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A Mossbauer-eGect study of the low-spin compound KIFe(CN)6 has been carried out under a wide
variety of conditions. In concentrated samples, the quadrupole splitting, linewidth, and isomer shift were
measured as a function of temperature. The components of the electric-Geld-gradient tensor (EFG) were de-
termined from the quadrupole peak area ratios of single-crystal absorbers at 20 and 300'K. The orientations
of the g tensor and EFG in the concentrated salt were also determined by experiments using large magnetic
fields in single crystals at low temperatures. Paramagnetic hyperGne structure was found at low tempera-
tures in samples of KIFe(CN) 6 diluted in the diamagnetic K3Co(CN) &. The theory of hyper6ne interactions
as applied to this case is reviewed, and the sensitivity of the Mossbauer spectrum to the relative directions
of the g tensor and cubic 6eld are discussed. Spectra are calculated using two models based on KSR and sus-
ceptibility results, and one of these is found to be in good agreement with the data.

1. INTRODUCTION

"POTASSIUM ferricyanide is a compound in which
strong covalent bonding exists between a metallic

ion and its ligands. The ferricyanide complex has only
one unpaired electron and a spin of ~~ compared to the
more usual 8=—,

' configuration for a ferric ion. As a
prototypal material, it has received a large amount of
experimental attention and thus is an attractive candi-
date for Mossbauer studies. An additional motivation
for looking at the Mossbauer spectrum was an anomaly
in the speci6c heat at 130'K,' as well as some strange
behavior in the magnetic susceptibility at this tempera-
ture. ' Although the entropy associated with this
anomaly appeared to be less than that needed for a
magnetic phase transition, it was thought worth white
to look for magnetic splitting in the Mossbauer pattern
below 130'K. The results of this measurement were
negative apart from a broadening of the absorption
lines at low temperature which vras probably due to an
increased spin-lattice relaxation time.

The possibility of studying the paramagnetic hyper-
Qne structure in the Mossbauer spectrum thus presented
itself. Use of magnetically dilute I e" enriched speci-
mens provided its realization, and much of the present
paper is devoted to the description of the observed
magnetic hyperhne spectra. The theory of ESR hyper-
6ne interactions, somewhat modified and extended,
provides a satisfactory interpretation of the experi-
ments.

The Mossbauer spectrum of powdered absorbers of
KsFe(CN) s was erst studied by Kerler and Neuwirth' in

[Supported by the National Science Foundation and the
Once of Naval Research.' C. C. Stephenson and J. C. Morrow, J. Am. Chem. Soc. 78,
275 (1956).

~ G. ShoGa, O. Ristan, and K. Ruckpaul, Zh. Experim. i Teor.
Fiz. 55, 641 (1958) /English transl. : Soviet Physics. —JETP 8,
445 (1959)g.' W. Kerler and W. Neuwirth, Z. Physik 167, 188 (1962).
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the temperature range of 150-330'K. Golding's calcu-
lation4 of the temperature dependence of the quadrupole
splitting seemed to explain their results. We have ex-
tended these measurements to liquid-helium tempera-
tures' and found behavior that contrasts with Golding's
theory and also with a calculation using the formalism of
Ingalls. '

In 1956, Baker, Bleaney, and Bowers~ measured the
principal axes of the g tensor and found that there vrere

two similar iron sites in the crystal, with g tensors which
were differently oriented. They also found that the
principal axes of the g tensors did not coincide vrith the
cubic axes of the ferricyanide octahedra but were ro-
tated about one of the cubic axes by an angle p=45'.
Bleaney and O'Brien then 6tted the g-tensor data with
a set of wave functions for the ground-state Kramers
doublet and proceeded to calculate the temperature-
dependent susceptibilities in the singl. crystal from these
vrave functions. By Gtting the temperature dependence
of the susceptibilities they were able to determine the
separation of the electronic energy levels, and were
also quite successful in explaining the anisotropy of the
susceptibility tensor.

We vrill see below that the wave functions and energy
levels vrhich Gt the magnetic data so vrell are also, vrith
certain reservations, consistent with the paramagnetic
Mossbauer spectra. We might note that no hyper6ne
structure vras observed by the KSR vrorkers because of
the small amount of Fe~ in their samples and also
because of the very broad absorption line in
KsFe(CN) s.

4 R. M. Golding, Mol. Phys. 12, 13 (1967).
5 W. Oosterhuis, G. Lang, and S. Debenedetti, Phys. Letters

24, 346 (1967).' R. I. Insalls, Phys. Rev. 155, A787 (1964).
~ J. M. Baker, B.Bleaney, and K. D. Bowers, Proc. Phys. Soc.

(London) B69, 1205 (1956).
8 B.Bleaney and M. C. M. O' Brien, Proc. Phys. Soc. (London)

B69, 1216 (1956).
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A basic unit of structure is drawn in Fig. 1, which shows
the positions of the iron sites and their orientations with
respect to the crystal axes. One site is the cell corner.
The other, in the center of the b-c face, is related to the
corner site by a glide plane reQection. This is the unit
cell of the monoclinic polytype. The fact that there are
two differently oriented sites in the crystal has signi6-
cance in single-crystal work only.

In order to visualize the polytypism, let the unit of
Fig. 1 be called A type and let the unit which is
obtained by rotation of A through 180' about the c axis
be called 8 type. The normal crystal has only A-type
cells. Then consider an arrangement in which alternate
sheets of A and 8 types lie in planes normal to a'. The
actual unit cell is then orthorhombic and has twice the
volume of A. Other sequences of A and 8 are possible,
giving rise to a variety of polytypes. The immediate or
octahedral environment of the iron nuclei is not affected
by polytypism, but it is possible that the lower sym-
metry components are. In the ESR spectra of Kacr,
Co(CN)~, " however, polytypism affects the energy
splittings by only a few tenths of a percent, while in
K3Fe(CN)6 it has been detected only through small

FIG. 1. Structure of K3Fe(CN)6 showing the orientations of the
ligand (cubic) axes and g-tensor axes (x,y,s) with respect to the
crystalline axes (a,b c).

The crystalline structure of K3Fe(CN)6 has been the
subject of controversy' which has only recently been
resolved by the discovery that K3Fe(CN)q grows in

polytypes as does the isomorphic salt KSCo(CN)6. "
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FIG. 2. Mossbauer spectra of concentrated KBFe(CN)6
(powder) at 300, 77, 20, and 4.2'K.

9 C. Gottfried and J. G. Nagleschmidt, Z. Krist. 73, 357 (1930);
V. Barkhatov and H. Zhadanov, Acta Physicochim. URSS 16,
43 (1942); Y. Okaya et a/. , Acta Cryst. 10, 798 (1957).

i N. A. Curry and W. A. Runciman, Acta Cryst. 13,674 (1959);
J.A. Kohn and W D. Townes, ibid. 14, 617 (1961);J. O. Artman,
J.C. Murphy, J.A. Kohn, and W. D. Townes, Phys. Rev. Letters
4, 607 (1960).

0 100 200 300
TEMPERATURE ( K)

FzG. 3. Temperature dependence of the quadrupole splitting in
KIFe(CN)6. The experiments were done with single crystals of
KSFe(CN)6 with various orientations with respect to the y beam
and one powder sample of Fe diluted in K3Co(CN)(). The solid
lines are A splitting calculated with models I and II and no lattice
EFG included, Bz=splitting calculated with model I including
the lattice EFG (Table IV, column 2), Bzz ——splitting calculated
with model II including the lattice EFG (Table IV, column 2).
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Fxo. 4. Temperature dependence of the linewidth (full width
at half-maximum) in single crystals of K3Fe(CN)6 (with various
orientations) and also in a dilute (2.24~o Fe) sample. Variation in
sample thickness probably causes the scatter in the experimental
linewidth. In the dilute sample, the two quadrupole peaks are
found to have difFerent linewidths at a given temperature due to
relaxation eGects.

effects upon the NMR spectrum of C"."Thus we may
assume that the Mossbauer spectra of the ferricyanide
will be insensitive to polytypism.

2. EXPERIMENTAL TECHNIQUES

These measurements were made on a constant acceler-
ation Mossbauer spectrometer of the usual type in con-
nection with a multichannel analyzer driven in the time
mode. "The small transverse magnetic fields were pro-
duced by a permanent magnet of about 500 G at the
center of the pole gap, and the longitudinal Gelds were
produced by trapping Aux within lead washers concen-
tric with the sample in a Helmholtz type of arrangement
at 4.2'K. This gave a longitudinal Geld strength of
about 100 G, less than the critical Geld of Pb at 4.2'K.
Also a pair of 200-turn Helmholtz coils were wound
with a diameter of 3 in. to produce the very small
longitudinal Gelds up to 30 G. For very high fields,
a superconducting solenoid was used.

The powder absorbers of KsFe(CN)s were made of
crushed microcrystals which were grown from a water
solution of commercially available KsFe(CN)s. Single
crystals of the ferricyanide were easily grown from a
saturated water solution. Slices 0.010-in. thick (corre-
sponding to an effective thickness of 3.5) were made

"D.Davis and R. J. Kurland, J. Chem. Phys. 46, 388 (1967)."T.E. Cranshaw, Nucl. Instr. Methods BO, 101 (1964).
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FzG. 5. The temperature dependence of the isomer shift in single
crystals of K&Fe(CN)6. The straight line A is predicted from the
classical Dulong and Petit law, while the curved line 3 results
from numerical integration of the speciGc heat (Ref. 1) and has
zero slope at O'K due to quantum effects.
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Fto. 7. A dilute sample of KeFe, Coe (CN)e for @=0.0224
showing the e8ect of temperature on the Mossbauer spectrum
through spin-lattice relaxa tion.

determine the intensities, line positions, and linewidths,
also by the least-squares method.

3. EXPERIMENTAL RESULTS

In this section, we present the results of a series of
experiments, using the Mossbauer eGect in the ferri-
cyanide complex under varying conditions of tempera-
ture, concentration, and magnetic field.

In Fig. 2 are examples of spectra of a powder sample
of undiluted KeFe(CN) e at various temperatures. These
and other (single-crystal) spectra were 6tted to Lorentz-
ian line shapes to determine the quadrupole splitting,
linewidth, isomer shift, and peak intensities (Figs. 3, 4,
5 and Table III). The quadrupole splitting is quite
temperature-dependent as shown in Fig. 3. The line-
width of the absorption peaks also depends upon the
temperature as seen in Fig. 4. The scatter in linewidths
of diferent samples is probably due to variations in
sample thickness. Temperatures in the range 80 to
195'K are known to an accuracy of &5'K because of
the insensitivity of a carbon resistance thermometer
above 20'K. Data for a diluted sample KSFe„

using a string saw. Variations in thickness may account
for the scatter in the linewidth observed in these
samples. KeFe(CN), enriched in Fe" was prepared from
Fe&03 by a procedure given to the authors by Epstein. "
The enriched (80% Fe") ferricyanide was diluted in
solutions of KeCo(CN)e, and microcrystals were then
grown from these saturated solutions and ground into
a fine powder. The ferricyanide concentration of each
sample was determined by optical absorption of the
KeFe(CN)e complex at 4I4 nm. " The samples of
KeFe(CN)e freshly dissolved in glycerine were frozen
into a glass. All diluted samples were weighed out to
include 0.22&0.02 mg Feet/cm'.

The Mossbauer source was Co" in chromium and was
run at 300'K. The spectra were all calibrated with
respect to an iron metal absorber, "with zero velocity
taken as the centroid of the iron spectrum.

The absorbers were cooled in conventional Dewars,
whereby the absorber was placed in thermal contact
with the refrigerant through a copper sample holder,
or else immersed in the coolant itself. For some of the
variable temperature measurements, the temperature
was measured by means of a carbon resistance which
was calibrated at 4.2, 20, 77, and 300'K.

The experimental data were normalized and corrected
for solid angle e6ects by least-squares 6tting of a quad-
ratic polynomial to a blank run (background) and then
dividing the experimental data by the polynomial. For
the spectra with only quadrupole splitting, the two
absorption peaks were fitted to two Lorentzian lines to

"L. Epstein (private communication).' A. V. Kiss, J. Abraham, and I. Hegedus, Z. Anorg. Allgem.
Chem. 244, 98 (1940).

5 R. S. Preston, S. S. Hanna, and J. Herberle, Phys. Rev. 128,
2207 (j.962).
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Flo. 10. Mossbauer spectra of EsFe,Coq, (CN)s with x=0.0224
at 4.2'K showing the effects of small magnetic 6elds in decoupling
the nuclear and electronic moments. The solid curves are calcu-
lated using model II.

creases. In Fig. 1I are the MOssbauer spectra of single
crystals of KsFe(CN)s at low temperature with 29 kG
applied along the crystal a', b, and c axes. Because the
spins relax rapidly in these magnetically concentrated
specimens, the magnetic hyperhne splitting depends
upon the net magnetization. The quadrupole shift is
seen to be largest and negative for H .

A third and more accurate way of writing the wave
functions is to acknowledge the fact that there is some
degree of covalency in any complex. This means that
there are shared electrons which do not belong to any
particular ion or atom, although it is often convenient
to think of them as having come from a particular donor.
These molecular orbital wave functions are usually
represented as linear combinations of atomic orbitals
and have the symmetry of the complex. Because of the
strong interaction between Fe and CN, a proper treat-
ment of potassium ferricyanide requires the molecular
orbital method. For convenience, however, it is often
useful to proceed with a crystal-Geld type of calculation,
taking account of covalency through the inclusion of
certain correction factors in the matrix elements. This
will become clear below.

In Fig. 12, we show a partial energy level diagram of
the ferricyanide complex. Only the 3d electrons of the
Fe are included, together with the ligand orbitals which
interact strongly with them. To the left are shown the
3d d, and d~ wave functions of an iron ion in an octa-
hedral Geld, and on the right are shown the x a,nd 0.

bonding and the x* antibonding wave functions which
arise from the interaction of the 2p electrons of C and N.
The 0*antibonding function is not shown, but would lie
somewhere high at the right in the Ggure. In the com-
bined Gelds of Fe and CN, the approximate energy
eigenstates are the molecular orbitals shown in the
center of the figure. Each molecular orbital can be
written as f=XQF,+A„lfoN), where foN is a linear
combination of ligand orbitals constructed so as to have
the same symmetry aspic „the central ion wave function.

i I j I

a

4. THEORETICAL CONSIDERATIONS

A. Electronic Model for KsFe(CN)s

Three different approaches have been used to treat
the problem of the electrons in a, molecular complex.
Historically, the first was Pauling's method of directed
valence" in which the ion in question is attached to its
neighbors by means of hybridized electron pair bonds,
each bond containing one electron from the central
ion and another from the ligand.

The second method is crystal-held theory'~ which has
been very successful when applied to ionic salts. Here
the electron wave functions are localized on the central
ion, and the interaction with the ligands is represented

by a static potential which rejects the symmetry of the
local environment.

r& Z, . pauling, J. Am. Chem. Soc. 53, 1367' (1931)
j~%. G. Penney and R. Schlapp, Phys. Rev. 41, 194 (1932).
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FIG. & &. Mossbauer spectra of single-crystal KSFe(CN) 6 in large
magnetic fields at low temperatures. Solid curves are calculations
from model II. (a) H=-29 kg along the g axis, T=4.2'K, y's
directed along the c axis. (b) H =29 kg along the b axis, T=4.2'K,
y's directed along the c axis. (c) V=29 kg along the c axis,7=1.7'K, y's directed along the a' axis.
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Roughly speaking, 1P is the fraction of time an electron
in such an orbital spends on the central ion. If we think
in terms of starting from a situation in which there are
Gve 3d electrons on the iron, then all the electrons in
o' and m~ may be regarded as having come from the
ligands. Since they are now partly on the iron, this
represents a donation of electrons from ligand to iron.
On the other hand, the electrons in s (d,) have come from
the iron, but are now partly on the ligand, representing
a so-called back-donation to the ligands. The interaction
of the state x* is thought to enhance this back-donation
considerably. "Proper attention to electron husbandry
would require us to draw a number of additional levels
to accommodate the many ligand p electrons which
seem to have wandered out of the picture. These com-
binations do not have the necessary symmetry to inter-
act with d, or d7, and have been omitted for clarity. The
energy of electron-electron repulsion, which causes
parallel electron spin states to be favored (Hund's first
rule), is not shown in Fig. 12. In an ionic salt this would
result in the promotion of two of the electrons in s (d,)
to higher orbitals, the reduced repulsion energy of five
unpaired spins making this energetically favorable. How-
ever, it is a characteristic of covalent materials, for which
the ferricyanides are the prototypes, that the higher
orbitals are so high that the promotion does not take
place. The cubic field splitting 10' is typically 10 000
cm ' in hydrated ferric salts (high spin, ionic); in ferri-
cyanide it is about 35 000 cm '. The five electrons and
the sole unpaired spin thus remain in the state labelled
s(d, ) in the figure.

We now focus our attention upon the electrons in the
s(d,). The wave functions have the symmetry of the
original d, orbitals, so that any matrix element which is
calculated using the d, as a basis set will be proportional
to the corresponding element within the actual x(d,)
set of molecular orbitals.

We will therefore proceed with a crystal-Geld calcu-
lation using the d, states and take account of the co-
valency by the introduction of appropriate scaling
factors. The treatment which follows is based upon the
work of Howard" and of Bleaney and O' Brien, ex-
tended to the prediction of Mossbauer spectra in a
variety of situations.

We begin with an ion which has cubic symmetry and
degenerate electronic orbitals (I*'y'),

I
x',s'),

I
y', s'))

which reQect this symmetry. The degeneracy is lifted
by placing the complex in a noncubic environment or
by a Jahn-Teller distortion. We will treat this as a
crystal field acting on the orbitals and solve the problem
of a crystal field combined with a spin-orbit interaction.

Because the cubic crystal-Geld splitting is so great
in comparison with both kT and the spin-orbit inter-
action, it is a good approximation to treat the d, elec-
trons as isolated. We have five electrons occupying the

"R.G. Shulman and S. Sugano, J. Chem. Phys. 42, 39 (1965)."J.Howard, J. Chem. Phys. 3, 813 (1935).
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six 3d, states and can treat this as a "hole" in a com-
pleted subshell, greatly simplifying the calculation.

Relative to cubic axes which join the CN ligands to
the Fe, we define the 3d, basis states as follows:

lx'y')=i /v2( YP —Yi'—')

I
x's') = —1/v2 (Yg"—Y2'—')

I
y's') =i/~P(Y "+Y —')

where x', y', 2' are the cubic axes of the molecule. Sup-
pose now that the system experiences a distortion of
low symmetry, which we represent as a crystal-fie1d po-
tential V=As2/r'+Bx'/r'+CP/r', whereC= —(A+B)
and x, y, z are the principal axes of V. If the primed and
barred systems are identical, then the wave functions of
(1) are energy eigenfunctions in the orthorhombic crys-
tal Geld. In the more general case of triclinic symmetry,
we have energy eigenfunctions given by

I
o&= I*.

I
x'y')+I"

I x"')+I-
I
y"'&,

lb&=i*
I
x'y'&+i*.

l x"')+i-ly'"),
I c&=4

I
xY)+4.I

x's'&+@*Iy's').
(2)

Since these eigenstates are orthonormal, the coefB-
cients l;; behave like the set of direction cosines relating
one set of Cartesian axes to another. With commendable
foresight, we choose to calculate the g tensor in the
x, y, s system which is related to the cubic (primed)
axes by x,=l;, Txihe expressions (2) represent a rota-
tion in fgnction space. It will be convenient to express
the angular momentum operators in the unprimed
system. Since L is a vector we have L,=i;,L . Following
Bleaney, ' the nonzero matrix elements of L' are
(x'y'

I
L„'

I
y's') = (y's'

I
L„'

I
x'y') —= ik and permutations

where the orbital reduction factor k allows for possible
covalency effects. We then have

(&IL;Ib)= —(b IL'I &&='ki' i. =«»'. ,

(blL;Ic) = (cl L,
I
b)=ikl—;,l.,=ikb;„ (3)

F +3

FIG. 12. A diagram showing the molecular energy levels in
KsFe(CN)s. The ground state has five electrons in the six states
available in the m(d.) level. The degeneracy of these states is
removed by a rhombic crystal field.
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We now introduce the spin variable and consider the
eRect of the spin-orbit interaction XL S in the basis
states defined below. The interaction matrix X'= V
yZL S is'o

I
a)n

—2A/7

X/2

)1/2

0

0

I b)P zI c)P

)/2 )/2
—2a/7 ) /2

X/2 —2C/7

0 0

0 0

0 0

Ia)p Ib)n iIc)n

0 0 0

0 0 0

0 0 0
—2A/7 —X/2 X/2

—X/2 28/7——X/2

X/2 —X/2 —2C/7

Diagonalization of the two 3X3 irreducible matrices
yields three 2-fold degenerate eigenstates of the form

I+-)=a.la)n+b-Ib)P+1 c-lc)P,
c

I

—„)= a„
I a)p —b„

I b)n+ ic„Ic)n,
(4)

having energy E„, where n= 1, 2, 3 and the a„, b„, c„
can be taken as real because the matrix elements are all
real. The degeneracy is of course required by Kramers's
theorem.

Using these eigenstates, we can calculate the g values
and the susceptibility as functions of a, b„, c . Consider
an applied magnetic held 8, which induces a magnetic
moment in the paramagnetic salt, not necessarily in the
direction of H. We define the magnetic moment operator
P—L+2S —g ' S ff (or P,=g;,S,ff .), where S,ff is the
effective spin operator for the Kramers doublet (i.e.,
S ff, I+)=+a I+) and S ff, I

—)=——', I

—)).We can then
calculate the matrix elements of the g tensor with the
aid of Eqs. (3) and the formulas derived in the Appendix,
assuming only that the electronic ground state is oc-
cupied;

g»=2(aP —bf'+ct'+2&atcl) ggy ggg geg 0

g„„=2 (ate+ brs cts+ 2katb1)—,

g« 2(a1 b1'——ct' —2feb—fc1) .—

This indicates that the principal axes of g coincide with

x, y, s. Bleaney and O' Brien' successfully fitted the ex-
perimentally measured g values~ of g,=0.91, g» ——2.35,
g„=2.10 by using a&

——0.524, b&=0.702, c&=0.482 and
an orbital reduction factor of k=0.875. The orbital re-
duction factor reflects the fact that the hole travels over
the entire complex and is not confined to the Fe site
alone. Ballhausen" derives a formula for k = 1—~S'A „',
where Q=E(pp, +A gf;,). Neglecting overlap, this
leads to a value of N'~0. 75.

The parameters A/X and I3/'A are determined from the
experimental g values. These in turn determine a„, b„,
c„,and E„/') for n= 1, 2, 3. The susceptibilities can then

'o We have chosen our states as
~ a), ~b), and i ~c) so that the

Hamiltonian matrix above is real."C. J. Ballhausen, Introduction to Li gand Field Tjgeory
(McGraw-Hill Book Co., New York, 1962), p. j.54.

be calculated, and a comparison with the observed
temperature dependence yields P. Bleaney found
X= —278 cm ' for KoFe(CN) o, indicating the following
values for the Kramers doublets:

Eg ———288.98 cm '
Es ——+102.26,

Eo=+186.72,

bf ——+0.702,

b..= —0.705,

be=+0.098,

a1=+0.524,

as=+0.605,

as =+0.599,
c1=+0.482,

cs——+0.369,
ca= —0.795.

(5)

The corresponding crystal-aeld energies (which wouM
be eigenenergies in the absence of spin-orbit coupling)
are E,„=25.19 cm ', 8„,= —98.9 cm ', and E„=64.7
cm '. The Kramers doublets found here will be used in
the calculations of the hyperhne interactions, keeping
in mind that the basis states are really molecular
orbitals.

It was found experimentally~ that the g-tensor axes
of KoFe(CN) o are rota, ted about the cubic s' axes by an
angle y =45'. We have found above that in the electronic
interaction with an external magnetic field the relative
orientation of the cubic system and the g tensor does
not enter. We will hnd below that the same is not true
of the hyperfine interactions.

The quadratic potential or electrostatic field gradient
(EFG) arises from two sources. '

(1) The nonspherical distribution of the valence elec-
trons on the Fe ion. These are electrons external to
closed shells and non-S in symmetry. (It is worth noting
that the hlled molecular orbitals mill have cubic sym-
metry and will not contribute to the EFG.) This con-
tribution to the EFG can be temperature-dependent via
excitations to low-lying empty orbitals.
(2) The EFG created by the noncubic charge dis-
tribution about the iron site in the lattice. This may be
temperature-dependent especially if the lattice expan-
sion with temperature is not isotropic.

Both eRects (1) and (2) are modified by distortions
of the ion core. These reduce the EFG of the valence

&. Quadrupole Interaction

In its 14.4-keV excited state, the Fe" nucleus has a
slightly elongated charge distribution, which can inter-
act with the quadratic components of the local electro-
static potential. This electric quadrupole interaction
provides a probe for the study of the electronic charge
which is the source of the potential. In its principal axis
systems, the quadrupole interaction Hamiltonian is
given by
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electrons and enhance that of the more distant charges. the EFG, the matrix elements of X@ between the
The relevant correction factors are the Sternheimer different I. levels of the Fe'7 Grst excited state (I=-', )
shielding factors. " In the principal axis system of are

Ro=-', eQ

0
-', (V»—Veg)/v3

0

g= Vs;/e= (1—R)g„i+(1—y„)g),g,

)1g= (V»—V„-s)/e=(1 R))1g—v,g+(1 7„)r1—g)„„
(7)

where (1—R) and (1—y„) are the Sternheimer factors.
g,~ and qg, i are the contributions to the EFG from the
valence electrons. The following are derived in the
Appendix:

(16 )'"Q;(4) F,'[~)e
q &= J))r'(r-')I

5 5 P;(i I
i&e s'"T-

In the nuclear ground state, Q=O. Diagonalization
yields two 2-fold degenerate eigenstates, with the de-
generacy again a result of Kramers's theorem. The
difference in energy between these two levels is

1
esQg (1+~3/3) 1/2

where eg = V;s and g = (V»—V„-„-)/V;; is the asymmetry
parameter which arises when the axial symmetry of the
EFG is lost. Next we must evaluate

measurements of the quadrupole splitting in KsCo(CN) s

have been made" and by knowing Qo,» one can de-
termine (1—y„)g&,&. Because of the cubic symmetry of
the filled 3d, shell, we assume that the EFG in
KsCo(CN)s is due purely to the lattice and that the
same EFG is produced by the lattice in KsFe(CN)s.
This is probably a fair assumption, since the two crys-
tals have identical lattice parameters. '

C. Magnetic Hyyer6ne Interaction

Both the excited and ground states of Fe" interact
with the magnetic Gelds. We consider now their inter-
action with the internal magnetic fields which arise in
the presence of unpaired electron spin. The relevant
Hamiltonian is

Xsr=I'P LI is+3(I rs)(sg, rs) —I ss—sI s„3

=I X S.l(
=AgQ, +A„I„S„+A+,S,+C,„(S,I„S„I,), (9)—

where I' = 2g„P„P,(r ')1V'. Rsr is m—ade up of the follow-
ing contributions:e z;lsT. —

(g)
~

~ ~ ~

~ ~247/)~is/ (iIV s+ 7' Ii)e e~s'
rlq„,)=N'(r

) g.(iIi&e ZIlsT-
(1) the interaction between the nuclear magnetic

moment and the current loops caused by the orbital
motion of the electrons (erst term),

(2) the dipolar interaction between the magnetic
moment of the nudeus and the magnetic moments of the
unpaired electrons (second and third terms), and

(3) the Fermi contact interaction between the nu-
clear magnetic moment and the polarized 5 electrons
which exist at the nucleus (last term). The paired S
electrons experience spin-dependent exchange forces
with the unpaired 3d electrons. We then have I/st(0) I

s

W Igs&(0) I', a spin density at the nucleus which is
proportional to the amount of unpaired 3d spin.

P .(6/7) (e .2 $2)e EllsT, -
=X'(r-"

.e—EslkTi

Because the magnetic hyperfine interaction in
KsFe(CN) s is observable only at low temperatures we
will be concerned only with the matrix elements of IJ~
between members of the ground doublet. It is convenient
to calculate these in the principal axis system of the g
tensor. We present here the expressions for the compo-
nents of the magnetic hyper)inc interaction tensor

and refer the reader to the Appendix for the

where Ii) and 8; are the electronic wave functions and
energies as found in (5) and E' is the covalency factor.
Note that the sign of the EFG corresponds to a positive
"hole". The expressions above are correct in the princi-
pal axis system of the KFG and are thermal averages
over the three doublets. The question of relative orien-
tation of the various axis systems will be deferred to a
subsequent section.

The contributions of the noncubic charge distribution
in the lattice to the EFG may be estimated in several
ways. However, in the case of KsFe(CN) s we are fortu-
nate to have an isomorphic salt KsCo(CN)s whose

valence electrons have cubic symmetry because of a
"closed shell" configuration (3d,)' so that g,q= 0. NMR

~'R. M. Sternheimer, Phys. Rev. 130, i423 {1963);G. Burns,
~bQ. 124, 524 (i96i). "T.Sngawara, J. Phys. Soc. Japan 24, 858 (1959).
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A g
——PI —4bc—(1+g) (g2 —bm —c~)

+ 3 (u 3b— 3c—')/7+ 6a(b+ c)/73,

(A,+A„+2i C,„)
=P{+4a(b+c)—2(1+a)a'+ 18''/7

—
61 a(b+ c)—(b—c)'e+" 3/7},

(Ag —A„)=P$+4a(c b) ——(1+a)(c'—b') 2

+ 12(c' b')—/7+6a(c b)/—73

(10)

D. Total H~miltonian; Relative Orientations
of A and EFG

Qoth high temperature and high paramagnetic con-
centration cause the magnetic hyper6ne interaction to
be washed out by rapid spin relaxation. In such cases

'4 u, b, and c are really a&, b&, and c& since only the ground state
is occupied at the low temperatures required to observe these
sects. In the interest of simplicity we have dropped the sub-
script here. C+, HO because of monoclinic symmetry."R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027
(1961); in j/Iegnetism, edited by G. Rado and H. Suhl,
(Academic Press Inc. , New York, 196S), Vol. 11A, p. 291.

'6 G. Lang and %. Marshall, Proc. Phys. Soc. (London) 87, 3
(1966)."J.C. M. Henning, Phys. Letters 24A, 40 (1967). J. S. Van
Wieringgen, Discussions Faraday Soc. 119, 118 (1955).

p is a rotation about z which relates the g system to the
cubic system (Fig. 1).The presence of a complex term in
A indicates that for arbitrary y the principal axes of 2
do not coincide with those of g.

In the expression for P, (r ') refers to the expectation
value for an electron in a 3d orbital of the Fe ion. We will

use the value 5.72/ao' found by Freeman and Watson. "
The factor lP accounts for the probability of 6nding the
electron in this orbital on the Fe ion. Because they
involve small values of r ', contributions from the over-
lap regions and from the CN are negHgible. We are thus
using a covalency factor E' for the magnetic and electric
hyperfine interactions which is smaller than k, the
orbital reduction factor of the g calculation. The reason
is that ther 3 factor is not present in the latter, and con-
tributions from the remote parts of the wave function
are significant. We will adjust S' to fit the experiment
and then compare it with some theoretical estimates.

The Fermi contact factor is related to the spin polari-
zation produced by unpaired 3d electrons by

&'&» ')~= —(8~/3)&'(les'(0) I'—les'(0) I')
= —-', xÃ'. (11)

The calculation of Freeman and Watson'~ yields
X= —3.0/ao' for a single unpaired spin in the Bd shell.
Hence «=+0.35, a result which has been found to fit
the hyper6ne spectra of hemoglobin cyanide. " It is
known that the eGective field at the nucleus decreases
with increasing covalency, " and we assume that the
contact interaction is scaled by the factor Ã' as our
previous expressions imply.
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Tmr.E II. Ground-state Fe' Hamiltonian.

I+, +s&
{-,'A, +'g,p,H, +~g„p H, }

(complex conjugate)

I+ —
l&

sg P (Hg iP~)
{——,'A, +-,'p,g,H, —-,'p„g„H,}

I
—,+is)

2P6(g&+& sgw+w)

,'(A,—+A„+2',„)
{—xA,—;p,g,H, +-',p„g„H,}

I
——l)

g(Az —Ay)
-',p, (g H —'g„H„)
'p„g„(H„—&H„)

{gAz—gpegzHz —kpngnHz}

only a quadrupole interaction is present and the Hamil-
tonian 3C@ applies. Since it does not operate on elec-
tronic states, the eigenvalue problem may be treated
using basis states which are just the nuclear spin states,
with the electronic state determining the EFG. When
magnetic hyper6ne interaction is present the problem
becomes more complicated because the Hamiltonian
operator has matrix elements between the two members
of the Kramers doublet. The basis states must then be
taken as products of nuclear and electronic wave func-
tions, and we must find the eigenstates of the combined
system. At low temperatures, states involving only the
electronic ground doublet will enter. The inclination
of two of the g-tensor axes relative to the cubic axes
introduces further complications, which we now attempt
to clarify.

Consider the Fe ion acted upon by a cubic crystal
field plus a potential V (the rhombic field) quadratic in
the coordinates, whose principal axes align with the
cubic axes. The crystal-Geld eigenstates are ~y'z'),

~

z'x'), and
~

x'y'). Spin-orbit coupling mixes them, but
the rhombic symmetry is preserved, i.e., the cubic axes
are principal axes of g, A. , and the EFG. Imagine now
that the V field is rotated by an angle p about s as an
axis, the cubic field (x', y', and z') remaining 6xed, giving
monoclinic symmetry. The calculations of the Appendix
show that the EFG follows V(x,y, z) and maintains
constant magnitude. The principal axes of the g tensor
(x,y, z) on the other hand, rotate through an angle —y
about z. the 2 tensor also rotates about z, but through
an angle which depends on the relative strength of the
rhombic Geld and the spin-orbit coupling constant.
The d, states do not rotate as a whole. In this particular
case the contours of

~
b) and ~c) rotate with V, while

~
a) remains as

~
x'y'), i.e., aligned in the cubic system.

In a more general rotation of V, the'behavior of the d,
states would not be simple,

We have already calculated g and A in the principal
axis system of g. It is shown in the Appendix that the
quadrupole interaction is expressed correctly in the g
system if we multiply i)g in (8) by e+4f &. According to
Baker et al' the angle y for KsFe(CN)s is 45', so that
the net effect is merely a change in the sign of p. In
order to make specific the results of this section we now

display the complete Hamiltonian matrix in the x, y, s
system, including the interaction with an external
applied field H. Corresponding to the nuclear excited
state, we have the matrix in Table I. The basis states

are indicated in the firs row. The symbols ~+) and
~

—)
refer to the two members of the electronic ground
doublet (5), and the states are written as

~ &, I,). For
the nuclear ground state, we have the matrix in Table
II. p and g are labels given to the components of each
eigenstate.

For convenience we tabulate the values which will
be assumed for the various parameters unless speci6cally
stated otherwise: Q= 0.18 b " gi i= —0.065X10+'4
cm ', i)i,i——0.75 ", (1—E)=0.68, (1—y„)=10.0,"
&=2P.P~g~(r ')E'= —4.8X' (mm/sec) for the nuclear
excited state where (r ')i''=4. 00+0 10/g, ',.g„=—0.102
for excited state of Fe'", g„=+0.1806 for ground state
of Fe", A„A„,A„and C,„as given in Eq. (10), g and
i)g are given in Eqs. (8), esQ/4=0. 135X10-s4 mm/sec
cm'forQ=0. 18b, y=45', s=+0 35&0 02, P„=P,/1836,
P,=0.928X10 ' erg/G=0. 121 mm/sec/G.

x=I LJ (S.ii)+g p„Hj+xq, (12)

where (S,ii) has opposite direction for the two members
of the doublet. The Mossbauer spectra are added with
weights e ~~I~ and e E&~~ respectively. The 6rst
term in the bracket corresponds to several hundred
kilogauss so that the second is usually negligible.

' C. E. Johnson, Proc. Phys. Soc. (London) 92, 748 (1967).
"We can estimate the Sternheimer factors for low-spin ferric

ions by comparing with high-spin ferrous ions since in each case
we are dealing with a hole or electron external to a spherically
symmetric shell of charge $8. A. Scott and R. A. Bernheim,
Chem. Phys. 44, 2004 (1965); Phys. Rev. 123, 2070 (1961) .
(1—y ) is estimated to be about 8.0 in K3Co(CN) g and about 10.0
in]KsFe(CN) s.

E. Case of an Applied Field, Including
Fast Relaxation

The magnetic Hamiltonian (9) requires us to treat the
nucleus and electrons at the same time, using wave
functions which have nuclear and electronic parts.
Because the nucleus produces Gelds of the order of 10 0
at the electrons it is possible to decouple the particles
by applying fields of a few hundred gauss. Under these
conditions the behavior of the electron is dominated by
its interaction with the external magnetic 6eld and two
electronic states which are solutions of the Hamiltonian
X,=P,H g S,~i with energies Et and Ei. Here we have
considered the ground-state Kramers doublet only. The
Mossbauer spectrum is then the sum of two contribu-
tions, each determined by Hamiltonians of the form
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Because the spectrum doesn't depend upon the sign of
the vector in the bracket, it shows little Geld dependence
once decoupling is achieved. For intermediate Gelds

(where there is still some coupling between electron and
nucleus) one must use the full Hamiltonian

X=p,H g S.H+I 2 Seff+XQ+g„p„H I. (13)

If the electron spin undergoes fast relaxation (as in
concentrated material) the situation is considerably
different. Here the electron undergoes transitions be-
tween its two possible states at a rate which exceeds the
Larmor frequency of the nucleus. The nucleus is un-
able to follow the rapid fluctuations of the Geld and
senses only the thermal average spin. The Hamiltonian
is of the form

X=I LZ (S.gg)r+g„p„H]+Xq,
where

(,~~)&
——g; (i~ S.~~)i)e *"-/P; (i[i)e

Through (S,gg)r the strength of the nuclear magnetic
interaction and hence the shape of the Mossbauer
spectrum depends strongly upon the strength of the
applied field and the temperature.

F. Transition Probabilities —Calculation
of Mossbauer Spectrum

The first step in finding the Mossbauer absorption
spectrum is the determination of the eigenstates and
energies which result from the Hamiltonians above.
For any particular case with the matrices in numerical
form the solutions are easily found using digital comput, -

ing techniques. The energy of one of the possible
Mossbauer transitions (EI,~) is found by subtracting the
ground-state energy E& from the excited state energy
E~. The second. step is to d.etermine the y-absorption
transition probabilities between each ground state and
all possible excited states. The transition amplitudes
are the matrix elements of the magnetic dipole inter-
action between y ray and nucleus. The electronic co-
ordinates do not enter this operator, so the amplitude is
proportional to the projection of the electronic part of
the ground state in question onto the electronic part of
the excited state. Less formally, the electron does not
change its state in the Mossbauer transition.

We now consider the transition probabilities associ-
ated with an unpolarized 7 beam traveling in the direc-
tion 0, p relative to the unprimed (g tensor) axis
system (Fig. 1).The probability amplitude for a tran-
sition"between energy eigenstates 0 and / is

4 I
AmpI, (——P P F,„G„*C(-',1-,'; IzqmI, „)X,"(8,y)

n-& q=&

+P P Fg„G(~*C(-',1-,'; I.q mI, „) Xg'"( e(P), (15)
@~5 q~8

where FI,~ is the Pth component of the kth nuclear

excited state and G~q is the qth component of the 3th
nuclear ground state. The C(-', 12; I.,mI, ~) are the well-
known Clebsch-Gordan coefficients where m= I,„—I„
and the X~"(0,&) are the vector spherical harmonics. "
We will discuss the transition probabilities in the pres-
ence of an applied magnetic Geld. The zero-Geld situ-
ation is then taken into account by setting H & equal to
zero. In the single-crystal experiments the directions of
7-ray incidence and applied field are known. The
Mossbauer absorption probabilities are found by taking
the absolute squares of the amplitudes (15).The total
spectrum is the sum of contributions from the two dif-
ferently oriented sites. For polycrystalline specimens
only fields perpendicular or parallel to the p beam will

be considered. In each case a numerical averaging pro-
cedure is necessary. In the parallel case we have found
the net spectrum by summing over 100 diferent field
directions distributed uniformly over an octant of the
unit sphere. The case of transverse applied field is
similar except for an additional average taken over two
directions of y incidence which are perpendicular to
each other and to B, t,. Ideally, the finite energy width
of the nuclear excited state would be taken into account
by folding all these calculated spectra into a Lorentzian
of appropriate width. Instrumental defects and relax-
ation processes often broaden the line further, and a line-
width which is greater than natural is then appropriate.

5. DISCUSSION

We compare the known experimental facts with two
electronic models labelled I and II.Model I is the ortho-
rhombic crystal Geld + spin orbit as proposed by
Bleaney and O'Brien for the dilute salt' and given by
Eq. (5). Model II is a modiGcation of model I in that
the crystal-Geld parameters A and C are interchanged.
In the ground state of model I, the magnetic electron is
found with probabilities a'=0.2/ in the state

~
a) and

c'=0.23 in the state
~
c). It requires only a relatively

small change in the crystal Geld to reverse this electron
distribution and thus to change model I into model II.

Model II corresponds to the g=2.09 and g=2.34
directions interchanged from those reported for the
dilute salt. ~ The interchange appears to occur in the
concentrated salt, although the ESR results are
ambiguous.

The magnetic susceptibility data' indicate that at
low temperature the largest magnetic moment in the
concentrated salt is near the b axis in the crystal as
indicated by model II. However, as the temperature is
raised or the concentration of Fe is lowered, the magni-
tude of the moment near the a axis overtakes that near
the b axis. This crossover in the susceptibilities occurs at
about 70'K.

In our treatment of the quadrupole split spectra of
KIFe(CN)6, the parameter values obtained from the

"S. De Benedetti, Nuclear Interactions (J. Wiley R Sons, Inc. ,
New Y'ork, j.964), p. 264.



MOSSBAUER EFFECT IN K3Fe( CN)6

TABLE III. Single-crystal area ratios. s

Direction of y's
relative to the

crystal axes

(1) Parallel to u'axis
(2) 27' from u' axis

in u'-b plane
(3) 45' from o' axis

in u'-b plane
(4} 63' from o' axis

in u'-b plane
(5) Parallel to the

b axis

(6) 117' from u' axis
in u'-b plane

P) 45' from c axis
in b-c plane

(8) Parallel to c axis

(9) 45' from c axis
u'-c plane

1.69
1.32

0.94

0.79
1.13

(70'K)

1.73
1.35

0.95

0.84

0.76
1.12

R„),(0'K}
Model I (II)

1.64(1.61)
1.50(1.42)

1.33(1.21)

1.18(1.o3)

1.10(O.93)

1.18(1.03)

0.80(0.80)

0.60(0.69)
1.O2(1.O5)

Best 6t
to experi-

ment

1.74
1.45

0.88

0.88

(300'K)

2.10
1.48

0.95

0.69
1.13

R„i,(300'K)
Model I (II)

1.72(1.78)
1.53(1.46)

1.47(1.21)

1.22(0.99)

1.12(0.86}

1.22(O.99)

0.78(0.77)

0.51(0.60)
0.95(1.07)

Best 6t
to experi-

ment

2.10
1,58

0.89

0.70

0.68
1.17

a The ang1e between the I and 5 axes is 8 in Fig. 1.For 300 K, 8 =2So; for 0-77 K, 8 =30o.

magnetically split spectra of the dilute material are
used. We make the somewhat illogical choice of discus-
sing the quadrupole spectra 6rst, however, because
these are more generally understood and are the main
concern of many vrorkers in the 6eld.

A. Quadrupole Interaction

The dominant contribution to the quadrupole split-
ting in KsI'e(CN)s results from the electrostatic field

gradient which is produced by the asymmetry in the
iron d-electron distribution. The g values provide us with
a knovrledge of this asymmetry in the three lowest-

lying Kramers doublets (i.e., with the values a&, b&, ci),
and the temperature dependence of the susceptibility
yieMs their energy separation. The quantity ¹(r')ss
is found to be 4.0&0.1/as' from the magnetically split
Mossbauer spectra (see below). With this information
we can evaluate the EI'G expressions (8). Only the
valence electron shielding parameter (1—R) is then
required to determine the net valence electron contri-
bution to the KFG at the nucleus. Using Ingall's
value of 0.68 for (1—R) we 6nd the values shown in
column j. of Table IV. Using the value of 0.18 b for the
nuclear quadrupole moment'" and considering valence
electron contributions only, vre calculate the quadrupole
splitting shown as a function of temperature in curve A

of Fig. 3, according to models I and II.
Subject to certain approximations, the lattice con-

tribution to the electric 6eld gradient at the Fe nucleus

Inay be deduced from the CO5s NMR measuremen
SugRwRI'R ln the lsoInolphlc cobaltlc salt. Wc RssuIIM

that in this lovr spin d, ' complex the d electrons maintain
cubic symmetry and that only a lattice contribution,
modified by the appropriate shielding factor is present.
Assuming that the distribution of lattice charge outside
the transition metal ion is the same for both salts, the
lattice contributions to the KFG at the nuclei are in

the ratio of the lattice shielding factors. Using (1—y„)p,
=1().() and. (1—y„)c.——8.0,"we 6nd the lattice contri-
bution to the KFG at the nucleus as given in coluInn 2
of Table IV. This lattice contribution, when added to
the valence contribution, yields the net quadrupole
spllttlng shown ln curves BI Rnd BII of Flg. 3.Thc sign
of the lattice EFG is not determined by NMR and we
make the choice to give best agreement with our data.

In Rddltlon to AE wc wish to cxplRln thc Rnglc Rnd

temperature dependence of the single-crystal absorption
peak area ratios (Fig. 6). As demonstrated by Zory, "
the orientation of the KFG relative to the crystal axes
can be determined using the Mossbauer spectra of single-
crystal samples. Zory has shown [and the application of
Eqs. (6) and (15) con6rmsf that the. ratio of the inten-
sities of the tvro quadrupole peaks in the case of Fe'~ is
given by X=I'r/I's (assuming the recoil-free fraction
to be isotropic), where

Pr g(4(1+rl'/3——)'"
sites —L3 cos'0 —1+r) sin'(} cos(2& )j), (16)

sites

+L3 cossg;—1+r) sin'0; cos(2$;)]),

with 0, s,nd p; the angles the y beam makes with the
principal axes of the KFG tensor for the ith site. The
de6nitions of 0 and Q are related to the de6nition of r)

in the usual way, and vre use the coordinate system in

Flg. i. Thc sum ls ovcl thc two dlGcrent iron sltcs ln
the unit cell. The total KFG as calculated above would

give rise to the predicted single-crystal peak area ratios
under models I and II in Table III. The temperature
dependence, which results from the variation in the
valence electron contribution, is very small below 77'K

"P. Zory, Phys. Rev. 140, A1401 (1965).
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TAaLH IV. Electric field gradient in K3Fe(CN)6.

Valence EFG(0'K)
(1O" cm ')

Model I (II)

Lattice EFG'
(1O+" cm ')

Total EFG(0'K)
(10'4 cm ')

Model I (II) (20') {300')

Experimental EFG
(from area ratios)

+1.6O(O.91)
e

veau —2.56(—2.48)
e

v.g

+o.96(+1.57)
e
Includes factor

of {1—R) =0.68

&=(v..—v,„)/v..
~a=-'eg V„(1+~/3)

(mm/sec)

+0.08

+0.57

-0.65

Includes factor
of {1—y„)=10.0

Sign is chosen to
give best fit to
Mossbauer expt

+1.68(+0.99)

—1.99(—1.91)

+0.31(+0.92)

11.8(3.15)
O.'58(O.515)

+0.47

—1.89

+1.42

8 axis 1s 30
from b axis

1.67
0.53

+0.396

—0.13

+0.63

s axis is 25'
from b axis

2.26
0.28

& Reference 23.

and we show only the T=O'K values for comparison
with the 20 and 77'K data in Table III. The calculated
area ratios were corrected for the finite thickness of the
the absorber corresponding to an effective thickness of
3.5 for a 0.010-in.-thick slice. These calculated values
may then be compared to the experimental area ratios.

For an additional comparison to the data we have
treated the EFG components as free parameters. The
values shown in column 4 of Table IV correspond to the
the best fit to the peak area ratios, and give the quad-
rupole splitting exactly.

At 300', no satisfactory fit could be found with
s b=cos30' (see Fig. I). This rotation of the EFG
tensor, if real, could result from anisotropic thermal
expansion. It is worth noting that from the area-ratio
experiments and the single-crystal measurements in a
large field the largest component of the EFG is negative
and lies along the y axis. This is a characteristic of both
models I and II. The role of the 45' rotation of the
rhombic field is essential; without it both models would
have the large component lying in the x direction.

The agreement between theory and the low-tempera-
ture quadrupole spectra is fairly satisfactory. The
general trends in the area ratios with temperature and
orientation are reproduced, model II doing somewhat
better than model I. The quadrupole splitting without
free parameters is close to experiment (see Table III),
considering the uncertainties which are inherent in the
method.

At higher temperatures the situation is less satis-
factory, for none of the theoretical curves reproduces the
variation of AK There are several relevant experimental
facts to consider. The crossover which occurs in the a-
and 5-axis susceptibilities' of the concentrated salt is
not predicted by our models. The anomalies at 130'K
in the susceptibility' and in the specific heat' suggest a
magnetic transition. It is not known whether the dilute
material exhibits these same characteristics. The dif-

ference in AE between concentrated and dilute material
at high temperature may be relevant, especially in
view of the observation that the dilute material more
nearly follows the prediction (see Fig. 3). The fact that
dilute and concentrated samples differ aboM the
"transition temperature" is inconsistent with the notion
that spin ordering is involved. A neutron-diffraction or
x-ray study of this ma terial over a range of temperatures
would probably be illuminating.

A very small difference in the peak intensities of
powder specimens was observed. The ratio of low-energy
peak intensity to that of the high-energy peak varied
monotonically from 1.01 to 1.03 in the ranqe 4.2—300'K.
This may be evidence of a "Goldanskii" effect."

In samples of KSFe(CN)6 and (NH4)3Fe(CN)6 dis-
solved in glycerine, EE(77'K) was found to be 0.90
mm(sec, compared to 0.47 mm/sec in the crystalline
ferricyanide. This means that the distortion of the
complex is different in the solution and probably
reQects a small difference in the d-electron wave
functions in addition to a modified "lattice" con-
tribution.

The linewidths of some of the measured spectra are
shown in Fig. 4. No corrections have been made for
absorber thickness, but the plot may be examined for
trends in individual samples. In general linewidth in-
creases as temperature is lowered, and appears to rise
most rapidly in the region between 130 and 70'K. This
may be connected with the specific heat and suscepti-
bility anomalies. More likely, it reQects the magnetic
hyperfine interaction made detectable by a reduced
spin-lattice relaxation rate. This would explain the
levelling off of the curve in the concentrated samples,
for further reduction in spin-lattice relaxation will not
be effective once the spin-spin relaxation becomes
dominant. In the dilute material the broadening con-

"V.I. Goldanskii, Phys. R,ev. Letters 14, 769 {1965).
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tinues to increase, finally giving rise to the wide low-
temperature magnetic hyperfine spectrum.

The isomer shift of various samples of K~Fe(CN)~
relative to Fe metal as a function of temperature is
shown in Fig. 5. We do not attempt to calculate its
absolute value, but merely make the comment that it is
typical of covalent ferric materials. By virtue of the
second. -order relativistic Doppler shift, the isomer shift
is expected to vary with temperature as 6= (v'), /2c'
X (14.4 keV), where (n'), is the average square
velocity of the iron atom at temperature T. If we assume
equipartititon of thermal energy, then the isomer shift
is given by

U '85 CI,
(14.4 keV) or — = (14.4 keV), (17)

2G BT 2G

Oe-5
CO

E
E

N

)o 14.4 keV

I I I

where Cl. is the lattice specific heat per atom of the salt.
In the high-temperature or classical limit of Dulong and
Petit, this corresponds to an isomer shift change of
—7.3&(10 ' mm/sec C', as shown in curve A of Fig. S.
At lower temperatures, quantum effects reduce the
rate of change of isomer shift. Curve B has been calcu-
lated by using relation (17) and numerically integrating
the experimental specific heat. ' Although the data have
a large spread, curve B is clearly preferable. To within
the accuracy of the data, no evidence is seen of effects of
the anomalies discussed above.

B. Paramagnetic Hyperfine Spectra

When the paramagnetic iron sites are suKciently
separated from each other and are in a low-temperature
environment, the spin-spin and spin-lattice relaxation
rates become less than the rate of precession of the
nucleus in the magnetic field of the electron (about
10'—109/sec in our case). Under these circumstances the
nucleus can follow the electron spin and well-defined
states exist whose energies depend upon the relative
orientation of nuclear and electronic spin. These states
give rise to structure in the Mossbauer spectra, with
energy splittings equivalent to fields of several hundred
kilogauss. This phenomenon has been observed by
several workers in a variety of substances"" but we
believe that this is the only time it has been
seen for a spin--', paramagnet with the exception of the
hemoglobins. "

The effect is clearly seen in Figs. 7 and 8 where de-
creasing temperature and the concentration decreases
the relaxation rate and causes the spectrum to become
wide. In principle, one can calculate the development of
the magnetic structure as a function of the electronic
relaxation time'4 if the hyperfine interactions are known.

"L. E. Campbell and S. De Benedetti, Phys. Letters 20, 102
(1966); F. E. Obenshain et a/. , Phys. Rev. Letters 14, 365 (1965);
H. H. Wickman and A. U. Trozzolo, ibid. 15, 156 (1965); H. H.
Wickman and G. K. Wertheim, Phys. Rev. 148, 211 (1966).

3'E. Bradford and W. Marshall, Proc. Phys. Soc. (London)
87, 731 (1966); M. Blume and A. J. Tjon, Phys. Rev. (to be

ca 5I
O
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FIG. 13.The energy levels of the Fe" ground and excited states
in K3Fe(CN)6 as a function of external magnetic fields along the
crystalline b axis (H&) and c axis (H,). The splitting of the levels
due to the Geld along the 2 axis (H ) is very similar to that of Hp
with the exception that the levels which cross for Hy repel each
other for H .

However, for an anisotropic interaction in which the
nuclear spin states are not pure, this is a very difficult
calculation, and we will not attempt it here.

Using the electronic wave functions (5) we can calcu-
late the spectrum in the limit of zero relaxation rate. We
have done this for models I and II in zero external field

using the Hamiltonian (13), the lattice EFG of column

2, Table IV. The covalency parameter E'=0.69 was
chosen to scale the calculated spectrum and a linewidth
of 0.60 mm/sec was then folded into the spectrum to
represent roughly the effects of relaxation, and the net
predicted spectra are the solid curves of Fig. 9(a). Both
of these single-parameter calculations are in satisfactory
agreement with the data. The peaks at 0.0 mm/sec are
definitely not impurity Fe Lsuch as K4Fe(CN) 6.3HgO]
for they disappear steadily as the concentration and
temperature are lowered (Figs. 7 and 8), and also as the
Inagnetic field is increased. The spectrum of the most
dilute sample LFig. 8, 0.33%%uq Fe in K8Co(CN)6] at

published); H. H. Wickman, Mossbauer E&Ject Methodology
(Plenum Press, Inc., New York, 1966), Vol. 2, p. 39.
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4.2'K shows the nearest approach to the calculated
spectrum (solid curve).

In the case of zero external 6eld, the total angular
momentum Ii and Ii, as obtained by vector coupling of
the nuclear spin I and the effective electronic spin
S,«are nearly good quantum numbers. For Fe'7 in
K~Fe(CN)6, the nuclear spins I, =~3 and I,s=i2couple
to the electronic moment represented by an effective
spin of S,qi=-', for the low-spin ferric ion. The multi-
plets F =2, I and F,q= 1, 0 are thus formed as shown
for 8 ~=0 in Fig. 13. There is a small zero-Geld

splitting due to the anisotropy of the hyper6ne
interactions.

When the external 6eld strength is increased these
multiplets split until the coupling between the nuclear
and electronic moments is broken leaving I, I, and
S,gf, S,ff as the good quantum numbers. This is some-
what analogous to the Paschen-Back effect in atomic
physics where the coupling between the electronic spin
and orbital angular momentum is broken with a strong
magnetic Geld. In the present case the Paschen-Back
limit is achieved for external 6elds large compared to
10 6 which is the order of the effective nuclear 6eld
acting on the electron.

This eGect was predicted by Wickman and Wertheim"
for the S,=+—', state of Fe'+ in corundum, but they did
not observe the effect in the high-spin ferric ion.

Figure 10 shows the development of the Mossbauer
spectra of a powder sample of KSFe, Co(CN)6 with

increasing strength of an external magnetic Geld

parallel to the y beam. The solid curves in the 6gure are
calculated, using model II and Eq. (13) with no new

parameters. The agreement of theory with experiment is
seen to be quite good with the exception of the unre-
solved doublet at 0.0 mm/sec. This is the result of spin-

spin relaxation which disappears with further dilution

(see Fig. 8).
The spectra of Figs. 9(b) and 9(c) were observed in

Gelds suKciently strong to decouple the nuclear and
electronic spins. The solid curves are the result of calcu-
lations based on models I and II with magnetic 6elds
parallel and perpendicular to the direction of incidence
of the y beam. One can observe the difference between
models I and II in these calculations —model II is
clearly preferable here.

Data taken in applied fields with KSFe(CN)~ dis-

solved in glycerine give results very similar to the
spectra of solid K~Fe, Co(CN)6 (Fig. 9). The much

broader absorption lines in the glycerine may be due to
a heterogeneous environment.

Spectra of Figs. 11(a), 11(b), and 11(c)were taken for

single crystals of concentrated KsFe(CN)& in large

magnetic Gelds and very low temperatures. The electron-

spin relaxation is very fast between the two members of

the ground-state Kramers doublet, and the magnetic

interaction is proportional to the magnetization as

discussed earlier. The relative strengths of ef'fective

magnetic 6eld in the three cases agree well with model
II.

Because the magnetic hyperfine interaction is strong
it determines the nuclear quantization axis and the
quadrupole shift of lines 1 and 6 relative to 2, 3, 4, and
5 is a measure of the Geld gradient along this axis. The
observed 6eld gradients are in good agreement with
model II.

6. SUMMARY

Mossbauer spectra of the ferricyanide complex have
been observed in a variety of situations and have been
compared with calculations using parameters found by
other methods. Only the covalency parameter has been
adjusted to 6t the present data. The value E'=0.69 has
been determined from the strength of the magnetic
hyperfine interaction. The two models which have
been considered differ by a rotation of the rhombic
field through 90' about the crystalline c axis. Model

corresponds to the arrangement found in ESR
measurements of the magnetically dilute isomorphous
K&(Fe,Co)(CN) 6,

~ "while model II employs the same
values deployed as suggested by the ESR signals and
susceptibility measurements from the concentrated salt.
Model II is consistent with all of the Mossbauer spectra
observed at or below 77'K. In particular, it is clearly
preferable to model I in the dilute material where the
latter might be expected to hold. The data for tempera-
tures which would correspond to significant electronic
thermal excitation are not consistent with either model,
and it appears that a temperature-dependent crystal
field must be invoked to account for the observed
quadrupo1e splitting.
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APPENDIX

We now determine the matrix elements of the g
tensor, electric-held-gradient tensor, and the magnetic
hyperfine tensor in a very pedestrian but straight-

"R.J. Anderson (private communication).
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forward way. These matrix elements are calculated
within the ground-state Kramers doublet defined in (5)
and can always be extended to include the higher ex-
cited states by the appropriate Boltzmann averages.
It is convenient to treat the hyper6ne interaction
problem in terms of operators in the x, y, z system, the
system in which the g tensor is diagonal. It is conceptu-
ally simple however, to do the various integrations over
hole coordinates in the x', y', z' system and that is the
procedure which we follow.

We can express the states I+) and
I
—) as defined by

(4), in terms of x', y', s' by using (1) and (2). Operators
in the system (x,y,s) are also transformed. to the cubic
system so that the calculations can be done by using
wave functions and operators expressed in the same
coordinates.

An operator evaluated between states of the form

IS„ I,) can be separated into nuclear and electronic

parts: (S,'IO, IS,)(I,'IO„II,).The nuclear part is easily
found since it involves only the nuclear spin operators
I, I„,I,. The electronic part is more complicated.

To calculate the electronic part of the matrix element,
we first expand the wave functions in terms of

I a&,

Ib), and Ic). For example,

(+ IOI+)=a'&anlOI «&+ah&«IOI bP)+Mc&«IOI cP&

yab&bPIOI «&+b'&bPIOI bP)+1'bc(bPIOICP&

~~c&cPIOI«& ~bc&cPIOlbP&+c2&cPIOlcP& (1g)

After examining the nature of the operator 0 we can
decide which of these matrix elements are zero by
orthogonality, selection rules, or by symmetry, and
which must be calculated. Each of the nonzero elements
above must in turn be expanded if the operator involves
the coordinates of the electron. For example, if 0= I"2'+',
then

&bPI Ui"'I bP&=f-'&*Yl V2'" IzY&+f-i *&zYI V~"'ly's'&+i *f u&zYI V~'"I*'s'&+i-i-&x's'I F2"'IzY&
+f '&x's'I V2'" Iy's'&+i. *i*.b's'I V2'" I*"'&+i.wf-(*'s'I V2'"I ~Y)+f.wi-&~'s'I Fm'" I&'s'&

+lg„'&x's'I U2'+'I x's')=(i, „' 1gg'—a2il, „lg,)-,'[(+6)/75(5/4m)'I'= ——',L(+6)/7$(5/4r)'I'e~"& (19)

where in the last step we specialize to a rotation about z by 7.

A. g Tensor

To calculate the matrix elements of the g tensor, we make use of the relation H (L+2S)=H g S,«ol
kL;+2S;=P;g;;S,«,. We find from Eqs. (3) and (4) that (+ IL;I+)=—2bcb;, and (+ IL;I —)=2acb,, 2iabb-;„
It is also easy to find (+IS;I+)=-,'(a' —b' — )bc;, and (+ IS;I —)=i~(a' —b'+ c)B —(i/2)(a'+b' —c')b . The
effective spin operator S,« is defined by its nonzero matrix elements (+IS,«,.l+&=+-', 8;, and (& IS,« ~

I +)
=i26;,W(i/2)8, „Thus .we have

(+ IL~+2S'I+&=&+ IX~ g*P'.«;I+)=ZJ g'J&+ I S«;I+)=k 'g.
= (k—2bcb'*)+2(k)(o —b —c )b'* (2o)

Therefore, g,,=2(a' —b' —c'—2kbc)8;, . When the real and imaginary parts are equated we obtain the following
expressions:

g,g 2(a' b'+——c'+—2kac) 8;g g; =2(a'+ b' c'+2kab) —8;„

B. Quadrupole Interaction

In general, the quadrupole interaction may be written as"

XQ —eQ/4I(2I 1){V»[3I,' I(I+1)—]+Vi(I—I,+I,I )+V i(I+I,+I,I+)+U 2I+'+ V,I '}, (22)

where V~i= V„&iV,„,and V~2=-, (V, —V»)&i V,„.In the principal axis system of the EFG, U,„=V„=V,„=O.
However, in the axis system rotated by y about the s axis V,„&V„=V,„=0. Thus for K3Fe(CN) ~ with I= s3, we

have the following expression for the quadrupole interaction in the x, y, z system:

Xo cg/4/V»(I, ' 5/——4)+I+'(V gg
—V„„2iVg„)/6+—I '(Vg, V»—+2i Vg„)//6 j. — (23)

Thus, we need to 6nd matrix elements of the form

g= V»/e= (3s'—r')/r'= (16'/5)'~'F2'(r ')ItI' (24)

and r~=(V„—V»%2iV,„)/c=3(x'—y'&2ixy)/r'=3(32m/15)'I'F&+'&r '&1P. We can express these operators
in the x', y', z' system as I 2'= Y2" and I'&+' ——I'2'+'e "&.Therefore,

&+.I V2'I+.)= &—;
I
V2'I .&={ 'I n—2f-'/7+(—i.w'+i*')/7j+b'I 2f-'/7+(—f»'+4.')/7j

+c 'I —2l„,2/7+(f„'+f ')/7j}(5/4s)'I2={ —2a'/7+(b '+c„')/7}(5/4s)'I' (25)

"M. H. Cohen and F. Reif, Solid State Phys. 5, 321 (1957).



456 W. T. OOSTERHUIS AND G. LANG

So
q„(=V»,/e=( 4a—'/7+2(b„'+c ')/7}(r '&1P

(+.I
F2"I+»&= &—.

I
F2"

I
;—)= &+.I

Fm'"""I+.)
= f a»D, „'—1„'&2il,„l„]+b,,'P/, „'—1„'&2il,„l„]+c„'D»' 1„—,'& 2i1»l„,]

+b,ic„[l,„t„„t.—.t„.+i(t.„t„.+ /..1„„)] b„—1c„t /'. „t„„—/..t..+i(t..t..+/../„)]}e-"'-.I:(v'6)/7](5/4 )'"
= (c 2—b 2)e»=4&»~

I (g6)/7](5/4»r)&i2. (26)

therefore, r+= (V„—V»~2iV, „)//e= (6/7)(c„' b')—(r '&It/'e 4'r A comparison of (23), (26), and (8) veri6es
our earlier statement about the quadrupole Hamiltonian in the ryan system. We see that the transformation to x, y, s
involves multiplying pg in the upper triangle of H @ by e"&, while the lower triangle contains the complex conjugate.

C. Magnetic Hyper6ne Interaction

The magnetic hyperfine interaction X~ is written in Eq. (9) and can be expanded in the following way:

X.=P(I.L.+k(I+L +I L+) (1+«)L~.-S.+k(I+S +I S+)]-
+3(S,I,s'/r'+ ', (S~I +S I-+)(x'+y')/r'+~SQ+(32»r/15)'i'F2 '

+-',S I (32»r/15)'i2F2»+-', (S,I++S+I»)(8»r/15)'i'F2 '—-', (S.I +S I»)(8»r/15)'i'F2']}. (27)

Since we wish to express the coordinates in the x', y', s' system, we use s= s', x=x' cosy+y' sing, y=y' cosy —x' sin&
to obtain the following equation:

Xpg —P(I,L,+-', (I+L—+IM+)—(1+«)PI,S,+-', (IpS +I S+)]
+3p', I,s"/r'+ ~~ (S+I +S I+) (x"+y")/r'+ ~S+I+(32»r/15) 'i' F2' 'e+"r

+~S I (32»r/15)'i'Y2"e "r+,'(S,I++S+I,)(-8»r/15)'i'F2' 'e'r ——',(S,I +S I.)( 8/»r1 )5' 'iY +2'e 'r]}. (28)

Using the procedure outlined above, the matrix elements (S,'I,'IX~ IS.I,) may be calculated. Of the last four
terms the only nonzero contributions are in (+, —

2 IX~I —,+-,) and (+, +~ IX~I —,—2& and their complex
conjugates (for the nuclear gd state where I=-',):
(+, —-',- IX~ I

—,+-,')=P(+ I-', L+—(3'/4) (x"+y")/r'+ (3S /4) (32»r/15) 'i'F "e "r-
—(1+«)(S./2) —(3S./2) (8~/15)'"Fm"e "I—

&&
—

k II-I+2& (29)
We have found previously that

&+ IL+I —&=&+ IL +iL»I —&=2a(b+c)

&+ IS, I

—&= 8- IS.+is„l —&=a',

(+ I
FPS I

—)=—b'(bl F2"lb)+c'(cl F2"lc)+bic(cl F»"Ib)+hie(bl F2"lc)
b'-{ ~~f (Q6—)/—7](5/4»r) i e'»r}+c{2+~~ L(g 6) /]7( 5/4»)r~ ime2'r}

+2bic f 1,„1» 1„1„,+i—(1,„/„,+l»l„)P~P(+6)/7](5/4»r) 'i'= (c—5)'e "»2'
I (Q6)/7](5/4»r)'i', (30)

(+ I S+I(x"+y")/"]
I

—)= a'&a
I
L(*"+y")/"]

I a)=a'((6/7)/-'+ (4/7) (1-'+4.') }= (6/7)a'

(+ I
F2"S

I

—
&
= 2( —ab&a

I
F»"

I b&+aic&a I
F."

I c&
—ab&b

I
F2"

I
a&+aic&c I

F2"
I a&}

=
2 { 2abp (1/—14)(15—/2»r) 'i e'r]+ 2aic( (1/14) (—15/2»r) i ' ]e},r

(+, —-',
I X~

I
—,+-', )=P(a(b+c) —(1+«)-',a'+ (3/14) (c b)'e "r+ (9a—'/14) 3a(b+c)/14}—.

If we compare this matrix element with the matrix element (+, ——,
' ll 2 S,el —,+-,') we can make the identi-

6cation of

4 (A,+ A„+2iC,„)=Pf a(b+ c) (1+«) 'a'+ (3/14—) (c -b)'e 4'r+ (9a'/—14) 3a(b+c)/14},—

where ,„C= IP3(c—b)'/7] sin47 which arises because of the monoclinic symmetry.

(31)


