
P H VS I CAL R E VIE+' VOLUME 178, NUMBER 2 10 FEBRUARY 1969
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The derivative EPR line shape of Ni'+ in MgO (S=i) consists of (a) a broad line due to the AJAR, =i
transitions, which are inhomogeneously broadened by strains, (b) a sharp b,M, =2 double-quantum
transition, and (c) a line of inverse phase, both situated at the center of the AM, =1 line. This last line is
attributed to an ' internal cross-relaxation" mechanism which causes a broadening of the M, =O~~—1 and
M, =1+~ transitions at a particular site when the strain at that site is suKciently small to allow overlapping
of the two transitions. An expression for the over-all line shape is obtained, using a density-matrix approach
for the S=1 system, and good agreement with experiment is obtained. Values are obtained for the spin-
lattice relaxation parameters by Gtting the observed line shape to that predicted by the theory as a function
of the microwave power.

I. INTRODUCTIOÃ

'HE configuration of the Ni'+ ion is 3d' and the
ground term in an octahedral field is the orbital

singlet 'As(is, 'e, '); thus, a suitable spin Hamiltonian is

R=gpH S,
where S= 1.The g value for Ni'+ in MgO is 2.2145 ' the
deviation from the spin-only value g= 2.0023 being due
principally to the admixture of the term sTs(4, 'e,s)

through the spin-orbit coupling. Therefore, the expected
KPR spectrum of Ni'+ in MgO is a single line at a mag-
netic field Hs= hv/gP, where the two transitions
M, = 1~0 and 3f,=0+~—1 are coincident.

However, the observed KPR spectrum is more com-
plicated, as was shown by Orton et al. ,

' and, under
suitable conditions, up to three lines can be observed in
the derivative of the KPR absorption spectrum, all
centered at the field Ho, but having diferent widths and
intensities. (A typical spectrum is shown in Fig. 1.) We
shall discuss these three lines in turn:

(a) The normal (No) line. The principal feature of
the spectrum is the broad (at least 40G wide) line which
is attributed to the inhomogeneously broadened transi-
tions M, = 1 ~+- 0 and M, =0~~—1. This broadening is
caused by random strains in the crystal, and we can
make allowance for such strains in the spin-Hamiltonian
by adding the first order correction term

=0+~ —1 will occur at the fields EI=IJe e/gP a—nd
H=Ho+e/gp, respectively; on averaging over all values
of e, weighted by the probability f(e), a broad line cen-
tered at the field H p is obtained. The width of the line
depends on f(e), and appears to vary somewhat with
different samples, indicating that the samples have vary-
ing densities of strains. This broad line is called the NO
line.

(b) The double-quantum (DQ) line. A sharp line,
roughly 2 0 @ride, is observed at the center of the XO
line, and is attributed to the transition M,=1~—1
with the simultaneous absorption of two microwave
quanta. That this is a true DQ line is verified by two
facts as demonstrated by Orton et al. '. first, its inten-
sity varies roughly as the square of the microwave
power, and secondly, when subjected simultaneously to
two microwave frequencies v& and v2, sharp lines are
observed at the three 6elds given by 2gPH = 2vt, (i i+i s)
and 2i s. It should be noted that the strain term e(S,s—s)
influences the energies of the states ~M, =1) and
~M.= —1) to equal extents, so that the width of the

to the zeroth-order spin Hamiltonian X=gpHS, . (A
discussion of the spin Hamiltonian in the presence of
strains is given in the Appendix. ) The value of the strain
parameter e is di6erent at diBerent Ni'+ sites, and a
probability function f(e) can be defined such that f(c)de
is the probability that the strain parameter has a value
between e and e+de at a given site. Therefore, for a par-
ticular value of ~, the transitions M,=1~0 and M,

~ Research supported by the U. S. Air Force OKce of Scientilc
Research under Grant No. AFOSR 200-66.
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J. %'. Orton, P. Auzins, and J. E. Wertz, Phys. Rev. Letters
4, 128 (1960).

FIG. 1. Typical EPR derivative absorption spectrum, showing
the broad NO line, the narrow DQ line at the center, and the IN
line of inverse phase and width about twice that of the DQ line.
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Fxo. 2. (A) Diagrammatic derivative curve, showing NO and IN
lines; (B) absorption curve for NO and IN lines (integral of curve
A); (C) spin packets, corresponding to the transitions 3f,=1 ~~ 0
and 0~~1; (D) typical strain distribution function f(e); and
(K) spin packets for small strain, broadened by internal cross
relaxation.

DQ line is unaffected (to first order in perturbation
theory) by the local strains; consequently, the DQ line
is much more narrow than the NO line.

(c) The inverse (IN) line. The third line is centered
at the same field as the NO and DQ lines, and has a
width roughly twice that of the DQ line. It is charac-
terized by the fact that it has a phase which is the in-
verse of that of the NO and DQ lines in the derivative
of the EPR absorption spectrum. This IN line is visible
at very low microwave power, when the DQ line has
vanished; at higher power, the DQ line grows, and
"buries" the IN line.

In this paper, we are primarily concerned with ac-
counting for the existence of the IN line; we show, in
Sec. II, that it is caused by a form of cross relaxation
between the individual spin packets of the NO line. In
Sec. III, a theoretical expression for the over-all line
shape is obtained, using the density matrix for an in-
homogeneously broadened S= 1 system; in Sec. IV the
theory is compared with the experimental results, and
values for the relaxation times are obtained.

II. ORIGIN OF THE IN LINE

Since the IN line persists at vanishingly small micro-
wave powers, it is obviously not connected with any
sort of saturation eGect; rather, the IN line appears to
be a property of an inhomogeneously broadened 5=1
system, since it is also observed in each of the hyperfine
lines of the isoelectronic Co+ ion in Mg0. 2 Therefore, we
shall at present consider the situation at low powers,
when the DQ line is not visible. The derivative line
shape is as shown in Fig. 2A, where only the NO and
IN lines are seen. The corresponding integrated absorp-
tion curve is shown in Fig. 28; it is apparent from this
that the IN line is not a true EPR absorption line, but

~ J. W. Orton, P. Auzins, and J.E. Wertz, Phys. Rev. 119, 1691
(1960).The IN line has also been observed for Ni'+ in SrTiO3 by
R. S. Rubins and W. Low, in Paramagnetic Resonance, edited by
W. Low (Academic Press Inc. , New York, 1963), Vol. 1, p. 59,
and for Ni'+ in CaO by W. Low and R. S. Rubins, ibid. , p. 79.

represents a dip in the intensity of the absorption corre-
sponding to the M, =1&~0 and 0~~ —1 transitions.

The broad line is composed of spin packets whose in-
dividual width is 1/Ts, and which occur in pairs sym-
metrically disposed at a distance e from the center of the
line, corresponding to the M, = I ~~ 0 and 0~~—1 tran-
sitions for a site with strain c. Two such spin packets are
shown in Fig. 2C. In order to obtain the over-all line
shape, an average is taken over all values of e using a dis-
tribution function f(s), as discussed in Sec. I. A general
form for the function f(s) may be obtained by argu-
ments similar to those of Grant and Strandberg' and of
Stoneham, 4 which indicate that the distribution func-
tion is somewhere between the limiting cases of Gaus-
sian, i.e.,

exp
f/2

and Lorentzian, i.e.,

f(s)=-
rr W'+s'

Mims and Gillen' have considered the case where the
deviations from cubic symmetry at a given site are pro-
duced by the electric fields of point charges distributed
randomly through the crystal; they express f(s) in the
form

oo

f(s) =— dp e 'e' exp( —cps )2'
(3)

where c is a constant proportional to the density of the
defects. This expression, which is the Fourier transform
(FT) of exp( —

~ jr~
'"), is between the Gaussian LFT of

exp( —«')] and Lorentzian LFT of exp( —~s~)1 expres-
sions, and would seem to be applicable to the case of
Ni'+ in MgO, since inspection of the wings of the NO
line indicates a line shape between Gaussian and
Lorentzian.

However, as Mims and Gillen point out, there is no
significant difference between the three forms of f(s)
LEqs. (I)—(3)j so long as one considers the regions be-
tween the turning points of the derivative. In particular,
all three functions have a maximum for &= 0, a typical
plot of f(s) being given in Fig. 2D.

Thus if spin packets of the type shown in Fig. 2C are
averaged over e using a distribution function of the type
shown in Fig. 2D, the resulting curve will have a shape
similar to that of Fig. 20, without the dip associated
with the IN line. Nevertheless, the dip could arise if the
most probable value of

~
s~ were nonzero; in order to

bring this about, it might be thought possible to invoke
the dynamic Jahn-Teller effect. However, Van Eekelen

'W. J. C. Grant and M. W. P. Strandberg, Phys. Rev. 135,
A715 (1964).

4 A. M. Stoneham, Proc. Phys. Soc. (London) 89, 909 (1966).' W. B. Mims and R. Gillen, Phys. Rev. 148, 438 (1966).
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and Stevens' and Bottger~ have investigated the dy-
namic Jahn-Teller effect for an 5= I system in an octa-
hedral environment, and did not find that there is, on

average, a splitting between the M, = 1~0 and 0~~ —1
transitions. In fact, it appears that no reasonable ad-
justment of the form of f(e) will account for the occur-
rence of the IN line, and so we propose the following
explanation.

For large values of ~, the spin packets are as shown in
Fig. 2C, but when c is of the order of the linewidth of the
packets ( I/Ts), the two packets for a given e will

overlap, and a form of cross relaxation can occur be-
tween the two transitions 3I,= 1 ~~ 0 and 0~ —1.This
wi11 have the effect of broadening the spin packets at
the center of the line, and so the absorption height of
spin packets is less at the center —compare Figs. 2C
and 2E. In other words, the effect of the interaction
between the two dM, = 1 lines is to push intensity away
from the center of the line, where the spin packets are
overlapping, with the result that the over-all absorption
curve has the shape of Fig. 2B. Thus, the resulting IN
line in the derivative curve (Fig. 2A) will have a width
of the order of the width of the individual spin packets,
and a height which depends on the strength of the
mechanism responsible for the relaxation between the
LQf, = 1 lines.

In order to express this situation quantitatively, we
have used a density-matrix approach in Sec. III, and
show that the effect arises very naturally on writing
down the equations of motion of the density matrix.
The method introduces the various relaxation times
parametrically, and is independent of the mechanism
giving rise to the relaxation, but in Sec. III B we derive
relations between the relaxation parameters, assuming

only spin-lattice relaxation. We then derive an expres-
sion for the line shape, and. show that the parameters
obtained by 6tting the line shape with experiment are
consistent with the assumption of Sec. III 3 (see Sec.
IV).

III. THEORY OP LINE SHAPE

A. Equations of Motion of Density Matrix

The most straightforward approach to the problem of
line shapes of magnetic resonance lines is through the
semiempirical Bloch equations; relaxation times T& and

Tm are de6ned for the rate at which the longitudinal and
transverse components of the magnetization vector M
approach equilibrium after the application of some per-
turbation, and the shape of the absorption and disper-
sion signals follow in a straightforward fashion. (See,

6 H. A. M. Van Eekelen and K. W. H. Stevens, Proc. Phys. Soc.
(London) 90, 199 (196'I).

~ H. Bottger, Phys. Status Solidi 23, 325 (1967);24, 65 (1967).
In the latter reference, a splitting of the ESR line is obtained, but
this splitting appears to vanish due to symmetry arguments of the
type discussed in Ref. 6.

for example, Abragam' or Slichter. ') In general, however,
for a system with more than two levels (i.e., 8)—,'), more
than two relaxation times can be dined, and more than
one resonance line is observed; therefore, the Bloch equa-
tions are not directly applicable to systems of S)-', (un-
less the levels are equally spaced). The most convenient
approach for more than two level systems is through the
density matrix, and we have used this approach.

The first treatment of magnetic relaxation using the
density-matrix formalism was given by Wangsness and
Bloch.""The present work is based on the theory of
Red6eld, "as presented by Slichter' and by Redfield. "
The formalism provides a basis for the calculation of
relaxation times, and we shall use this in order to derive
relations between the various relaxation parameters
that are involved in the description of the line shape;
however, we shall not attempt to calculate the relaxation
times from 6rst principles.

In order to set down the equations of motion of the
density matrix, following Refs. 9 and 13, we shall con-
sider an ensemble of systems each with a Hamiltonian

(4)

Xo is time-independent, and is the same for all members
of the ensemble; its eigenfunctions are denoted by f,
with corresponding eigenvalues t'r&e . The operator h, (t)
is an Hermitian perturbation which is random in time,
and is responsible for the relaxation; it is assumed to be
different for the different members of the ensemble.
Thus, the wave function for each member of the
ensemble can be written

and the density matrix of the ensemble is defined as

pea' —Ncaca' / y

where the angular brackets denote an average over the
ensemble, and the asterisk denotes complex conjugate.
Therefore, the (ensemble) average of any physical
operator A is given by

The equation of motion of the 00.' component of the
density matrix can be written in the form

dpaa'

where the 6rst term represents the usual time variation

s A. Abragam, The Principles of Nuclear Magrretisng (Oxford
University Press, Oxford, England, 1961).' C. P. Slichter, Principles of Magnetic Resonance (Harper 8z
Row, New York, 1964).

+ R. K. Wangsness aad F. Bloch, Phys. Rev. 89, 728 (1953).' F. Bloch, Phys. Rev. 102, 104 (1956); 105, 1206 (1957)."A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957).
'~ A. G. Red6eld, in Advances in Magnetic Resonance, edited by

J. S. Waugh (Academic Press Inc. , New York, 1965), Vol. 1, p. 1.
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in 4 due to the static Hamiltonian Xo, and the second
term represents the relaxation effects. pcs. (T) is the
value of ppp when equilibrium is reached between the
ensemble and a bath at temperature T; at equilibrium,
only the diagonal elements of the density matrix have
nonvanishing values, so that

(—%Me —AMe»)
pcs =bee expI P exp

&uT e- kT )

The relaxation parameters R pp are derived on the
basis that the interaction hh;(t) represents a small per-
turbation on Xo, they can be related to the matrix ele-
ments of h, (t) by the following expression:

+aa'pp'= gaea'e'(&e' &a')+Iaea'p'(&a &e)

~~'O' E Ivev~(&v &~) Lp Z Iv~'ve'(+~' +v) i (9)

where

ee (&)= (O' I&'(&) I& )64'I &'(~—') IA))e'"'"r.
0

the rotating system is now given by

-Xrot
= —z ip + Z ~lkt jr'NÃ'

Xexp[i~(M M'—N+—N')t j[p~~ pN~—(T)j, (12)

where
X"'/5 ((so (o)—S,+e(S.' ', )—+-&S.,

and where we have ignored the right-handed circularly
polarized component of Xo. Equation (12), as applied to
the nine components of the density matrix, is the start-
ing point for the derivation of the line shape.

The measured quantity in a magnetic resonance ex-
periment is the rate of absorption of microwave power,
which is simply given by the time average of —cohkS„
in the rotating frame. Thus, we are only interested in the
stationary components of the density matrix, since the
parts which have a time dependence will average to zero
in the expression for the absorption of microwaves. For
this reason, we look for solutions of Eq. (12) for which
dp/dt=0, and ignore all R~~ N~ which contain a time
variation, i.e., we require that M M' N—+N'—= 0.

The assumptions involved in deriving Eq. (9) are dis-
cussed in detail in the sources quoted; we shall simply
assume here that the theory is valid in the context to
which we wish to apply it.

The static Hamiltonian for the Ni'+:MgO system is
taken as

X,=gPHS, +e(S,'—-', ), (10)

where the eBect of local strains is represented by the
diagonal term in e, oR-diagonal terms being neglected.
Thus the eigenfunctions IM, ) of the s component of
spin S„where M, = 1, 0 and —1, are also eigenfunctions
of X,. However, in a magnetic resonance experiment,
a time-varying microwave field is applied perpendicular
to the s axis, and we represent the field by

Xy(f) = 2AAS cos(df,

the total Hamiltonian now being

XO=X,+X&(/) = A[aioS.+e(S,'—-', )+2hS, COS&otj, (11)

where Arao=gPH, and tie= e.
In order to remove the time variation from Xo, we

transform to a coordinate system rotating in the left-
handed sense about the s axis with angular velocity co,.
the phase of the rotation is chosen so that the x axis of
the rotating system points along the direction of the
left-handed circularly polarized component of X&.

In this rotating system, we take the functions IM)
as basis for the representation of the density matrix,
and replace p in Eq. (7) by e—'"e"pe'"e*'; the equation
of motion of the MJL/I' {;j.t;mpnt Of the-density matrix in

B. Relaxation Parameter

Before embarking on the solution of the equations of
motion of the density matrix [Eq. (12)j, it is instructive
to investigate the parameters E~~ ~~ and to derive
some relations between them. In order to do this, it is
necessary to assume a particular form for the interaction
h;(t) between the spins and the lattice; Stevens" has
discussed the construction of suitable dynamical Hamil-
tonians for applications in relaxation problems, and it
appears to be a reasonable approximation if one chooses
a form similar to that for the static strain Hamiltonian.
This latter problem is discussed in the Appendix, and
it is apparent that the dynamical Hamiltonian should
be expressed as a sum over second-rank spin tensors:

h;(t) =g H, (t)o,~». (13)

where

k„((o)= (H, (t)H;~(t r))e' 'dr—
'4 K. W. H. Stevens, Rept. Progr. Phys. 30, 189 (1967).

The 0,('& represent the spin operators, and are defined
in Eq. (A5), while the H, (f) are spin-independent. The
reason for omitting first-rank spin operators is that the
relaxation is expected to take place principally through
modulation of the electric field at the ion, such interac-
tions being quadratic in the spin coordinates.

The J~~ ~~ of Eq. (9) are now dined as
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The matrix elements of the 0, ' will be abbreviated by
I',~, which are de6ned as follows:

(m'IO, &» Iu) = sM. ,M„Pr+q IO, &» ISr)
(16)

Since the only J~~ ~~ of interest are those for which
M M'=—X 1P,—we see that the onlykqq. (00) which are
involved are those for which g= g'; we shaH assume that
kqq(10) =k«(—00), and also, by symmetry arguments, we
can assume that kqq(10)=k 0 q(a&). Moreover, if the

static Hamiltonian is approximated as X0=kco05„ it
appears that only three independent kqq (00) are re-
quired, namely,

kpp(0) =E0, k11(000)=E1q k22(2100) = kqq (17)

therefore, a complete description of the relaxation pa-
rameters of the system can be obtained in terms of the
three parameters E0, Ey, and E2.

Using Eqs. (14)-(17), we see from Eq. (9) that the
relevant relaxation parameters R~~ zz' are given by

ql1

=21~iqif'qM~q'-~qp Z I:(~q- ) +(~q-M') Ãiq-i.
@It

We shall now rede6ne the individual E~~ ~+,~+, in
terms of reciprocal relaxation times, in keeping with the
spirit of the Bloch equations. There are three distinct
"transverse" relaxation times:

The first two of these equations (involving S„s+,and
S ) are the usual Bloch equations; the remaining equa-
tions are those involving second-rank spin tensor opera-
tors, and are necessary for a description of the relaxation
of an S= 1 system if the symmetry is lower than octa-
hedral. The complete set of Eqs. (24), therefore, repre-
sent an extended version of the Bloch equations for an
5= 1 system.

Since each line in Eq. (24) is of the form

%010= —1/&2= —
I &0+ft 1+2&2], (19)

(20)

(21)

+1—11—1 1/2 2 [pit 1+2E2] )

+100-1= 1/2 2 = pft1 p

and two distinct "longitudinal" relaxation times: 1—(A.)= ——(A.),
~a(22)81100= 1//T1= 3E1

%1-1-1= 1/&1'= 0&2 (23) the complete solution for the variation of the system
with time can be obtained by solving the equation

+MM'M+0M'+q=~MM+qM'M'+q(g&0)+ASM+qM'M'+0( gppp)

&002 Pq'M+qq'M((g' 7'')010)+&0 M q M+0((M' q')010)]—(18)

In order to see which physical processes these relaxation
rates describe, it is convenient to consider the time vari-
ation due to relaxation of the nine independent operators
A for an 5=1 system, using the fact that the average
value (A ) is given by TrpA . One of the nine A„'s is
the identity operator, whose time derivative is trivially
zero; the time derivatives of the remaining eight inde-
pendent operators can be written as follows:

2~—&s.)= ——+ IL(s.)—s.(0)],
T2 Tl ~

1 i—(A.)=—(A.)+-(LI.,A.])
dt T

(25)

for each A . Use of the density matrix in place of the
operators A„gives equivalent equations, but also en-
ables the number of unknown parameters T to be re-
duced from five to three by using Eqs. (19)—(23). In
the following, we And the line shape by solving the
equations of motion of the density matrix, but we could
equally well use Eq. (25).

(1—(s )= —
I

—+, l&s+),
dt I 2'2 T'2'i

(S 2 2) (S 2 2)
dt

1 1)—(s,s +s s,)=——I(s.s +s s.),
T2'i

1—&s, )=—&s,
dt T3

C. Line Shape

The individual equations of motion of the density
matrix can now be written down using Eq. (12) and the

(24) definitions of the relaxation times as given in Eqs. (19)-
(23). Since the sum of the diagonal elements is a con-
stant, we shall deal with the differences in the diagonal
elements h„and ~„rather than the elements them-
selves, where

P00 Pll. p ~e P-1—1 P00 ~

In addition, we shall assume that Lr0«kT, so that the
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equilibrium values of these differences can be written

p»(r) —pr~(r) =p-r-r(r) —poo(r) =~o.

Thus, the equations of motion are

kV2ih[2(p» Pol) (Po-& P—ro)]
—(1/r, )[2s„—~.—z,]

—(1/Tr )[6 +6 —26o]. (26)

a.= --',V2ih[2 (p~r-p io) —(p»-por)]
—(1/Tr) [2he—ho —ho]

—(1/r, ')[~„+~,—2~o], (27)

p»= i[(b+—e)p»+5~&h(~- pr r)—]-
P10/Ts po 1/Ts', -(28)

po-1 i[(b e)po—1+z~h(+ +pl—1)]
—po r//Ts —p»/Ts', (29)

pl-r= i[2bpr —r+ oV2h(po —r p»)] p-&/To (30)

with three further equations which are the complex con-
jugates of Eqs. (28)-(30), since one can write p;;=p;,*
because the density matrix is Hermitian. tA'e have
written

~=cup —Or ~

so that 8 represents the displacement from the center
of the spectrum, which occurs at the frequency cop=co.
Sroubek'~ has derived similar equations in his analysis
of the DQ transition in this system and the dual fre-

quency experiment of Orton et al.' Our equations di6er
from Sroubek's by the inclusion of the term in T&' and
the cross-relaxation term in T2', the latter being essential
in order to obtain the IN line.

We solve Eqs. (26)—(30) by equating the time deriva-
tives to zero, and calculating the absorption I of micro-
waves, which is given by

I= —robe(s„)= —rohk TrpS„= ,'V2ikr—oh-

X [(P10 pol)+ (po-r —p—is)] (31)

1
Ii P 0, =0)=-' r,'

Acth p

T2

X(+ I. (34)
(b e)'+ 1/T—s' (8+e)'+ 1/Tost

Again we obtain the expected result, namely, there are
two lines at b =H e, with natural linewidths 1/Ts, corre-
sponding to the transitions M, = j. +~ 0 and 0 ~~ —1.

(iii) As the microwave power P is increased, the term
PD=P/(4bs+1/Too) in the expression for I becomes
more important; it can be seen that this term arises
from Eq. (30), which involves pr r, and therefore repre-
sents the DQ transition M, = 1+~ —1. [It is also worth
noting that if there is no strain, Eq. (33) shows that
there is no distinct DQ line. ]

Equation (32) represents the absorption curve I(e)
for a given value of the strain parameter e, and so, in
order to obtain the total absorption intensity 8, we
must average over a strain distribution function f(e),
such that

In connection with this expression, it may be helpful to
consider the behavior of Iunder certain approximations:

(i) In the absence of a zero-field splitting, we put e= 0
and find that

I(e= 0)= 2&a—&Phos/(b'+S'+PST) . (33)

As is to be expected, I(e=0) gives the usual line shape
obtained from the Sloch equations, with effective trans-
verse and longitudinal relaxation times T2 and T~ given
by

1/Tse=S=1/To+1/Ts', 1//Tre=1/T=1/T, +2/Tr'.

(ii) In the limit of vanishingly small power P and no
cross-relaxation term, we put 1/T 's=0 and neglect
powers of P higher than the first to obtain

Obviously, it is straightforward but tedious to calculate

I, so we shall simply quote the result as follows (where
we write the microwave power as P=h'): where

I(e)f(e)de,

(35)

where

and

Ce'+E
I=—2AorPD p

e'—22co+8

C= 1/Ts 1/Ts'+PD/To, —
E=S[b'(1 2PD)'+ C(C+Pr—r)],
A =bs(1—2PD) —SC—,'P(r&s+ TC),
P= (E/S) [b'+S'+Psr],

D= [4b'+ 1/T ']-'
s= 1/r, +1/T, ',
T= [1/Tr+2/Tr'7 '.

» Z. Sroubek, Czech. J. Phys. Bll, 634 (&961).

(32)
f(e)de= l.

W
f(e) =

or W'+es
(36)

f(e) must have a form similar to those given in Eqs.
(1)—(3), where s= he; it was pointed out in our discus-
sion of these equations that all three forms of f(e) are
virtually indistinguishable if e is within the turning
points of the derivative of f This is jus. t the case with
which we are concerned, for we have only investigated
the line shape within the "width" of the NO line; thus,
we may choose the most convenient form for f(e), which
turns out to be the Lorentzian form
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since the integration required in Eq. (35) can be per-
formed analytically.

The result of the integration over the strain can be
expressed as follows:

" W 1 Ce'+Z
g =—2A0)PAD de,~ ~ W'+e' e' 2Ae—'+B

(37)

CWB«2+x(Wy LZ(B~~2—A)]~~2)
X 7

{W'+WP2(B'I' A)g'—"+B'")$2B(B'" A) J'—"
where the parameters A, B, C, and Z are defined in Eq.
(32).

Unfortunately, this expression for 8 does not lend
itself easily to approximate simplifications which are
reliable over the range of microwave power used in the
experiments. However, the following expansion is useful
for the case of vanishingly small power I', and when
1/T2'((1/T2, ' the expansion is valid to terms of erst
order in P and 1/Tq'.

broaden because of saturation effects; this will have
little effect on the NO line, but the IN line broadens and
decreases in intensity (see Fig. 4). Also, the DQ line
grows at a rate roughly proportional to E2, and eventu-
ally obliterates the IN line. "

Before finally making a comparison with experiment
for the theoretically predicted line shape represented by
d of Eq. (37), it is necessary to make one correction. So
far, we have assumed that the local strains contribute
only to the broadening of the kI, =1~+-0 and 0~~ —1
transitions, with no contribution to the width of the DQ
line. This is, to a certain extent, unrealistic, and it is not
found possible to obtain a good agreement between
theory and experiment for the variation of the DQ line
with power. The method of correction that we have
adopted is to assume that 8 in the expression for 5
should be replaced by 8+a, where ~ is a small correction
due to possible variations in g value or small internal
magnetic fields due, for example, to neighboring mag-
netic impurity ions; ~ is assumed to have some dis-
tribution function g(~), which we again assume to be
Lorentzian, and of the form

W+ 1/T2
&(P,1/T2' ~ 0)= 2A&u—PAO

b'+ (W+1/T2)'
g(~) =

2Tg+s g2+(12T~+)2
(39)

W+ 1/T2 1/T2
I

. (38)
WT b2 g 1T 2 b~ 1T22

The first term represents the NO line, with "effective"
relaxation time 1/T2*=1/T2+W; this would be ob-
tained by averaging over e two Lorentzian lines at
8= &e )see Eq. (34)].The second term is a small correc-
tion to this due to the nonzero value of 1/T2'. The third
term represents a line of width 1/%3T2, but the line has
a negcti~e sign; this, then, represents the IN line. Note
that the intensity of the line depends on 1/T&' (the
cross-relaxation rate), and the width depends on 1/T~
(the width of the individual spin packets of the M,
= 1+~ 0 and 0+~ —1 transitions), as is expected from
the discussion at the end of Sec. II.

According to Eq. (38), the ratio of the widths of the
IN and NO lines is 1/T2. W+ 1/T2, for our sample, the
widths are 3 6 and 43 6, respectively. The ratio of the
heights of the derivative curves is

1/W T,'.1/(1+WT2)';

since W&&1/T~, this reduces to 1/T2'. 1/T2(1/WT2). It
is apparent that, although the IN line represents only
a small decrease in absorption, the height of the deriva-
tive can easily rival the height of the derivative of the
XO line if the inhomogeneous broadening parameter 8'
is large compared to the spin-packet width 1/T2, for
example, we find that the height of the IN line can be as
large as, or even larger than, the height of the NO line.

For larger microwave powers, Eq. (38) is not appli-
cable, but it is apparent that the spin packets will

A(5) = d(8+K)g(~)d~. (4o)

The correction resulting from the introduction of this
type of inhomogeneous broadening represents a very
small correction to the NO and IN lines, which justifies
the somewhat cd hoc method of introducing it; we shall
place no particular physical significance on the value
obtained for 1/T3*.

The derivative dA(8)/db of the line-shape function
was evaluated numerically on the University of Minne-
sota CD 6600 computer, and the various parameters
involved were adjusted to fit the experimental results,
as discussed in Sec. IV.

IV. EXPERIMENTAL RESULTS

The experiments were performed at a frequency of 9.4
6Hz on a standard reQection cavity system with 100

I It is necessary to define precisely what is meant by the dis-
appearance of the IN line. We have adopted the simple criterion
that there is no inverse line if the derivative of the absorption
signal crosses the axis only once, i.e., at the center of the line.

We have chosen to "callIIthe broadening parameter
1/2T&~ so that the DQ line, which is most affected by
this broadening since it is the narrowest line, will have
the same type of line shape, viz. ,

P/(48'+ 1/T32),

but with 1/T3 replaced by 1/Ts+1/T3*.
Therefore, the over-all line shape is given by
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kHz phase-sensitive detection. In order that reliable
comparisons of signal intensities could be made at vari-
ous power levels, two calibrated attenuators, R~ and
R&, were used in the microwave system, theformerbefore
the cavity, and the latter after the cavity, and just
before the crystal detector. Ez determines the power P
incident on the sample, while Eg is adjusted so that the
same power is always incident upon the detector crystal;
in this way, the sensitivity of the detection apparatus
should be independent of the power E. The measured
height of the line shape is then multiplied by R&, so that
the resulting quantity S is given by

a pa(a)ys=~—
/88( P )

where P is a factor depending on the sensitivity of the
apparatus, and 2 (5) is the absorption line shape as given
in Eq. (40). By this means, if A represented the absorp-
tion line shape of a simple unsaturated line, the mea-
sured quantity S would be independent of the micro-
wave power E'.

Measurements were made at the two temperatures
—137 and. —150'C, because all three lines (NO, IN, and

DQ) are visible within the available range of microwave

power; therefore, it is possible to obtain the most ac-
curate values for the relaxation parameters in this tem-
perature range. At 4.2'K the resonance is very readily
saturated, and so we have not studied the system at low
temperatures in any detail. The width of the NO line

0 I ~ l I I t I 0 I t l r I r I

100 200 300 0 IOO 200
MICROWAVE POWER In mW

PiG. 3. Comparison of computed and experimental data for
derivative amplitudes and linewidths of NO, DQ, and IN lines at—137 and —150'C. Circles, squares, and triangles represent ex-
perimental values; solid lines represent computed curves.

varies with crystal orientation; our results are taken
with the magnetic Geld parallel to one of the fourfold
crystal axes, in which direction the linewidth is a
maximum.

The measured quantities were the heights and widths
of the NO, IN, and DQ lines as a function of microwave
power at —137 and —150'C. These quantities were
compared with the computed values given by Eq. (41),
and the relaxation parameters involved in A (8) were ad-
justed to obtain closest agreement between theory and
experiment. The results of the experimental and theo-
retical comparisons are shown in Fig. 3. In order to
make the comparison, the computed line shape had to be
scaled to Gt the experimentally obtained curves. In
addition, a scaling factor for the microwave power P is
required, since it is not possible to measure E directly;
the scaling factor used agreed closely with the result of
a separate experiment on the same cavity. "

When making the comparisons described above, and
illustrated in Fig. 3, it is necessary of course to keep the
scaling factors the same for the two diGerent tempera-
tures; in addition, we do not expect that the inhomo-
geneous broadening parameters should change with tem-
perature. Thus W and 1/Ta* are the same at the two
temperatures, while the remaining parameters are
allowed to vary. The results of the Gt are tabulated in
Table I.

However, as a result of the fitting of the parameters, it
was found possible to verify the relations between the
parameters as derived in Sec. III 8; therefore, we made
the Gnal Gts by assuming that there are only three in-
dependent relaxation parameters (1/Tr, 1/T2', and
1/T&), and that the remaining two are strictly related to
them by the relations

(42)

csee Eqs. (19)—(23)j.Therefore, in Table I, columns 4
and 5 are related to columns 2 and 3 by Eqs. (42) and
(43). The values given in this table are probably accu-
rate to within 10%.

It is therefore possible to obtain values for the param-
eters Eo, E~, and E2, as deGned in Sec. III 8, and these
values are listed in Table II.

In considering these results, it must be pointed out
that the over-all line shape varies considerably from
saniple to sample; therefore, the results given here repre-
sent measurements on a particular sample and are not
necessarily applicable for all Ni'+ in MgO samples. In
particular, the linewidth of the NO line varies very
markedly, and depends on the history of the sample; for
example, the broadest NO line that we have observed
was 170 G wide, but after heating the sample at 1300'C
for 3 days, followed by cooling to room temperature in

' Pameia Wormington and J. R. Bolton (private communica-
tion).
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TABLE I. Measured values of relaxation rates and
strain parameters (in MHz).

Temp.

1 1 1

TQ TQ Tl

1 1

Tl Tl
—137'C—150'C

69 i0 32 10 22
53 8 28 8 20 1013 61

2 days, the linewidth was reduced to 87 0, which demon-
strates that the strains can be substantially modified by
heat treatment. Dickey and Drumheller" have investi-
gated the effects of local strains in the spectrum of V'+
in Mgo, and conclude that the strains are probably
caused by the presence of V'+ ions, which require charge
compensation; we have observed apparent changes in
the Ni'+ concentration after treating the sample, which
indicates that Ni'+ is probably convertible to other
valence states, and so, to a certain extent, the local
strains may be caused by the charge compensators of
Ni'+ (or perhaps Ni+) ions. However, further experi-
ments are necessary in order to establish this.

In addition, as the concentration of Ni+ ions in-
creases, dipolar broadening of the line can take place;
this type of broadening, unlike strain broadening, will
broaden the DQ line (M,=1~~—1) as well as the
M,=1~0 and 0~~ —1 transitions, and in some cases
it is not possible to observe the DQ line because of this
effect. The sample from which the results quoted here
were obtained was chosen so that all three lines were
readily visible, which required the dipolar broadening
to be very small, and readily allowed for by the integra-
tion over a in Eq. (40).

TAl3LE II. Values of relation parameters Xo, Z&, and E& (in MHz).

Temp.

—137'C—150'C

Ko K$

15
12

K2

17
15

"D. H. Dickey and J. E. Drumheller, Phys. Rev. 161, 2'l9
{1967).

V. CONCLUSIONS

We have demonstrated that the use of the density
matrix aBords a straightforward and successful method
of description of the EPR line shape of the Ni'+ ion in
Mgo, and enables relaxation rates to be measured di-
rectly from the variation of the over-all line shape with
microwave power. In particular, the IN and DQ lines
arise naturally from the solution of the equations of
motion of the density matrix, and it is apparent that
neither of these lines will be visible if there is no in-
homogeneous broadening.

The IN line has been identified as being due to an
internal cross-relaxation process between the 3f,= 1+~0
and 0~ —1 transitions, and it is perhaps useful at this
point to emphasize the distinction between this process

and the more usual type of cross-relaxation process. In
general, cross relaxation is said to occur if two spins
undergo a mutual spin Qip so that energy is conserved,
and this can take place via dipole-dipole interactions.
For example, if the EPR lines of the two spins overlap
to some extent, the result is a change of S, and. S„(or
M, and M„) in the rotating coordinate system (rotat-
ing about the s axis). In contrast to this situation, the
internal cross-relaxation mechanism takes place between
two overlapping lines which originate from the same
spin system. Clearly, this is not a true cross-relaxation
effect, but the result must be the same, namely, that the
presence of a strain can alter the relaxation rates of S,
and S„in the rotating frame.

The physical mechanism involved here is not, per-
haps, clearly demonstrated by simply solving the equa-
tions of motion of the density matrix, and it is best to
consider the extended form of the Bloch equations as
given in Kqs. (24) and (25). These equations show that,
for an S= 1 system, it is not suQicient to consider only
the behavior of the vector quantities S„S„,and S„but
that the behavior of the tensor quantities S,S„+S„S„
S„S,+S,S„,S,S,+S,S„SP——„and S,'—S„'must also
be considered. For example, if the commutator in Eq.
(25) is evaluated for A =S, (or S~), it will be found
that the rate of change of (S,) contains the term
e(S,S.+S,S,); therefore, the strain parameter e couples
the relaxation of the vector operators S„S„,and S, to
the relaxation of the tensor operators (S,S„+S„S,), etc.
In this way, it can be seen that, as the strain parameter
e is varied, the coupling between the relaxation rates of
the two sets of operators is varied, and therefore the
apparent rates of relaxation of S and S~ in the rotating
frame is a function of e. Since the value of e determines
the separation of the 3E,=1~0 and 0~~—1 transi-
tions for a particular spin, the resulting effect is inden-
tical to that of a genuine cross relaxation between the
two transitions.

ACKNOWLEDGMENTS

We are greatly indebted to the late Peteris V. Auzins
for many useful discussions, and for the initial stimulus
which prompted this work. We would also like to thank
Dr. T. Cole and Dr. J. J.Lambe for a number of helpful
suggestions.

APPENDIX: SPIN HAMILTONIAN FOR Ni2+

IN THE PRESENCE OF LOCAL STRAINS

The ground term of Ni'+ in our octahedral 6eld is
'A2(e') (using the hole notation), which is an orbital
singlet. In order to account for the observed deviation
of the g value and to allow for perturbations of the
ground state by local strains, we must include the spin-
orbit coupling X„,which will admit the excited states
'T2(t2e) and 'T2(t,E). The former state will dominate
the admixture since it is the lower lying, and we shall
neglect the 'T2 state for simplicity; thus the ground-
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state wave function can be written

(A4)V,=Q, apOp"),

It is possible to make a one-to-one correspondence
between the matrix elements (M'

j V j M) and the matrix
elements (M,'j V, jM,) of a spin operator V„where the
states

j M, ) are the appropriate states for a spin S= 1
system. The operator V, is given by

X j
'TpM" j), (Ai)

(A5)

and the a, are related to the C,"'& of Eq. (A2) by factors
of the order of ($p/6)', the exact relations are unim-
portant. The essential point here is that in order to
make the correspondence (M'j VjM)=(M, 'j V, jM,),
it is not necessary to include any first-rank tensor opera-
tors in the expression for U, in Eq. (A4) (tensors of rank
greater than 2 cannot appear, since they will have zero
matrix elements for an S=1 system); physically, this
corresponds to the fact that an electrostatic field cannot
have the same effects as a magnetic field (see, for ex-
ample, Ref. 14).

Thus the full spin Hamiltonian for a site with strain
parameters a, is given by

(A2)V g C (sk)O (sk)(i.)

where the Op('P)(1, ) are oPerators of rank 2k which
operate on the orbital coordinates of 1; of the ith elec-
trons; only tensors of even rank are included because
matrix elements of odd-rank orbital tensors will vanish
between 3d electronic wave functions (i.e., C,("+'&—=0
for all h). We require the matrix elements (M'

j V jM),
where jM) is given by Eq. (A1): Ignoring a constant
diagonal energy, we can Put (PApM'ap Vj'ApMap)=0,
and it also turns out that (pApM'as

j
V pTpM"i&=0 for

all M', M", i. Therefore,

where M represents the s component of spin S=1, and
has values 1, 0, and —1.6 represents the splitting of the where the 0,"~ are second-rank spin tensor operators
'T2 and '32 states; explicit descriptions of these states defined by
are given by GrifFith. " Representing the spin-orbit Op "&=S,'——p,S(S+1),
coupling by X„=P)pi,"s;, the g value is found to be Op&(p) = W (-'Q6) (2Se+1)Sp )
given by g= 2.0023+4)p/tI(p.

Local deviations from cubic symmetry can be repre-
sented by an operator

X.=gPHS.+Q, a,O, ('&, (A6)

(M'j V
j M) =— Q (eApM'as jX..j

sTpM"j)
g2 M"i,M"'j

X('TpM'"jj Vj PTpM"e&(eTpM"p jX:j
'~pMa &. (A3)

'P J.S.Gri(8th, The Theory of Trastsstiost hyetal lotos (Cambridge
University Press, London, 1961). where ~=ao.

X,(diag) =gPEES,+e(S,'—-', ),

which we have generally approximated by considering
only the diagonal part


