+3.85
&0.05 kOe. The s axis is the threefold c axis of the struc-
ture. The maximum concentration attainable is 0.1%, Fro. 4. Coordination of [Cr'+H 2g' complex.
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character and the bonding orbital is mainly of halogen
character. Because the ionic d energy levels are higher
than the ionic halogen p levels, the d-like (antibonding)
state will be higher in energy than the halogenlike
(bonding) state. To emphasize the physical differences
in the states, we make the following notation change:

fg

~&u" ~ ~&g")

~20' ~~g".

We make the obvious change for all other states also.
The p indicates the p-like halogen character of the
bonding and nonbonding orbitals, and the antibonding
orbitals correspond closely to the ionic d-like orbitals.
Figure 6 shows the energy levels of the molecular
orbitals for the LCr'+H —e]' complex.

The squares represent the number of occupied states
in the ionic approximation in the regions just to the left
and right of the molecular orbital region in the center
of Fig. 6. The squares on the extreme left side represent
the occupied states of the chromium atom. The circles
in the molecular orbital region in the center represent
the possible orbital states in the molecular orbital ap-
proximation. Each state can, of course, have spin up or
down. The occupations shown by the arrows indicating
spin up and spin down represent the

i
'A e,) ground state

of the complex which is in the configuration (tx,)'. We
shall adopt the usual convention of dropping the filled
shells from the designation of the configuration, because
they will make no contribution to the results in the cal-
culations that we consider.

For the orbitally singlet ground state, like
i
'A&, ), the

g value to first order is given by the spin-only value

8
Qf

Fio. 5. A tm, (XF) molecular orbital.

2.0023. The spin-orbit energy will, however, mix ex-
cited states into the ground state (destroying its 4Axff

designation). In particular, since L and S both trans-
form like Tt„spin orbit will mix i'Tx, ) and i4Tx, )
states into the

i
'Ae, ) ground state. There will then be a

second-order contribution to the g value proportional to

('A, iH,.in)(niH Li'A, )

~0—&n

where in) is an excited state.
Since the orbital Zeeman term H L does not involve

spin, in) must be a spin quartet if (ni H L i'A2, ) is not to
vanish, and therefore the only form of in) which enters
the calculation for g is a

i
4Tx,) state. There are various

i
'T&,) excited states which are obtained by the excita-

tion of an electron from a low-lying state to an e, state.
The three most important excitations are shown by the

6 . 6. M 1 i lit i f
the I

Cr'+H ff]' complex.

4$

n &o
~ ()

I (c)

(&) (c) (o)

t (~)

tp(~) ~x $0

tp (z) w

tip( ) P

Pa.

ATOMIC

fr ORPITAQ

C r ION ORB ITALS
IN A CUQ!Q FIELD

MOLECULAR ORBITALS HYBRIDIZED ATOMIC ORBITALS
MADE UP FROM 6 HALOGE. NS
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arrows in Fig. 6. Con6guration (a) is a d-like configu-
ration (t~, ')'e, ' since the antibonding orbitals are d-like.
In the absence of covalent bonding, this would corre-
spond to the (t2,)'e, con6guration. This state is obtained
by promoting one of the Cr'+ d electrons from a t&,
level to the higher energy Cr'+ e, level. The g shift, due
to coupling to the state

I (t2,)'e, '2'2, ), is that usually
computed for Cr'+ and is negative. &See Appendix A for
numerical estimates. ) The effect of the covalent bonding
on the contribution from this state is to reduce the
magnitude of the g shift. This is generally represented by
an orbital reduction factor.

There are two possible I
'T2, ) states for configuration

(b), which is indicated by (t2,)'e, (t&,")'. The Ie, 'E,)
state can be coupled to the I(t2,)'42~, ) state to give
either a I'8, ) state or a I'8, ) state, and either can
couple to the I(t2p)' 'T~,) state to give a 6nal 'T2, )
state for con6guration (b). Likewise there are two 4T2,)
states for configuration (c), (t2,)'e, (ti,&)'. The configu-
ration (t2,)'e, (4,&)' represents an excited con6guration
for which there has been a transfer from a predomi-
nantly halogen orbital (t2, bonding) to a d-like orbital
(e, antibonding). Thus configuration (b) represents a
"charge-transfer" configuration.

A list of the configurations and I'2'~, ) states which
are important for a calculation of the g value, are the
following:

Configuration States

(a) (t~,)'t:, I (t2, )'e, 'T2 )

(b) (~~u) "~(2u")'
I (t20) "~20 0' I('&a)(~2u") "T~u('T'2u))

and
I (rg,)"Ag,e, '8,('E,)(tg, &)"Tg,('Tg, ))

(c) (t2,)'e, (4,&)'
I t(~,)'4A2, e, 'E,('E,)(ti,&)' 'Ti, (4T2,))

and
I (t2,)"22,e, '8,('8,) (ti,&)"Ti,('T~,)) .

Here, for instance,
I {t2,)' 'Au, e,('8,)(t2,&)' 'T2, ('T2,))

means the state where the con6guration (t2,)' in the
state I4Aq, ) is coupled to configuration e, in the state
I'8,) to form a state I'8,). This state is then coupled
to the configuration (t2, i')' in the state

I
'T2, ) to form

the 6nal I'T2,) state.
In the ionic limit the matrix element &'A~, IK, I4Ts,)

vanishes for I'T~, ) states of configuration (b) and (c).
This is because we take II„as a single-electron operator
and &(t2,)'(tnt)'IH. ,I(t2,)'e, (tip)') vanishes if e, and
/2, & are spatially separated from one another. In the
above matrix element, H„represents a sum over nine
electrons, but can be broken up into a sum over three
electrons and six electrons.

&(& .)'(& .")'I&-
I (& .)'~.(& ")')

= &(~2u)' I &- I (t2.)')&(&2u')'
I (~~a")'~u)

+&(tg, &)'
I B,.I (t2,")'e,)&(t2g)' I (t2,)')

= &(t2g&)'
I
&- I (t2g")'eg) .

In Appendix A we show that the second matrix ele-
ment is proportional to &tnpIH Ie~) and will be zero

unless there is some region of overlap between the t2, &

and e, orbitals.
In the presence of covalent bonding the states of

con6gurations (b) and (c) do make a contribution to the

g shift. These transfer configurations are all of the form
d'p', and since the spin-orbit constant on the halogens
is up to 30 times that of the Cr'+ ions, the p part domi-
nates. We have, therefore, a predominantly one-hole
situation which gives a negative effective spin-orbit
parameter and a positive g shift. As shown in Appendix
A, the magnitudes of these shifts for each of the con-
figurations (b) and (c) are the same order of magnitude
as the negative shift from con6guration (a). For CrI3
the shift from (a) is on the order of —0.02, from (b)
+0.025 and from (c) +0.02. Thus we would predict a
net positive g shift, which is what we observe experi-
mentally. Quite a few numerical estimates of atomic and
molecular parameters must be made in computing the
value of the positive shift in g value, so that only the
sign and the order of magnitude of the g shift are prob-
ably meaningful. We calculate in detail the contribution
to the g shift from only the most important I4T~,)
states, because an exhaustive calculation for all possible

I
4T2,) states will not change the sign or order of magni-

tude of the g shift. The only other states for which the
energy denominator of Eq. (A7) is approximately the
same as for the con6gurations (a)—(c) (calculated
explicitly) are con6gurations of the form (t2,) (t2p)'
and (t2,)4(tip)'. The contribution from these configu-
rations is expected to be small, however, because the
fourth d electron is n bonded. (The e, orbital was ~
bonded. ) As shown in Appendix A, the g shift is pro-
portional to the square of the bond strength, and so the
contribution from a con6guration where the fourth
electron is x bonded will be an order of magnitude
smaller than the contribution from a configuration where
the fourth electron is 0. bonded.

B. Exchange Anisotroyy

We have determined experimentally that the ex-
change anisotropy between two intralayer Cr'+ ions is
approximately 3 cm—,and is almost axial. The principal
axis of the exchange anisotropy is the perpendicular to
the plane containing the pair of Cr'+ ions and the two
halogens through which the dominant superexchange
interaction takes place. This axis is the s axis of Ap-
pendix 8 and is shown in I'ig. 7.

If we assume that the isotropic exchange integral is
about the same (within a factor of 1.5) for a pair of Cr'+
ions in BiIS as it is for CrI3, then the ratio of the aniso-
tropic exchange constant to the isotropic exchange
constant is about —ix. (The interlayer isotropic exchange
constant for CrIS is approximately 14 cm—' and ferro-
magnetic, which means J;„——14 cm '.) The assump-
tion concerning the near equality of the exchange
integrals in SiIS and CrIS is reasonable since the lattice
constants in BiIq are only 6-10jq larger than those in



178 EPR OF Cr IONS IN BiI g STRUCTURE 503

)l 7

cr H (~)

H (6)

FIG. 7. The coordinate axis for the intralayer Cr'+ —Cr'+ pair,
and the numbering of the H (halogen) ions making up the octa-
hedral environment of the Cr'+ A ion.

CrI3. This assumed small difference in exchange con-
stants can be compared to the diGerence in isotropic
exchange constants in CrI3 and CrC13, where there is a
further decrease in the lattice parameters of 15-20%
in addition to the change in identity of the ligand
through which the superexchange takes place; the J;„
in CrI3 is still only —, times that in CrC13.

The models to date have predicted' that
~
J, ,/J;.,

~

=(hg/g)'. This is clearly not the case for Cr pairs in
BiIs because (bg/g)'=0. 001, and

~
J, ;„/J;„~=s.The

reason for this discrepancy, as for the positive shift of
the g value, has its roots in the large covalency and the
large spin-orbit constant of the ligands. As seen in the
g-value calculation, the covalency and halogen spin-
orbit interaction mix into the ~'As, ) ground state a
signi6cant amount of ~'Ts,) and ~'2"s,) transfer states.
These states make an important contribution to the
exchange interaction between ions because they have an
appreciable amount of ligand character. Thus, the
transfer states have much more overlap with the ground-
state wavefunction of a neighboring Cr ion, than the
ground state of the first Cr ion would have. That
is, ii(As, IXI "')'Tsg)&))ii('A„(a ~s('A, g)~ because

~
'Ts, )~ is spatially closer to

~
'As, )6 than

~

'A&,)z is.
The interaction via the transfer states is highly aniso-

tropic because the exchange interaction between the
'As, )ii state on ion 8 and the XF component of the
'2's, )z state of ion A is generally different from the

interaction between the ~'As, )ii state and the XZ or
FZ components of the

~
'Ts, )~ state. This difference in

the interactions is reasonable on physical grounds since
the two Cr'+ ions and the two halogens through which
the interaction must take place lie in the X-F plane.
We might expect the states transforming as XZ and VZ
would have little eQect on the interaction between the
two Cr'+ ions. The spin components are coupled to the
components of the ~'Ts, ) state differently because of
the isotropic (f'I, S) spin-orbit interaction: i.e., the S,
component of spin couples to the XI" component of the

~
4Ts,) state which is admixed into the

~

4As, ) ground
state by L,. Thus the diBerence in the exchange inter-
action between the ~'As, )ii state and the different
components of the ~'Ts, )~ state produces an aniso-

sT. Moriya, Phys. Rev. 120, 91 (1960).

tropic spin interaction. The spin Hamiltonian is de-
rived in more detail in Appendix B.

This spin Hamiltonian is very complex, so that we
have calculated the difference in energy between ~3,3)
state and the

~
3,0) state as a measure of the anisotropy.

These are states of the two coupled Cr'+ ions with total
spin, =3 and the s components given by M,=3 or 0.
The 2 axis is the same as the s axis of Fig. 6 and is rot
the c axis.

%e stress here that in the absence of spin-orbit inter-
action on the halogens (or if it were significantly smaller,
as in the oxides) the transfer states would not be appre-
ciably admixed into the ground state, and the usual
estimates of the anisotropy =(hg/g)' J;., would be
essentially correct.

The isotropic part of the exchange interaction is
given predominantly by &(4As, ~H~"~~'As, )z. This
matrix element really stands for the sum of exchange
integrals over all pairs of orbits, one orbit on ion A and
the other on ion B. The orbits we use are the three
molecular orbitals which are occupied in the ~4As, )
ground state. By using molecular orbitals we have im-
plicitly included the kinetic transfer contribution to the
exchange as far out as the ligands. If we should then set
the exchange Hamiltonian equal to the Coulomb po-
tential between molecular orbitals, we would be includ-
ing everything except the direct Cr-Cr transfer part of
the kinetic exchange. The exchange integrals designated
as J„q or J~ „ turn out to be dominant in these ma-
terials. These integrals do not involve Cr-Cr transfer
and therefore are calculated as matrix elements of the
Coulomb interaction between molecular orbitals. The
kinetic transfer is already taken into account for the p-p
and p-d interactions by the bonding coeflicients of the
molecular orbitals which appear in front of the J„„and
J~ q integrals in the calculations. For the smaller Jq&q&

exchange integrals we have not specided the specific
form of the exchange interaction, but have left the
results in a form which allows us to include the direct
Cr-Cr kinetic transfer in the interpretation of the par-
ticular exchange integral. (That is, we include both
Coulombic and kinetic energy in the exchange Hamil-
tonian and evaluate matrix elements between molecular
orbitals. ) For example, to represent the exchange
between a dry orbital on A and a de orbital on 8 we
have written Jq „Ag,„~. There are three important
contributions to J~,„~s,„s.(1)There a is direct Coulomb
inter'action between the dxy orbitals. This interaction is
expected to be quite small since the Cr'+ ions are about
-,'A apart. (2) The direct transfer interaction between a
dxy orbital on A and a dxy orbital on 8 takes place
because of the kinetic-energy term in the exchange
Hamiltonian. This interaction is antiferromagnetic and
is probably fairly small due to the large distance between
ions. (3) There is also a direct kinetic transfer between a
dry orbital on A and a d, 2 or d ~ „~ orbital on B.This
eGect is ferromagnetic and the transfer integral is
probably larger than for the type-(2) transfer due to
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the "easy" path through the ligands. However, this
interaction is intrinsically smaller than the type-(2)
interaction by a factor of JH Q/U;, „. (JH„„s is the
Hund's-rule energy of a Cr'+ ion, and U;,„ is the ioni-
zation energy required to change a Cr'+ ion to a Cr'+
ion). Thus, contributions (2) and (3) tend to cancel
and are probably about the same order of magnitude.

In the calculation we assume that the exchange
interaction between all of the individual pairs of orbits
is isotropic. This is a good approximation for the J„„
(Hund's rule interaction on a halogen ion) and the ki-
netic transfer parts of the Jq &q~ interaction. The anisot-
ropy in the aforementioned type-(2) transfer has been
worked out in detail, taking into account the anisot-
ropy of the d4-d' excited state by which the transfer
interaction takes place. The complexity and length of
the calculation together with the result that contri-
bution to anisotropy is negligible for small (Ag)'/g',
makes it undersirable to reproduce this calculation here.
It is not true that the J~ q of Jq ~d~ (Coulombic part)
exchanges are completely isotropic, but again the
anisotropy is small for a small (Ag)'/g' ratio.

The results of the calculation estimate that J, ;.,/J;.,~—0.16 for CrI3.

C. Summary of Theoretical Results

In summary, we would stress that when there is
appreciable covalency in the problem, the single-ion
parameters are really a characteristic of a complex
such as [Cr'+H q]' (where H designates a halogen)
and not just those of Cr'+ in an octahedral environment;
or even Cr'+ in an octahedral environment with I
amount of covalent bonding. The actual identity of the
halogen is important through the magnitude of its
spin-orbit parameter. We must also consider the total
PCr'+H 6J' complex when calculating the exchange
interaction between tw'o ions when the superexchange
via the ligands is the dominant part of the isotropic
exchange.

IV. EXPLANATION OF g VALUE AND
MAGNETIC ANISOTROPY IN

CHROMIUM TRIHALIDES

A. g Value

We now extend the interpretation of the measure-
ments on BiIS.Cr and SbI3.Cr to the magnetic series
CrC13, CrBr3, and CrI3. The variation of the g value in
this series is qualitatively what we would expect on the
basis of the calculation in Appendix A. Due to the large
variation in the halogen spin-orbit constants and also
the moderate variation in the bonding parameters, we
would expect the positive g shift caused by the transfer
states to be about -', in the CrBr3 of that in CrI3 and in
CrC13 to be about yp of that in CrI3. We would also
expect the negative g shift to vary much more slowly
going from CrC13 to CrBr3 to CrI3 because of the slow

variation of 10Dq. Thus we might expect the g values
of the series to be something like the following:

CrC13 1.99,
CrBr3 2.01,

CrI3 2.07,

where we have assumed that the negative g shift is
about —0.02 (Appendix A), and that the positive g
shift is enough to account for the g value of CrI3.
These are not in bad agreement with the reported
values;

2.00,
2.007,
2.07,

CrC13

CrBr3

but the small difference in the measured values between
CrC13 and CrBr& is slightly perplexing in view of the
di6erence between the g values of CrI3 and CrBr3. For
some reason, either the positive shift of the g value in
CrC13 is larger than we expect or the negative shift is
smaller.

~ H. Braekken, Kgl. Norske Videnskab. Selskabs, Forh. 5, 42
(1932).

R. W. G. WyckoG, Crystal Structures (Wiley-Interscience,
Inc., New York, 1964), Vol. 2, p. 45.

B. Macroscopic Magnetic Anisotropy

The interpretation of the magnetic anisotropy in the
chromium trihalides is more complex than the interpre-
tation of the g value because there are three distinct
physical parameters which determine the total magnetic
anisotropy. These are (1) The anisotropy energy con-
stant of a single ion and the diamagnetic lattice;
(2) the exchange constant which describes the aniso-

tropic part of the exchange energy between an intralayer
pair of Cr'+ ions; and (3) the angle which the axis of

anisotropy of exchange makes with the c axis of the
crystal.

We really have only two experimental facts upon
which to base an approximation of the single-ion anisot-

ropy in the chromium trihalides: The D values in
BiI3.Cr and SbI3.Cr. In BiIS.Cr the value of D is —0.05
cm ', and in SbI3.Cr it is +0.38 cm '. The single-ion

anisotropy depends on the trigonal distortion of the
structure. This distortion is roughly proportional to
the deviation from 54.7' of the angle between the c
axis and a line between the Cr'+ ion and any one of its
nearest-neighbor halogens. LNote that (a) all three such
lines make the same angle with the c axis, and (b) this
is the same angle which the c axis makes with the
previously defined s axis, which is the third parameter. ]
The D value becomes more negative as this angle is
increased. If we calculate the angles for BiI3 and SbI3
as well as the chromium trihalide series we find that
they decrease in the following order ' ":

BiI3, SbI3, CrI3, CrBr3, CrC13.
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Thus on purely structural grounds we expect the D
value to go more positive going from BiI3 to CrC13. If
only the nearest halogens to the Cr'+ ion were important
the D value for all of the above series should be negative,
because all angles appear to be greater than 54.7'. The
next-nearest halogens in layers above and below the
nearest halogens undoubtedly enter into the distortion,
however. The angles of the nearest of these are somewhat
less than 40' and so would be expected to make a posi-
tive contribution. The positive contribution to the dis-
tortion from the next-nearest neighbors could easily
be the same order of magnitude as the negative contri-
bution from the nearest neighbors due to the small
deviation from 54.7' of the angle previously calculated.
In CrC13 this angle was calculated to be 5.55'&1', and
in BiI3 it w'as calculated to be 57.5'. We also expect the
spin-orbit interaction on the halogens to significantly
affect the single-ion anisotropy since it is argued that
this interaction produces the major part of the g shift.
Since the single-ion anisotropy is proportional to the
square of the spin-orbit constant times the r bond
strength, we expect a great reduction in the positive
single-ion anisotropy constant going from CrI3 to CrBr3
to CrC13.

Thus based on these arguments and the values for
D in BiI3 and SbI3 measured in our experiments, we
predict roughly the following single-ion constants:

BiI3

SbI3

CrI3

CrBr3

CrC13

—0.05 cm ',
+0.38 cm '

+0.38 cm '

+0.08 cm '

0.
In arriving at the value of D in CrI3 we used the fact

that the c/a ratio for SbIs is about that of CrIs, and we
assumed the same a bonding strength. We conclude
from these rather crude approximations that the single-
ion anisotropy is an order of magnitude too small and
has the wrong sign to account for the experimental
macroscopic magnetic anisotropy in the chromium
trihalides.

We thus turn to the anisotropy of the exchange inter-
action to account for the macroscopic observations. As
calculated in Appendix B, we expect the ratio of the
anisotropic exchange to the isotropic exchange to vary
as the square of the halogen spin-orbit constant times
the strength of the 0- bond. We therefore expect this
ratio to go as 1:0.2:0.01 in the series CrI3, CrBr3, and
CrCl3. If the constant describing the pair-exchange
anisotropy is approximately the same in CrI3 as it is
in BiI3, we would expect the following values for that
constant (J,') for the chromium trihalide family:

CrIS J,'=5 cm ',
CrBr3 J,'=1 cm—',
CrC13'J,'=0.05 cm '.

The angle that we have called the third parameter de-
termines how much of this single-pair-anisotropy of
exchange is translated into a macroscopic magnetic
anisotropy such as one measures in a static torque
measurement or in a ferromagnetic resonance measure-
ment. The contribution of the uniaxial anisotropy of
exchange to the ferromagnetic resonance frequency can
be shown to be Sg Zg„'(3 cos'e —1).' The sum over p
is a sum over all the different types of pairs, Z„ is the
number of neighbors which form a given type of pair p
with the central ion, and J„' is the axial anisotropic
exchange constant for that type of pair. 8 is the angle
the exchange anisotropy axis of a pair makes with the
c axis. When 8=54.7', the total macroscopic anisot-

ropy is zero, even for arbitrarily large pair anisotropy.
In BiI3 this angle is measured to be 57.5'~2'. If we
take the atom positions given by x-ray analysis, ' ~ we
calculate this angle to be 55.5 &1.0' for CrC13 and
56.6' for CrBrs. The atom positions have not been mea-
sured to our knowledge for CrIs. However, the c/a
ratios for the chromium trihalides are very close to the
same value. They are

(c/a)c.ci,= 2.92, (c/a) c,n„——2.90'/, (c/a)c.r, = 2.898.

TAaLE I. Comparison of exchange anisotropy to observed total
anisotropy in the chromium trihalides

CrII
CrSr~
CrClI

Predicted macro-
scopic anisotropy

arising from
exchange

anisotropy

(cm i)
—2.4—0.36
~0

Estimated
single-ion
anisotropy

2DS

(cm 1

1.14
+0.24

Total
estimated
anisotropy

(cm-~)
-1.26—0.12

Observed macro-
scopic anisotropy

(excluding
dipolar terms)

(cm ')
—2.75—0.66—0.19

~ J. Kanamori, in Mugeetism, edited by G. Rado and H. Suhl
(Academic Press Inc., New York, 1963), VoL 1, p. 127.

In view of this small variation in the c/a ratio, one might
expect that the variation in the angle that the c axis
makes with the plane of the Cr-Cr pairs would only be
of the order of 0.5' from one trihalide to another. The
ratios are such that CrI3 has the largest angle. Un-
fortunately, these angles are close enough to the critical
54.7' that the uncertainty in the lattice positions results
in a large uncertainty in the total anisotropy.

If we use our estimate of the exchange anisotropy
constants and assume angles of 57', 56.5, and 56' for
CrI3, CrBr3, and CrC13, respectively, then we can use
the aforementioned equation to calculate the contri-
bution of anisotropic exchange to the anisotropy con-
stant which shifts the magnitude of the applied static
magnetic 6eld required for ferromagnetic resonance.
(Again, this is the same anisotropy that one would
measure in a static torque experiment. ) Table I com-
pares the experimental anisotropy constants with those
calculated. Column 1 lists the exchange anisotropy
contribution to total anisotropy. Column 2 lists the
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single-ion anisotropy previously roughly estimated
from the structures and the measured values for BiI3
and SbI3. Column 3 is a sum of columns 1 and 2, and
column 4 is the observed macroscopic anisotropy.
It is clear from columns 1 and 4 that the exchange
anisotropy is of the correct order of magnitude and sign
to account for the total magnetic anisotropy. Ap-
parently, the single-ion anisotropy is of the opposite
sign than the measured total anisotropy.

APPENDIX A: g VALUE

The ground state of a Cr'+ ion in an octahedral en-
vironment is the orbital singlet 4A2, . Thus the g value,
to first order, is the spin-only value 2.0023. When the
spin-orbit interaction energy is considered as a pertur-
bation the first-order ground state becomes

—{I'A.,)+E6'I'T.,)+E.'I' T.,&},
E

(Al)

where the i are summed over all states which can be
described in the cubic field as I'Tsg) or I'Ts, ) states.
Only the I'Ts, ) states will contribute in second order
to the g value since the orbital Zeeman term H I has
nonzero matrix elements only between I'Tsg) and

I
'A so& states.
The

I eTsg) states come from various configurations.
We will discuss the five I4Tsg) states which have the
dominant effect on the g value; these come from the
following con6gurations:

(a) d-like (t )'se (ogne state),

(b) (t„) es, (t s )o(stwo states),

(c) (t s)ges(gt ig)o' (two states).

The t2, and e, are the cubic 6eld symmetry labels for
the antibonding single particle molecular orbitals, and

the tsg" and tigo represent bonding orbitals&ade up
mostly of halogen p orbitals.

The state in configuration (a) is the one usually

treated by standard perturbation theory; it gives a
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negative contribution to the g value. We estimate that

hg= 8—EPq/3U= —0.02 for Cr'+ in CrIs. (A2)

The effect of covalent bonding is accounted for by
inclusion of the orbital reduction factor K. Con6gura-
tion (b) has two I'Ts, ) states which we designate by

I (ts.)"As."'E.('Eg)(ts")' 'Ts.('Ts.))
1(ts.)' 'As.e. 'Eg('Eg)(tsg")' 'Ts.('Tsg))'

I (tsg)' 'As„e, 'Eg(tsg")' 'Tsg('Ti, )('Tsg)),

I (tsg)' 'Asg, eg 'E,(tsgo)' 'Tsg('Tig)('Tsg)).

In the first set of states (i) we couple the Ieg) state to
the I(ts,)' 'As, ) state first and then couple to the
I(tsgo)s 'Ts,) state. In states (ii) we couple the Ie,)
state to the I(tsg)s 'Asg& state. Since the Coulombic
interaction on the Cr'+ ion is much larger than the ex-
change between the Cr'+ ion and a halogen, the states
in set (i) are probably close to the eigenstates of the
system and thus are the states used in the perturbation
calculation. However, in order to do the calculation it is
necessary to expand the approximate eigenstates (i)
in terms of states (ii). The expansion can be made using
the appropriate Racah parameters as follows: "
~(i, (i j )j. ,~M)

=Z 4((jijs)j» js ~M)L(2j»+1)(2j»+I)3'"
&12

Xlrl"(j rj s&jr, jlsjss) ~ (A3)

The Racah 8' parameters are given in terms of the 6-j
symbols as follows:

j1 j2 jf3 =(—1)tr+ts+'~+"8 (jijslslii jsls). (A4)
lg l2 l3

The 6-j symbols have been tabulated by Rotenberg
et al."Finally we obtain

I
('E.) 'Ts.&

=b&{(V'S)I('Tig) 'Tsg)+& I ('Tig) 'Tsg)} i

I('E.) 'T"&
=-',W2{—v3I('Ti ) 'Ts )+(&S)I('Tig) Tsg)} (AS)

Using the appropriate Clebsh-Gordan (CG) coefB-
cients, "we can expand the nine-electron I4Ts„y,M,)
and I'As„M.) states in terms of products of the anti-
symmetrized. three-electron

I (tsg)s eAsgM, ) states with
the six-electron I(ts,")' 'Ts, eg 'E, 'Tig,v,M,) and

I(ts, o)s 'Ts, e, 'E, 'Ti„y,0& states. We obtain

I4A„,M,)= I(t„)s 'A„,M.) I(ts, )' 'Ai„0),

('T,) 'T„, „,M, =
I (4,)' eAs„M, ) (ts,")se, 'Tr„P I,o

"A. R. Edmonds, Angular Momentum in, Quan&urn Mechanics (Princeton University Press, Princeton, New Jersey, 1957), p. 90.
"M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3-j and 6-j Symbols- (Technology Press, M. I. T., Cam-

bridge, Mass. , 1959)."E.U. Condon and G. H. Sbortiey, The Theory of Atomic SPectra (Cambridge University Press, New York, 196'7), Sec. 1—g.
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nd

p ((-,'—M,)(-,'+M.+1)) '"('1'„) '1'„, g )3f=,
~ ~

)(&„)''A„,M.+1) g„)'e, '1;„g,—1)

M, n (-,'+M, )(-,' —M,+1) '"
I (ts,)' 'As„M, ) (ts,")'e, 'Ti„P,0 —

I (ts,)' 'As„M, —1) (A6)

X (4")'~, '&„,
l

g I, +1).( &

kpj

%'e have written the orbital components in order within the parentheses on both sides of each equation so that we
need not write each equation for the

I Tsg) states three times.
Matrix elements of spin-orbit and. orbital angular momentum between I'Asg) states and

I
4Ts,) states can be

written down for H„and H, z as a sum over the nine single-particle operators. (H, z is the orbital Zeeman interaction
ggH I..) As shown in Ref. 12, the

I (tsg)s gAsg) part will factor out of the problem and we will be left with H„and
B,z for the six remaining electrons.

After the factorization we find that the second-order contribution to the g value from configuration (b) is

( ~sg&2 ILgl Tsg»~k)~~( Tsg»~4 I Hgo I ~sgyk)
t)g, = —4p

U;
(A7)

where y specifies the orbital component of the I'Tsg)
state and i=1, 2 indicates which

I Ts,) state of this
con6guration is involved. The factor of 4 outside the
summation comes from two sources: one factor of 2
arises because we are combining a term plus its complex
conjugate, and the second factor of 2 arises because we
are evaluating the matrix elements for the m.=—', states.

Remembering now that the above
I 'Tsg) states are the

I('Eg) 'Tsg) and l(sEg) 'Tsg) states, expanding these
in terms of the I('Ti,) 'Tsg) and I('Ti,) 4Ts,) states
and, in turn, these in terms of the product states, we get

( 1 1 )+15 1
b.g, =—4

(Lr(E,) U(E,)P S +15

XQ ((tsg )' 'Ai, OI L, I (tsg )'eg 'Tig, 7,0)

Using Eqs. (2.6) and (2.9) of TK we get

('~ ill Till'Ti) = —(—1)('Till Till'~i) =+('Till Till'~ i) .
If we use the footnote on p. 403 of TK, in which elec-
trons are electively replaced by their equivalent holes,
and then use Eqs. (2.35)—(2.39), we get

('T IIT II'~i) = —&2(t lltlle)

and

('T IITill'~ )= —2&6(ktsll~tllke)( —112&6)
=+(-',tsll~tll-,'e).

The 6rst minus sign on the second line and the
resultant plus sign are the result of the hole character
of the (tsgg)' 'Ts, configuration. We obtain

dg=—
X((t„g)se, T„s»,OIH. , I(ts, )s 'Ai, 0). (AS)

( 1 1 ) 1
t)g, =+4

(U(sZ) U(sZ)i24v3

x((t., )s '~, IIT Il(t, )", 'Ti,)

x((t„)e, T„llv(T,)ll(t„)s ~,). (A9)

"V.Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394
(1958).

We can evaluate the above matrix elements using the
tensor-operator methods of Tanabe and Kamimura
(TK).is Using their formulas (2.3) and (2.13), and
assuming an isotropic spin-orbit interaction operator
(i.e., P; f,l; s;) we get the hg. in terms of the reduced
matrix elements.

1 1
tsg",i ti» eg, V

) V(sZ) V(sZ) i
x(;t„„fIi--'t.s,

l ,'e„-,',v) -(A»)

using the CG coeKcients. '4

The matrix elements in the second line of (A11) are
evaluated using molecular orbitals where, for example,
the spin-orbit contribution is approximately the sum of
f'1; S; for the various parts of the molecular orbital.
The molecular orbital is made up of a Cr d-like part and
a halogenlike part. When operating on a molecular
orbital with the spin-orbit operator I,"S;, we operate on
the different parts separately. We assume that I; is

"Y.Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 753 (1954).
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the orbital angular momentum operator with respect to
the chromium nucleus for the d-like part and I; is taken
as the orbital angular momentum operator with respect
to a halogen nucleus when operating on a halogen part
of the molecular orbital. That this is the correct method
is clear from the derivation in Slichter" for the g value
of a VA, center. The matrix elements of l, are measured
the same way. This is in contrast to the usual method
where H„or l, operating on a molecular orbital is taken
as the operator with respect to the center of the entire
orbital reduced by an "orbital reduction factor. " The

~

t g2",f) state is the XV component of the t2, bonding
orbitals and can be written as

~
tp, &,f') =

~

XI")'
= 2P[Pw, Pw, +—P*, P"]—+(1 P')'"—d~y (A12)

Likewise,

is„V)= iX'—I")
=«" w -k(1—~')'"LP*. P*—+P" Pu.—]

where, for example P„, is the P„orbital at ligand i.
The numbers of the ligands and the coordinate system
are shown in Fig. 4. The x, y, and z directions are the
same for all ligands. Using (A12) to evaluate the matrix
elements in (A11) we get

(XV
~
I,

~

X2—V2) =~[2~(1—P2)»2yP(1 —~2) iI2]

(-,',XI (f'I.,S, (-,', X2—l'2) (A13)
=-,'[2 (1-P')"'f..+P(1- ')"'fr].

Therefore,

~g.= +2L1/U('E) —1/U('E)]
&&[2 (1—P')"'+P(1—')'"]
&&[2n(1 p')'i'i —g+p(1 n')'"i—r] (A14.)

Everything from (A9)—(A14) has been independent of
the orbital and spin components of the original ~'T~, )
state. If we calculate Ag, and Ag„by taking the proper
matrix elements to calculate AE to second order, we
find that Ag =kg„=kg, =kg as must be the case for
cubic coordination.

We estimate the approximate value of b,g. U('E) is
the energy required to transfer an electron from a l2, &

bonding orbital to an e, antibonding orbital. From the
work of Dillon et aI,.' we estimate this at about 25 000
cm '. Also U( E) U( E) 6B+5C and —is approxi--

mately 20000 cm ' for CrI3. The spin-orbit constants
for the chromium ion and the Cl, Br, and I atoms are
approximately'

i 3q 290 cm—',
tci—590 cm ',
fs,—2460 cm ',
fi—5070 cm '. —

~~ C. P. Slichter, Principles of Magnefic Resonance (Harper and
Row, New York, 1963), p. 195.

The parameter n' is associated with a 0. bond and was
estimated for CrC13 and CrBr3 by Barnes and Segal"
using experimental nuclear quadrupole resonance
frequencies. They obtained

n'(CrClq) —0.76,
n'(CrBra)=0. 73.

Thus for the more covalent CrI3 we will estimate
n'—0.70 or 1 n—' 0—3 .T.he P' describes a ir bond
which is probably slightly less than an order of magni-
tude weaker than the 0. bond. We take 1—P'—0.04.

Using these numbers we get

hgi=+0. 025,

0 gn,—+0.01,
hgc i—+0.002.

We now repeat all of the preceding calculations for the
two ~4T2, ) states of configuration (c). The calculation
is very similar to the one that we just did for configu-
ration (b) and so we will not write down all of the steps.
We do need to rederive Eqs. (2.34)—(2.39) in TK for
matrix elements involving ti, orbitals instead of l2,
orbitals, but this rederivation turns out to be a trivial re-
placement of f& (or t2, ) by fi (or ti, ) in the equations. The
one new constant that we get is not tabulated but is
easily calculated. The two new molecular orbitals we
need to use for configuration (c) are antibonding:

~

Z')'= nd, ~ ,'v3(—1 —n')'"—

X[2P.s 2P.I+—P*i P*4+—Pu~ Pws] —~
nonbonding:

lz&"= 2[p„, p„,+p„p—„]. -
After we carry out the same steps as before we get

kg=+ ,'v3(1 —n')i i[1/-U('E) —1/U('E)],
where n' again represents a 0 bond, but the U('E) this
time represents the energy required to transfer an elec-
tron from the t~, nonbonding orbital to the e, anti-
bonding orbital. We estimate' this energy as —15 000
cm '. We get

&gr +0.02, —
hgn, =+0.008,

hgci —+0.002.

APPENDIX B: EXCHANGE ANISOTROPY

The symmetric part of anisotropic exchange enters
in third-order perturbation theory. A second-order term
which consists of a matrix element of spin-orbit energy
times a matrix element of exchange gives a contribution
to antisymmetric exchange. This term vanishes in the
present case, however, where all Cr'+ sites are equivalent.
For the terms which are diagonal in the exchange inter-

"R. G. Barnes and S.L. Segal, Phys. Rev. Letters 3, 462 (1959).
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action the anisotropy energy hE has the following form:

&g I H-ln&&nlH. *In)&nlH- I g)
AE= Q —, (81)

n (E„—E )&

where Ig) is the ground state of two-ion problem (i.e.,
both ion A and ion 8 are in 14A r,,& states) and

I n) is an
excited state for the two-ion problem, which is connected
to Ig) via H„. This restricts In) to be a state with one
ion in the 'A2, ) ground state and the other in a

I
'T~, &

state or a 'T2, ) state.
Because ions A and 8 are equivalent, we can write

(Bi) as

evaluating the CG coeKcients we find

&g IH .B I n) = —(l l~)('A2. 11 Tigll'T~g)

X{$.(n()+S„(n~)+S,(n{.)), (84)

where, e.g., $,(n)) indicates S, connects I g) to the state
In) which is made up of ion A in the I'Ai, ) state and
ion 8 in the $ component of the I'T2, ) state. We intro-
duce here the notation f= YZ, q=XZ, and {=XV.
Thus,

2~'
I

&'A ~g f f
Ti,ff'T.g) I

'
($,(n&)+ $„(ng)

(E-—E )2

+$,(nt. ) I
H.„l$.(n~)+$„(n&)+$,(ng)) (8.5)

DE=P
n 3

(g I
H,. I n)(n I

H,.I n)(n I
H,. I g)

AE=2 P
n (E E)~ We now consider a particular In) which represents a

two-ion state in which ion A is in a
I
'A2, ) state and ion

J3 is in a I'(E,) 'T2, ) state of configuration (b). (See
Appendix A for specihcation of the configurations. )
We assume that the exchange interaction between two
components of the ionic states is approximately iso-
tropic; i.e., for the exchange interaction between ions we
set

where we have separated the spin-orbit operator into
two parts, II„=H„"+II„~,which give equal contribu-
tions to hE. Since Ig) and In) are basis states for a
spin-independent Hamiltonian, we can treat spin as a
parameter and derive the spin Hamiltonian. '~ Ac-
cordingly, assuming an isotropic spin-orbit interaction,
we can write

(86)(n, ~fH ABfn, p)=JAB«sA sB.
(g I H,,B I n) =x P s;(g I

L,B
I n) .

t=&,Q, Z

(82)
Although we are assuming that the exchange inter-
action between any two components of the ionic states
is isotro pie, we are not assuming that the exchange inter-
action between two component states is eclat to the
interaction between another two component states, e.g.,

For states In) representing two-ion states with ion A in
a 14A2,) state and ion 8 in a 14T2,) state we can write

&g II"ln&= B('Am. ,eg IL 'I 'T~.,v)B (83)= ('A2.
11 Till'T2. )(A2e21 Tn Tiv~),

(n ( I
H "

ln&(& g &n { I
H " In {)

where we have expanded the matrix element as a product or
of a reduced matrix element and a CG coeScient. For ~~a"~~~a"'
each p; there is only one p for which the CG coeNcient
is nonzero. [That is, for y;=Z, (Aue~l T2 XV TiZ) If we substitute for all of the matrix elements in (85)
= —3iV3 and all other CG coefficients involving y;=Z, terms similar to the one given by (86), we obtain the
but ygXY are 0.] Substituting (83) into (82) and following spin Hamiltonian:

S B(SA.SB)$ BJ «+$ B(SA.SB)$ BJ

hE= H, =
3

+S B(S" SB)$ BJ

~ y[$ B(SA.SB)$ B+S B(SA.SB)$ B]J
LU('E.)]'

+[$ B(SA.SB)$ B+$ B(SA.SB)$ B]J Q'
+[$ B(SA.S B+$ B(SA.SB)$ B]J

(87)

If the spin were -„ it would be possible to express the above spin Hamiltonian in the usual simplified form,
J,S,AS,B+2'„S„"S„B+J,S,AS.B, but for S= ~3 this is not possible. In order to compare the magnitude of the ex-
change anisotropy predicted by (8"I) with experiment we calculate

(3,31H, 13,3)—(3,01H.13,0) .
We 6rst expand each two-ion state in terms of products of single-ion states using the appropriate CG coefB.cients.

13,3&=1k,5)A I l8)»
12,2)A12, —2&B+12, —8)A128&B

3,0 =
V'20 +312,2)A12, —k&B+312, —2&AI2, k)B

~7 T. Nagamiya, K. Yosida, and R. Kubo, Advan. Phys. 4, 1 (1955).

(88)



510 R. W. 8 EN R 178

Using Eqs. (7) and (8) and a considerable amount of
simple algebra we get;

(3,3III, I3,3)=(9/8)(Jg '«+Jg '
)

+(81/8)J»'"',
39

(3,0I II, I3,0)= (261/40)(Jga' +J»'«)
—(27/40) J»'rr,

where JAa "=(X'I &'A2. II Ti.ll'T2.
& I '/3II') J»«and

similarly for Jza'» and Jza'"". If we de6ne E,„;,
=(3,3III, I3,3)—(3,0III, I3,0), then we have

K.;So= (27/5) pJ»'"" J»"—J»'«—]. (310)

At this point we should note two things. We are assum-
ing that each ion sees a perfectly cubic octahedral
crystalline 6eld which accounts for the coefficients of
the terms J~~'&&, J~~'&&, and J~~'» being in the ratio
2:—1:—1 in the anisotropy energy. If we should also
assume that J~~&&=J~~»= J~~&&, as is often done, we
would get E, ;„=0.The exchange integrals involve
two Cr'+ ions and thus the symmetry, which the dif-
ferent components of exchange must satisfy, is much
less than cubic. In the present case there is no reason
for assuming the contributions to exchange between
ions from the different components of the excited states
should be equal. On the contrary, it seems intuitively
clear that the contribution to exchange from the dif-
ferent components of the excited states will rot be equal
because of the different spatial distributions of these
components. Secondly, the form of the spin Hamilton-
ian is independent of which particular I'Tg, & state we
are considering, so that E, ;„(total for all

I
'T~, ) states

is simply the sum of contributions, each described by
Eq. (87). We simply calculate the J», etc., for each
configuration.

We must now' approximate the Jgg for the various
components of particular states. The component eigen-
states of configuration (b) consist of products of
components of the

I (t~,)'e,E,& state times the compo-
nents of the l(t2,")' 'T2,") state. The particular combi-
nation of components of the E, and 'T2, states which are
present in the final

I
4T~,) coupled state is determined by

the appropriate CG coeflicients. In Eq. (811) we give
those components of a coupled I4Ti, & eigenstate in
terms of components of the E, and 'Tg, states.

I T,(8&= I T,"(r)&l -',& IE,P)&—,' IE(&)&j,

I T„(~)&=
I T„(~)&L-,'v3IE, (V)&+-,' IE(IJ)&0, (311)

I T~.(f)&
=

I
T2."(1')

& IE(IJ)&.

In these states U~ V and V~X —V . We have
dropped the spin notation in Eq. (311) because it is
immaterial to the relations: i.e., the relations in Eq.
(811) are the same whether the E, state is a 'E, state
or a 'E, state. The P in

I T2,i'(y)& states on the right-
hand-side of the equation emphasizes that these states
are halogenlike.

The matrix elements of exchange that we require are
all diagonal matrix elements and therefore can be calcu-
lated as the sum of exchange integrals of all possible
pairs of orbits in the state

I ny)(y= (, i), or 1 ). Since we
are only interested in exchange between ions A and 8,
we must merely sum up all of the exchange integrals
betw'een pairs of orbits, one being on each ion. For
configuration (b) the orbits to consider are

ion A: (t2,)' (three orbits) (t2,i')' (six orbits)

ion 8: (tm, )' (three orbits) e, (one orbit)

(tm, i')' (five orbits).

To be more explicit, we will now approximate J~~&& for
the state I('E) 'T2,). From Appendix A: I('E) 4T2,&

=-', (Q-,') I
('Ti) 'Tg, )+-,'(Q$) I ('Ti) 4T2,). Therefore,

for this state,

J»«= (sum of exchanges of each )!2, orbital on
8 with all of those on A)

+(exchange of e,($)= L~iv3e(X' —V')
——',e(Z') j with all orbits on A)

+(a-s)(exchange of unpaired )!2,i'(() orbit
with all orbits on A) .

(312)

iLz

(ii H (7

) ~H (8)
(Cr&+)B

X

&&H-()o)

FIG. 8. Coordination of Cr'+-Cr'+ pair and their
nearest-neighbor halogen.

We now note two things. The ()!2gi')' closed shell on
ion A can be dropped from the calculation as the total
exchange with any other orbital will be zero. Secondly,
the last two parentheses would change signs if we were
calculating the contribution to J» from the

I
('E) 4T2,)

state instead of the
I
('E) 'T~,) state.

We again use molecular orbitals for the calculation,
although we might anticipate some nonorthogonality
problems. Figure 8 shows the coordinates and ligand
positions used for the calculation.

The orbitals required on ion A are the 32, antibonding
orbitals. They are x-bonded.

l&F&~'=v~ "—-'(1—7')'"O' —I' +&.—I'. j
I VZ)g'= yd„,"—

2 (1—y') '
(313)XP'„, I'„,+I'., P,—j, —

Ixz&, =~d.,~—,'(1-72)»2p „—I.,yI.,—I „j.
The orbitals required on ion 8 are the following:
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The antibonding tgg orbitals (yr-bonded):

IXV) '=yd s——',(1—7')'"I P P—+P P—]
Il Z)"=-Vd '—'(1-y ) )

XEE„, P„—,+P., P.—,], (B14)

IXZ)"=vd '—!(1-y')'"LP -P +P -P ]
The bonding t2, g orbitals (yr-bonded):

I
XY)e' 'P/E——g,-P„,+—P,, P„]—+(1 P')"—'d

I
l'Z), '=~PD'„, P„„+—P„P„]+—(1 P)—

I
XZ)s'= 'Pox-P, +—Ps P']+—(1—P')'"d st.

The antibonding e, orbitals (o-bonded):

I
Z')s' ——nd z —-'v3'(1 —n') '('

XLP.s P*.+P—., Pg,+2—P.„2P.y],—
IX'—1")ex=udx-z gzs ,'(1—-n')—'"

X[P„P„+P„—, Py,]. —

Thus using Eq. (B11)for the ( component, for example,
the orbits we use on ion 8 are the 3/2, antibonding
orbitals, the

I
VZ)e' t2gg bonding orbital, and the eg(()

antibonding orbital, where,

e ($)= '(g(&3d-z ze —d ze)+-'v3(1 —n')'"
X[4Px, 4Px,+2P—„, 2Py, +2P—s, 2Pz„]. —

We approximate the exchange between two orbitals as
follows:

Jds"= a(1)b(2)H, '(1,2)b(1)u(2),

and if a= x+y and f) =w+y, which are in the form of
molecular orbitals, we can approximate

Jig '= x(1)w(2)H, "(1,2)w(1)x(2)

+ x(1)y(2)H, x'(1,2)g(1)x(2)

+ y(1)w(2)H *"(1,2)w(1)y(2)

+fy(1)e(2)g (( „2)'z(1),y(2).

We have neglected terms like

J'x(1)w(2)FF,„y(1,2)w(1)y(2)

J'x(1)w(2) H,„"(1,2)y(1)y(2),

which are an order of magnitude smaller than the ones
we are considering because they are one or more orders
higher in an overlap integral. We have also limited the
interactions to those between d orbitals of the same sym-
metry, d orbitals and neighboring p orbitals, and p
orbitals on the same ligand. We now use these approxi-
mations and calculate the isotropic exchange energy.
We take for the isotropic exchange interaction the sum
of interactions between the

I
tggAg)ggstates on ions

A and 8; we obtain

&&iso=y LJdxy "dxyg+ Jdzz "dxzg+ Jdgzsdysg]

Jdxy pgt+ Jdxy pxz+ Jdxy pzs+ Jdxg pzy+ Jdxg pyz+ Jdxg "pxi

'Y (1 y ) +Jdxy "Pzs+Jdxy Pzz+ Jdgz Pgz+ Jdyz Pxz+ Jdyz Pzz+ Jdys Pzz4+Jdyz 'Pgz+ Jdyz Pxi+ Jdyz "Psy+ Jdyz "Pzz+ Jdxz Pyz+ Jdxz Pxs

+Jdxz Pss+ Jdxs Pzs+ Jdxz "Pyz+ Jdxz "Pxi+Jdxz "Psz+ Jdxz "Psz

(1 'y ) JPxzPys+ JPxzPyz+ JPzzPgz+ JPzsPxi+ JPyyPzs+ JPxzPzz

+JPsiPzz+ JPzsPzs
(815)

We have now arrived at the aforementioned orthog-
onality problem. How do we interpret terms like Jp 1p

JP„P„and (although not quite as obvious) Jd„. PszP

They arise because the molecular orbitals for ion A
are not orthogonal to those for ion B. Had we used a
set of linear combinations of Wannier functions which
had the correct point group symmetry, we probably
would have arrived at functions which looked like the
molecular orbitals, but which were orthogonal~between
sites. Unfortunately, at this time, such a method of
choosing linear combinations of the Wannier functions
does not exist, so that we make do with the molecular

orbitals. We know from the work of Anderson'~ that
there is a net cost of energy required to make the space
part of the wavefunctions on different sites orthogonal.
Since the space functions do not need to be orthogonal
if the spin functions are orthogonal, the problem does
not exist if the two orbitals are coupled antiferromag-
netically. Therefore, whenever w(e encounter an ex-
change parameter J between nonorthogonal orbitals,
we will treat that J as an antiferromagnetic exchange
integral.

We set all of the other p-p exchange integrals equal
to the Hund's rule exchange on the ligands. The p-d
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TYPE o, e. g. J
dxy P„

I

TYPE b, e. g' JA
dxy P

I

TYPE i ut. 9. J A
d gP

n y

TYPE J,e.9.J A

yk
I

n y

TYPE cu e. g' JA

l y
dyzPa

TYPE d, e. g' JA
dyz Py

I FIG. 11.Ferromagnetic p-d exchange interactions.

Pe
FIG. 9. Classification of ferromagnetic p-d exchange interactions.

ily

8,
8

exchange integrals are now classified according to order
of magnitude by a simple argument. In Fig. 9 we classify
the p-d exchange integrals by the type of overlap
which exists between the p and d orbitals. We now
assume that J,))J~))Jq and J,=Jy because the J~~
exchange of type a (denoted by J„d') has the lobes of
both p and d orbits pointing toward the other, while

type b and type c have only the lobes of one orbit
pointing toward the other. For type d the lobes of both

p and d orbits point perpendicular to the vector between
them so that &ri2) is maximized. Implicit in the charac-
terization of the types of exchange is the assumption
that the Coulombic term is dominant in the exchange
integrals.

We also have antiferromagnetic exchange interactions
which arise as a result of the aforementioned nonorthog-
onality of orbits. An example of such an antiferro-
magnetic interaction is the exchange integral Jg,„&~„„
which we classify as type A. The p and d orbits involved
in Jq,„~p» are shown in Fig. 10. Using these classifica-
tions in Eq. (815) we get

+Eiso 7 $Jdzu uduuu+ Jduz uduuu+ Jdzu uduzu]

1-'P2(1—7')(7j„d'+5J d'+3J„d'+SJ
+4J -dA)+2(1 —y2)2J +xi(1—y2)2J A (816)

where J2„" represents an antiferromagnetic p-p ex-
change term such as J~.,p„. Ke now proceed to calcu-
late the auuisotropie exchange energy, which involves
the exchange interaction between the components of
the t2u& unpaired spin and the (i2u)2 configuration on
ion A, plus the interaction between components of the
e, orbital on ion 8 and the (t2u)2 configuration on ion, A.
We erst calculate the exchange interaction between the

(iuu)2 configuration on ion A and the particular combi-
nation L232u&(t )—tuu&($) —tuu&(g)] of the components of
the t2," unpaired spin on ion B. We get the following
result:

&gl&-l~)=~ 2 ~'&gl j-'l~&
4—S,P, S

For states lm) representing two-ion states with ion A in a

TYPE A) 2 C 9 J A

I

y

TYPE Ag ue'9' JdA Pzl x,

0 y

I N

J»(2r2u "(f)—t2u" (&)—&2u "(n))
=P'(1—P') l2 Jduu~duuu Jd—uz "duz' Jd—u"duuu]

+ 2 (1 p2)P2J L(1 p2)P2J A

+-,'yup2[8ju d +4J„d' 2pj, d'' 2—J„d" 2J—,d"]—
(817)

Before writing down the exchange interaction be-
tween the e, orbital on B and l(tuu)2 'A2, ) state of A,
we need to define four more types of interactions. (See
Figs. 11 and 12.) Clearly both i and j are ferromagnetic
and J;=Jd, while J,=J&. Both type A& and type A2
represent antiferromagnetic exchange interactions and
it appears that J„q"')J~ g~'. Using these classifica-
tions we calculate in Eq. (818) the exchange interaction
between ion A in state l'A2, ) and the specific combi-
nation of components of the t,, orbitals given by
L2 ,(r) —,(8- ,(~)]

j»(2eu(i') eu(i ) eu(&))— —
= —k(1—~')(1—n')j.-.—2(1—V')(1—n')j.-.'
+-'n'(1 —y')[3J d"'—3J, d"'+3J, d' —3J, d']

'y'(1 n') [2J—~-d"+2—J„d'+2Ju d"]. (818)

In order to use Eq. (810) to get the anisotropy energy
contribution from a particular state, we need to convert
the JAs to JAs' using Eq. (89).Thus we need to calcu-
late X and ('A2ullTiulldT2u). In order to derive the sPin
Hamiltonian we defined X by Eq. (82).

FIG. 10. An antiferromagnetic p-d exchange interaction. FIG. 12. Antiferromagnetic p-d exchange interactions.
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I
'A2, ) state and ion J3 in a I'Tu„y) state we can write

(g I
&..I ~)= &'&2, IK. I

'T~,)= ~ p s('~2. II-'I 'T2.).

Both of the single-ion matrix elements have been calcu-
lated in Appendix A for the

I
('E) 'T~, ) state. Using the

expressions calculated there we obtain

obtain
27 1 f {r ' 15

~E,;..=—x-x
I

—p'(1 —')
15 5 k U('E) 4

X{J~s(2e, (f') e,—($) e,—(q))

(24."({)—4:(5)—~~."(7)))

=o 015{JA~(&g) 4JAB(~&e")),

(B2o)

:i[2—~(1 P'-)'"l.+P(1 -')"'fr j
= XS{ ,'i—+-5[2n(1 P—') '"+P(1 n—') "'])

Thus for 5= ~ (and since l r))|~) we get

&=—(1/+5)fr, provided that we take
—2i+5P(1—n2)'~2 for (4A2gll. , l

4Tqg). (B19)

Thus for the I('E) 'T2, ) state of configuration (b) we

where we are using the same estimates for covalency,
spin orbit, and transfer energies that were used in

Appendix A for the g-value calculation. Note that for
the state

I
('E) 'T2, ) we get minus the expression above,

but U('E) =2U('E) so that the anisotropy energy from
the

I
('E) 4T~,) state is about —~~ that from the

I ('E) 4T~,) state.
Writing out (B20),

s(1—V')—[(1 ~')+fP']J. . l-(1—V')—L(1 )o—'P'—

)JAN

."+l~-'(1 V')—
x [Jn ~"' J~"'J+—'v'[4P' -(1 ~—')]Jr d" 2v-'O'J—~ ~ ~~'(1 v')Jn-
——'y'{[(1—n') ——'P']J g~+ —'P'J g')+ ~3a'(1 p') J„—g' ~2p'[(1 n') —',P'jJ—~

—g"
(B21)

Ke have assumed the J~ ~d& terms approximately cancel
in Eq. (B14). Using the order-of-magnitude estimates
we made for the different types of exchange and as-
suming the antiferromagnetic parts just about cancel
since 1—n'=4P', we arrive at the following approxi-
mation for AE

hE,„;„—0.015{—0.005J „—0.5J„). (B22)

Likewise approximating hE;„ from Eq. (B16) we get

d E;„—0.01{7J„g)+0.0006J„„+0.0002J„„"
+0.01{4J~p")+3J&~&~. (B23)

From the fact that the total isotropic exchange is ferro-
magnetic with an exchange constant of 14 cm ', we
know that dE;„ favors the ferromagnetic state by
6J—6)&14 cm '=84 cm-'. Therefore,

I007J~-&'+00006J~-~1=84 cm '

+ I0.04J~g"+0.0002J~ „"+3Jd~g~l .

(Jq ~q~ is the Anderson" kinetic exchange term and can
be either ferromagnetic or antiferromagnetic, but is
probably small. ) If we assume J~ „—20000 cm ' and

8 P. W. Anderson, Phys. Rev. 115, 2 (1959).

0E,„;„{0.005+0.05)J„~——0.015—
d,E;„-',{0.0006+0.007)J~ „

=—O.217. (B24)

We must reduce this by 25%%u~ due to the I('E)'T2, )
state and, therefore, for these two states we have

hE, ;.,/hE;, . 0.16. —(B—25)

It must be stressed at this point that the sign and the
order of magnitude of the eBect are the only really
signi6cant things in these calculations, since we have
used quite a few numerical estimates. Since the iso-
tropic exchange is ferromagnetic, the exchange integral
is negative and, therefore, the anisotropy energy is
positive. That is, the

I 3,3) state is higher in energy than
the I3,0) state.

If the entire calculation is repeated for the
I
'Tg, ) states

arising from con6guration (c) given in Appendix A, we
6nd that the contribution to the anisotropy of exchange
is an order of magnitude smaller than the contribution
that we have just calculated for configuration (b).

~p-d =10Jp-p we get

152 cm '=84 cm '+84 cm ~ (if J "~J q')

which is reasonable if the d~d~ exchange is small.
Using these numbers we calculate that


