
K. M. E VENSON

G. Herzberg, Z. Physik 49, 512 (1928).
H. Beutler and M. Fred, Phys. Rev. 61, 107 (1942).

'A. T. Wager, Ihys. Rev. 61, 107 (1942).
A. T. Wager, Phys. Rev. 64, 18 (1943).
H. P. Broida and S. Golden, Can. J. Chem. 38, 1666

(1960).
N. H. Kiess and H. P. Broida, J. Mol. Spec. 7, 194

(1961).
H. K. Radford and H. P. Broida, Phys. Rev. 128,

231 (1962).
H. E. Radford and H. P. Broida, J. Chem. Phys.

38, 644 (1963).
T. Iwai, M. I. Savadatti, and H. P. Broida, J. Chem.

Phys. 47, 3861 (1967).
R. L. Barger, H. P. Broida, A. J. Estin, and H. E.

Radford, Phys. Rev. Letters 9, 345 (1962).

K. M. Evenson, J. L. Dunn, and H. P. Broida, Phys.
Rev. 136, A1566 (1964).

K. M. Evenson, App. Phys. Letters 12, 253 (1968).
H. E. Radford, Phys. Rev. 136, A15 (1964).

K. M. Evenson and H. P. Broida, J. Chem. Phys.
44, 1637 (1966).

C. H. Townes and A. L. Schawlow, Microwave

Spectroscopy (McGraw-Hill Book Co. , Inc. , New York,
1955) .

PHYSICAL REVIEW VOLUME 178, NUMBER 1

Proton Excitation of the Argon Atom*

G. S. Hurst and T. E. Bortner
DePartment of Physics and Astronomy, University of Kentucky, I exington, Kentucky 40506

and

T. 0, Str ickier
DePartment of Physics, Berea College, Berea, Kentucky

(Received 1 August 1968)

Studies of the excitation of argon with 4-MeV protons have been carried out by making use of

a vacuum ultraviolet scanning monochromator and a 6-MeV Van de Graaff accelerator. Protons

were directed through the gas and then into a I'araday cup in an arrangement in which the rel-
ative intensity of emitted light could be studied over a wide range of gas pressure (1 to 1500

Terri. Four continua near 2100, 1900, 1300, and 1100K, respectively, as well as escape

radiation originating from the 1048 A. resonance line, were studied as a function of pressure.
Studies of the intensity of the four main continua (per unit of proton power dissipation) as a

function of pressure led us to the conclusion that each continuum has a separate atomic pre-
cursor. We suggest that the 1300 A continuum and the 1100 A continuum are dissociative

diatomic continua and originate from the P~ (11.83-eV) and the P~ (11.62-eV) resonance atomic

states, respectively. We tentatively suggest that the continua near 9100 A and near 1900 L
are recombination spectra involving the formation of argon excimers with binding energies

of about 4 eV.
The 1300 and 1100 A continua have been observed in gas discharges, but these were inter-

preted as a single continuum originating from the P& state. We believe that the prese~t ex-

perimental method, which makes possible gas kinetic observations at spectroscopically defined

photon energies, is indeed a powerful tool for the study of atomic and molecular structure and

processes.

INTRODUCTION

Continuous emission eras observed in helium dis-
charges by Hopfield' and reported in 1930. This
remarkable vrork in vrhich a differenti. ally pumped
gas-discharge source, vacuum ultraviolet spec-
trograph, and photographic plates frere used to
study continuous emission and continuous absorp-
tion, has played a classic role in the development
of the field of vacuum ultraviolet spectroscoyy. -

Subsequently, continuous emission has been ob-
served in nearly all of the rare gases, and this in-

formation has been used to develop continuous
light sources for the vacuum ultraviolet region. '
Reference 2 contains an excellent bibliography of
the basic papers as well as a discussion of some
of the practical aspects of gas-discharge sources.

In the case of argon a continuum is observed to
liebetween 1100and 1600 A, which we refer to as
the 1300 A continuum. This continuum has been
reported by Tanaka' using repetitive condensed
discharges and quite recently by %ilkinson4 using
microwave excitation. wilkinson s payer is the
first effort to comment in detail on the mechanism
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of the 1300 A continuum produced in argon gas dis-
charges.

Another very interesting line of investigation has
made use of radioactive sources of charged parti-
cles to excite and ionize noble-gas atoms. Ioniza-
tion measurements have been made in nearly all
of the noble gases by allowing n particles to be
completely absorbed in the gas, and by collecting
the total number of ion pairs produced by the par-
ticles. It is found in all carefully examined cases
that when small traces of molecular impurities are
present the number of ion pairs is substantially in-
creased. Impurity enhanced ionization was first
studied quantitatively by Jesse and Sadauskis'~' for
the case of He. Thus the general effect is known
as the Jesse effect, although a similar effect in,

gas discharges is known as Penning ionization.
Following the detailed observations of Jesse ef-

fects in argon, ' spectroscopic studies of charged
particle gas luminescence were carried out in an
effort to obtain further information on the nature
of the Jesse effect. Thus Strickler and Arakawa'
used an ~ particle source and observed continuous
emission in the region of. 2100 A and in the region
of 1300 A. Their new continuum near 2100 A
played a major role in supporting the proposal'~'
that at least two long-lived excited states are cre-
ated by charged particles. Continuous emission
in the 2100 A region produced by n-particle excita-
tion of argon has recently been reaffirmed. " Thus
studies of Jesse effects in argon have motivated
spectroscopic investigations, and continuous emis-
sion has been observed which tend to support the
basic idea that Jesse effects are due to long-lived
excited states. However, it has not been proven
that there is direct connection between the observed
Jesse effects and the observed continuous emis-

sionn.

In the present series of investigations, protons
from a 6-MeV Van de Graaff accelerator are used
to excite argon under conditions which allow good
estimates of energy losses to be made as a func-
tion of gas pressure. Vfe" have confirmed the con-
tinuous emission in argon around 1300 A and around
2100 A and have been able to resolve other continua
at around 1900 A and near 1100 A. These continua,
as well as the region around the 1048 A resonance
line, have been studied as a function of gas pres-
sure.
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FIG. 1. Schematic of experimental arrangement used to
study proton excitation of argon gas.

type EMI 6256-S.
The gas cell is isolated from the vacuum ultra-

violet monochromator with a LiF window (2 mm
thick) which will transmit down to about 1100 A.
As shown in Fig. 1, the LiF window can be re-
moved in which case a differentially pumped slit
is used to isolate the gas cell from the monochrom-
ator. In the region of 1300 A, the conversion
efficiency of sodium salicylate appears to be nearly
independent of wavelength" and thus the ma. in fac-
tor governing the wavelength response of the in-
strument is the reflection efficiency of the grating
which for unpolarized light is the average of the
two curves shown in Fig. 2." In Fig. 2 Rp~ and
R i are the absolute ref l.ectances of the grating
for incident flux polarized with the electric field
vector parallel and perpendicular to the plane of
incidence, respectively.

In the present geometry the relative amount of
energy lost under the slit of the monochromator
can be estimated easily. Each proton looses an
amount of energy equal to ~E, where

EXPERIMENTAL METHOD

Figure 1 shows the experimental arrangement.
Protons from a 6-MeV Van de Graaff accelerator
are brought through an entrance foil (0.0002-in.
Havar) into the gas cell and are finally collected
in a Faraday cup, which is isolated from the gas
cell by means of an exit foil (0.0002-in. Havar).
This arrangement permits gases to be used over
a pressure range from about 1 to 1500 Torr.
Light emission is analyzed with, a —,'-m scanning
monochromator of the Seya geometry which uses
a reflecting diffraction grating with 600 lines per
mm, over-coated with magnesium fluoride and
blazed at 1500 A. The dispersed light strikes a
sodium salicylate converter and is then detected
photoelectrically using an electron multiplier tube
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FIG. 2. Heflectivity of grating as a function of
wavelength.
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Ah = f (dZ/dX)(I/I, )df,

in which dZ/dx is the stopping power of protons in
the gas at the pressure I'„ I' is the pressure, and
dl is an element of proton path which is seen by the
monochromator grating. In the case of argon and
when the proton beam is 4 MeV or greater dE/dx
is nearly constant throughout the path even when
I'o is as large as 1500 Torr. Thus

where f is the effective path length seen by the
monochromator. The rate of energy dissipation
is given by

(3)

wher. „. j~ is the proton current in particles per
second. A knowledge of the rate of energy absorp-
tion is essential for kinetic interpretations, thus
excitation by heavy charge particles offers consid-
erable advantage over more conventional spectro-
scopic soul ces.

EXPERIMENTAL RESULTS

We found that reproducible results are obtained
most easily by flowing pure argon (Matheson's
Gold Label) through the gas cell. When the gas
is allowed to stand in the system a rapid decrease
in light intensity results.

Figure 3 shows two scans of the spectrum be-
tween 1000 and 2300 A both made with 4-MeV pro-
tons exciting argon at a pressure of 100 Torr.
Five regions of the spectrum are of particular in-
terest in this paper: (1) the region near the reso-
nance line at 1048 A, (2) the continuous spectrum

near 1100A which blends onto the 1068 A resonance
line, (3) the strong continuum near 1300 A, (4)
the continuum around 1900 A, and (5) the contin-
uum around 2100 A. The latter is not clearly vis-
ible at the 100-Torr pressure used to obtain Fig.
3. Scan A shown in Fig. 3 is a normal scan with
the monochromator tank evacuated, while scan B
applies to the case when the monochromator tank
is filled with argon at cell pressure. Here we
note that argon absorbs its own emission when the
wavelength is less than 1090 A. The spectra shown
in Fig. 3 and the figures to follow have not been
corrected for instrument response which is deter-
mined largely by the grating ref lectivity shown in
Flg. 2.

A very interesting and complicated behavior is
noted (in Fig. 4) of the 1048A region where we

see that both the intensity and the peak wavelength
depend on pressure. These data are at first aston-
ishing; however, clarifying comments wiQ be made
in the next section.

Because of the absorption limit at 1090 A in ar-
gon the intensity of region 2 will be plotted as the
intensity at 1100 A where no appreciable reabsorp-
tion occurs even when a one-meter absorption path
(the path of the light in the monochromator tank)
is used. Figure 5 shows a plot of the relative
phototube current per unit of power dissipated by
the 4-MeV protons under the slit of the monochrom-
ator as a function of gas pressure P. As ex-
plained in the section on experimental method thi, s
quantity is essentially I/I' where I is the relative
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FIG. 3. Relative phototube current as a function of
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FIG. 4. Relative intensity of the 1048 A region as a
function of wavelength at various pressures indicated
(in Torr).
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is satisfied for various values of x, hence Itv(x} is
a continuous function, and the function f(v) will
also be continuous. The spectrum of emitted light
intensity I(v) will depend, therefore, on the shape
of the upper as mell as the lower potential surface.

Recombination spectra are produced (see diagram
B in Fig. 9) when Franck-Condon transitions occur
from an unbound state at total energy E to a bound
vibrational state whose total energy is less than E.
%Then the spread in energy hE is comparable to vi-
brational level spacing in the lower bound state
emission spectra appear continuous. Again, the
spectrum I(v) depends on both the initial and the
final state.

Since the 1100A continuum blends smoothly onto
the 1067 A resonance line me believe it to originate
from the 'P, (11.62 eV) atomic resonance state from
the process

Ar( P,)+Ar('S, )

-Ar('Sg+Ar('8, )+ ftv . (5)

As mentioned in the previous section, kinetic
arguments based on the function I/P versus P favor
the argument that the 1100 and 1300 A continua
arise from different atomic states. Therefore in
spite of previous conclusions' that the 1300 A con-
tinuum also originates from the 'P, state me sug-
gest that it originates from the 'P, (11.83-eV) atom-
ic resonance state in the process

Ol SSOC IATION

~ro

E E' g

I"IG. 9. Schematic explaining dissociative and

recombination continua.

state. In both cases, the two particles collide mith
total energy E and kinetic energy at infinite separa-
tion equal to ~. At the classical turning point,
x„ the relative motion of the two particles vanish-
es and they separate again to z= ~, unless emis-
sion occurs. Franck-Condon emission takes
place, as in diagram A, with greater probability
near the classical turning point, and is least likely
near the minimum of the upper interaction potential
surface U(r) where the kinetic energy of the rela-
tive motion of the two particles is equal to D (the
dissociation energy of the upper state) plus bE.
%'hen the final state is repulsive a considerable
amount of kinetic energy T appears in the outgoing
particles in their ground state. The total energy
equation

E = hv(~)+ rb)

Ar('P, ) + Ar('8, }
-Ar(~S )+Ar(~S )+I v (6)

It is interesting that the metastable states 'p,
(11.72 eV, 1058 A) and 'P, (11.55 eV, 1074 A) do
not appear in the spectrum of Fig. 3. Commenting
further on the above assignment of the atomic pre-
cursors of the 1100 and 1300 A continua, we note
that the 1100 A continuum is connected onto its pre-
cursor line 1067 A, while the intensity of the 1800
A continuum drops to a very lom value in a wide
region above its precursor line at 1048 A. This be-
havior implies that the well depth D in diagram A
of Fig. 9 is much greater for the 1048 A resonance
state than the corresponding value for the 1067 A
resonance state. Such differences are not unex-
pected" in view of the fact that the oscillator
strength for the 'P, state is four times greater than
that of tQe 'I', state. '6 Evidently the classical
turning point xo is somewhat greater in the case of
the 'P, state, since the wavelength for maximum
intensity is closer to the resonance line. %hile
kinetic arguments based on the behavior of I/P ver-
sus I' strongly favor the above assignments, other
support Inay be obtained by comparing the relative
intensities of the tmo continua. After correcting
for grating ref lectivity, it is found that the ratio of
emitted energy in the 1300 A continuum to the emit-
ted energy in the 1100 A continuum, at pressures
where it appears that essentially 311 of the energy
of the atomic states is utilized in molecular emis-
sion, is close to the ratio of oscillator strengths.

Having thus connected the 1100 and 1300 A con-
tinua with resonance states, we must comment
further on the collision processes [Eqs. (5) and (6)],
and we must attempt to explain the data shown in
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Considerable oscillator strengths are found" at
levels near 14.3 and 15 eV (see the shaded areas
in Fig. 11); therefore, these groups of levels con-
tain likely initial atomic states for the 1900 and
2100 A continua, thus making about 4 eV a more
rea].istic minimum well deptIl In Flg 11 the po-
sition of the van der %aals attractive interaction
in the ground molecular state is so chosen to ac-
count for continuous absorption (at wavelengths
less than 1090 A) into either the attractive ('P,
+'So) or the ('P, +'So) molecular states.

%e have found evidence for resonance states, in
the energy regions suggested previously, ' to ex-
plain Jesse effects in argon; however, we have not
proven that these states are responsible for Jesse
effects. Because of new evidence presented in
this paper, and in spite of continuing implication"
to the contrary, the role of atomic metastable
states in explaining Jesse effects in argon is ques-
tionable.

S + S

NUCLEAR SEPARATION, r

FIG. 11. Possible potential energy surfaces in

the argon molecule.

state interacting with the '80 ground state producing
a potential well having a minimum depth of 3.3 eV.
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