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The coupled Vlasov equations for electrons and ions in the presence of a strong long-wave-
length electromagnetic field are solved. Calculations of the growth rates for the excitation
of the upper-hybrid, lower-hybrid, and the Bernstein modes are presented and discussed.

I. INTRODUCTION

Parametric excitation of plasma waves has been
of considerable interest. ' Here the parametric
excitation describes the nonlinear coupling of a
high-frequency electric field to low- and high-
frequency density oscillation modes of the plasma.
This nonlinear coupling can transfer energy from
the high-frequency electric field to low-frequency
modes and, therefore, drives low-frequency in-
stabilities. Several authors have considered the
excitation of electron plasma oscillations and ion
acoustic waves via radiation or longitudinal fieMs. '
In this paper we consider the parametric excitation
of density waves for a plasma embedded in a, dc
magnetic field. The plasma may either be a col-
lection of mobile electrons in a semiconductor,
treated in the one-band effective mass approxima-
tion, or a high-temperature gas plasma, e. g. , as
obtained in a gas discharge. In semiconductors
the electrons couple to the phonons [the ion (lattice)
mode of excitation] through their self-consistent
field. Similarly, in gas plasmas the electronic
and ionic motions are coupled by their locally in-
duced fields. The magnetic field adds a variety of
new modes to the system. The spectrum of the
collective oscillations of the electrons includes the
upper-hybrid mode and the infinite set of Bernstein
modes near the cyclotron harmonics. Since the
magnetic field is also easily tunable in the labora-
tory, a study of the density excitations for a range
of magnetic fields will give new and interesting
information about the spectrum of fluctuations in
the plasma. Although fluctuation can be excited
at any angle relative to the magnetic field 8, we
will only consider the particular geometry where
the wave number k of the fluctuations is perpendic-
ular to B. This geometry is interesting because
it allows us to study the collective effects over an
extremely wide range of k. In fact, in this geom-
etry, the boundary in k space between the collec-
tive and single-particle regions is not well defined.
It is possible to follow the collective excitations to
large k where they merge continuously into the
single-particle resonance spectrum at ~z, 2uz,

~ e ~
&

etc,
In the general geometry, where k has a compo-

nent parallel to the magnetic field B, the collective
modes are strongly damped for kIt - kD, whex'e ka
is the Debye wave number. This damping, the

Landau damping, is due to the coupling of the
collective mode to the single-particle continuum.
Unlike the case k perpendicular to 8 the single-
particle excitations are not discrete, and the
fluctuation spectrum changes qualitatively as k
increases through ka.

In the long-wavelength limit, the nonlinear cou-
pling of a radiation fieM to the spectrum of the
density fluctuations can be treated analytically.
For k/kD «1 the parametric excitation of the lower-
and upper-hybrid modes is dominant, since this
has the highest growth rate. For the case of k/kD
&0.5 parametric excitation of the mode at the cy-
clotron harmonics is possible for relatively low
thr'eshold fields. In fact we will show that the
growth rate for excitation of the upper hybrid
(lower hybrid) is independent of k/kD for k/ka «1.
On the contrary, the growth rate for excitation of
the mode at the cyclotron harmonic is proportional
to (k/kD) for (k/kD) «1.

For the case k/kD & 1 we do not have closed-form
analytic solutions for the growth rate of the para-
metrically excited density fluctuations. Here one
should look for numerical solutions.

Our calculations were motivated by recent ex-
periments which demonstrated that the lower- and
upper-hybrid oscillations and the Bernstein modes
in a plasma could be simultaneously excited by a
radiation field. '~' %e have calculated the growth
rates for these nonlinear instabilities and obtained
the expressions for the growth rates needed for the
excitation of other modes in the plasma. Para-
metric excitation in a magnetic field was discussed
by Aliev et a/. 4; however, they did not calculate
the growth rates for these particular cases.

II. CALCULATIONS OF THE INSTABILITIES

Consider an electron-ion plasma in a homogene-
ous dc magnetic field. The dynamics of the plas-
ma is described by the Vlasov equations for elec-
trons and ions. We assume that the plasma is
subject to a, homogeneous oscillatory electric field
of frequency x„. We solve for the response of the

plasma to the electric field using a perturbation
expansion. Our expansion parameter is the ampli-
tude of the density fluctuations. The zeroth-order
equation for the electron distribution function in
the presence of the external electric field is
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with a similar equation for the ions. Here b=8/8,
where B is the dc magnetic field and E, is the ex-
ternal ac electric field. The distribution function

f, is spatially uniform and describes electrons with
a homogeneous oscillatory velocity field driven by
the external field. The excitation of density fluc-
tuations for the electrons may be found in the next
order of the approximation. The distribution func-
tion obeys a linearized Vlasov equation:

with Z =eE /m~
e

f =f (u), E =F (U), (6)

and

fi =fk(u, t)e, E =E (U, t)e

Similarly one writes for the ions Zi =eE0/Mu0
and defines Ki, $i as in Eqs. (6) and (6) with Ze- &z and +~- —Qz. The solution of the distribu-
tion functions is given by'

sf' sf'' + v ='+ (u (fxs) ='+-sf e s 0' sf
~X ~V 1' ~v ~v

=—E sI.n(o t ' ='
m ' ' ~v

(2)

Here f (E ) is the Maxwell-Boltzman distributionI
function for the electrons (ions). The equations of
motion which fk and Fk satisfy are given by

The spatially dependent ion distribution function
I', obeys a similar equation. The self-consistent
field obeys the Poisson equation

=4xen, fdv(f, —F,),
and

- + ik ~ uf +a& (ux b).
C Bu

01 N
tk

&u k k J )

(io)

u=v —ge

r=x —$ e'

U=v —E

R=x —$.i' (4)

where n, is the average electron and ion density.
In the linearization procedure we have used, no
assumption was made about the magnitude of the
external field E,. The nonlinear term dropped
from Eq. (2) is of the order f,y, . Only the initial
growth rate of the instability is given correctly
by the solution of Eq. (2). It determines the spec-
trum of the instability, but does not describe the
long-time behavior of the fluctuations. The solu-
tions for f„f,(E„F,) a,re given, for the electrons
(ions), in Ref. (4). Although the transformed co-
ordinates in Ref. 4 are given in implicit form,
i. e. , as a time integral these new coordinates can
be determined explicitly when E, is homogeneous,
we find them to be

ay-
k+ik UF-- n (Uxb)

k c ~U

where nk and ~k are defined by

n = fduf (u, t); N (t)= fdUE (U, t).

If we note that te/hi - M/m we can approximate
We consider only the case when the

density fluctuations propagate perpendicularly to
the magnetic field. Let the magnetic field B be in
the z direction, and without loss of generality
choose E, to be in the x direction, i. e. , E,
=xE, i s&un, t and k=(k~, k&, 0). For this particular
geometry we obtain

where

= e cosv t+(I —& /& )e e 0 c 0

x((~ /~ )(e xb)sin&a tc 0 e

y (~ 2/&g )[Q x (e x 6)] cosco

where

= —A. s jn(&u t y p ) ~ —X sinu t,e 0 0

~ k'+k'
m~, ' i &u,

' j
(14)

(o ] = —e sin(u t+(1 —(o '/(o ') '
0 e e 0 c 0

x((&u /~ )(e xb)costs t
c 0 e

—(~ '/~ ')[bx (e xb)] sin~ t], (6)c 0 e 0

Here ~ represents the ratio of the excursion of
the electron relative to the ion under the effect of
the ac external field to a characteristic wavelength
of the oscillation. In Eq. (13) we have omitted the
phase factor y since the parametric excitation is
independent of initial phases. The solution of the
coupled Eqs. (10)-(12) may be obtained, using



N. TZOAR

standard techniques. ' One finds that the final re-
sult consists of an infinite set of coupled equa-
tions for the electron and ion density fluctuations4
np and Xp..

e ((o+l(u )n((u+l(u )+[e ((u+l(o ) —1]e 0 0 e

x Z 4& I
(A)N(&u+ se ) =0,

$ — Oo

e. (~+l&u )N(++le )+[e.(++l&o ) 1]0 0

x Q J (-X)n(tu+stu )=0.
$ — OO

(16)

Here &e an«z are respectively the well-known
dielectric function in random-phase approxima-
tion for electrons and ions in our geometry for
frequency co and wave number k. The wave num-
ber k is omitted for simplicity. Equations (15)
and (16) are the exact analog of the well-known
expressions for parametric excitation in the ab-
sence of the magnetic field. The effects of the
magnetic field are buried in the behavior of the
dielectric functions &j and

III. CALCULATION OF THE INSTABILITIES

In order to extract useful information from the result given by Eqs. (15) and (16), let us limit ourselves
to the two-mode instability. We now consider the case when only one low-frequency mode +, and one high-
frequency mode at &-z, are excited. Here u, is the angular frequency of the radiation field. This approx-
imation requires & to be larger than the inverse lifetime of the mode at co-&0. In this limit we obtain four
coupled equations which read

e (~)n(~)+[ e (~)-1][~0(&)N(~)-~1(&)N(~-~0)]=o,

((u-(u )n((u —(u )+[e ((u-(o ) —1][& (x)N(&o-&u )+J (X)N((o)] =0,

e.((o)N((u) +[e.((u) —1][Z0(x)n((u) +J (X)n((u —&u0)] = 0,

e. (Iu-(u )N((u —Iu )+[e.((o —(o ) —1][Z (&)n((u —(u )-8 (X)n((o)] =0.

The solution of Eq. (17) is straightforward: After some algebra we obtain the nonlinear dispersion re-
lation for the case Z « I (as in realistic laboratory situations) to be

e(&u)e ((u-(o )--,'x'[e ((o) —e ((o —~ )][e.((o) —e.((o —(u )] =0
0 e e 0 i i 0

with e(&u) =e ((u)+e. (&u)-1.
e i

For the electron-phonon system we obtain a similar result':

e(&)e (&-& )+~4~'(~ v )'/y )[e (&) —e (& —& )][D(&—& ) —D(&)]=0,
0 k k e e 0 0

where e(&u) =e (&u) —(I v&1'/p&) [1—e (&u)]D((u) .

(18a)

(19a)

(18b)

(19b)

Here v~ and p~ are respectively the electron-phonon and electron-electron interactions and D(v) = (&@+i')'
—Qy ) is the phonon propagator. The solution of the dispersion relations, Eq. (18a), for & =0 is given by
e(&) =e(~ —&v, ) =0. Thus it follows that ~and &u —~ respectively must be identified with a low- and a high-
resonance frequency given by the zeros of the total dielectric function. In the case of small & we may
assume that the solution of Eq. (18a) is close enough to the zeros of e(v). We next define the low- (high-)
frequency roots of e(&u) by u&1(u&&) and expand;

e((d) = e(QP ) + ((d —(0 )
s ((o)

I ~(d
(d = COI

+ 0 ~ 0
7

where e(ug) = 0. Equation (18a) is given now to dominant order by



where )t= [e ((o~) —e (~ )][e.((o ) —e. ((o )]
ae(co ) se(co )

ego 84)
(21)

The dielectric function ee((d) [e ((d)] has been calculated in the random-phase approximation and is given
for our geometry (k&B) by'

e I (z)
~ ( )=1- ~, —'ir.-'I (.)-1].2 —Z (22)
e &u' z( 0

1 ((()/(d )' —n'

where &op and &oc are respectively the electron-plasma and electron-cyclotron frequencies, z =k'vth'/v ',
and I„ is the Bessel function of the second kind. The ion dielectric function e; (&o) is given by a similar

equation with (dp-n~, (dc-- Qc and z-x=0'Vth'/nc'. Here Qp and Qc are respectively the ion-plasma
and ion-cyclotron frequencies. The growth rate of the parametrically excited density waves can be easily
obtained from Eq. (20) for growth rates y& 2&v&. We obtain using Eq. (14) the result

iyl=4[e& & /m((d ' —(u ')](1+0 '(o '/0 '(u ')'I'(Q(o (u )'~'
x Q 0 c P C X 0 I. H

The relation between y and the condition for the onset of instability in dissipative systems is derived in
the Appendix.

The growth rate y can be calculated analytically for the long-wavelength case. Here, for z, x & 1 we

may write

t = 1 —(d [(1—z)/(() —(d ) +z/((0 —4(d )],8 P c

e.=1 —Q '[(1 —x)/((()' —Q ')+x/((o' —4Q ')],
p c c

and thus obtain for X using x, z «1 and ec, cop, ~H» Qc, Op, ~I

1 1' 8 8 1 x x
QP QP —(d QP —4(d (0 —0 02 —40c H c H c — I. c c cx— 1-z 8 X

(~ ' —td ')' (~ ' —4~ ')* (~ * —0 ')' (~ ' —4() ')')
H c H c I. c I c

Now (deaf and (()f are given by the zeros of the dielectric function e(&o) = 0. We obtain, using Eqs. (19a),
(24), and (25), four roots given by

(d = (d + (0 [1—3(0 z/(3(d —(d )]c p c P
(25)

&u '=4(u '[1+-,' (o 'z/{3&v ' —(d ')],c P c P
(27)

~ '=n '+n '[1 Sn 'x/(S—n ' n')j, -

~ ' =4n '[1+-,' n 'x/{Sn '- n ')],c P c P

where np'=n '/[1+(~ /~ )'(1-, z)j .

We consider now the growth rate for the upper-hybrid and lower-hybrid modes given in Eqs. (26) and (28).
Using Eq. (25) we find to a good approximation that y =&a~'Q~'. This is the result obtained for plasmas
free of magnetic field for the electron-plasma and ion-acoustic modes. Since X represents the strength
of the nonlinear coupling between the radiation field and the density fluctuations, we conclude that this
coupling is not altered by the presence of the magnetic field. In the calculation of the growth rate, Eq.
(23), we substitute (()0 =(dl +(de =(off = (~ '+(dc')'I'. The coupling of the electric field E, to the elec-
tronic motion is proportional to (&u0' —(dc

' and is larger than for the case of no magnetic field. The
growth rate for parametric excitation of the upper and lower hybrid reads
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y = q (ek E /2/I(o )(1+k (d /k (d ) (d Q /[((d +(d )Q +Q (d ]x 0 p y e x 0 p p p e e p e

The growth rate depends mildly on the magnetic field, i.e. , p Qp

For the excitation of the upper hybrid and a phonon, we obtain the growth rate

iyi=-,'(I- e /e )(ek E /m*(d 2)(d (d /((d (d )"'.
0 x 0 P 8 P

(31b)

Here QP, and (d2 are given by

(d = 2 ((d +(o +(d ) + 2 ((d +(d —(d )/I + [4((0 +(d )(d /(d +(d —(d ] (1 —s /& )]' /
]., 2 P c l P e E p c I p e I 0

where e and 6, are respectively the infinite and zero frequencies dielectric constant.
We next compare our result Eq. (31a) with the growth rate obtained for parametric excitation of plasma

and ion-acoustic waves in plasmas without a magnetic field. The result for this growth rate reads

y
~ (ekE /121(d 2 )[(d Q ] 1/2 (k /k ) I/2

P P P

The growth rate for density excitation in plasmas with or without magnetic field turn out to be comparable
since (kjkD) cannot be very small. Otherwise the frequency of the acoustic wave which is proportional to
(k/kD) goes to zero, and the two-mode analysis fails. (The two-mode analysis is valid only if III(dl &1.)
Also for the case of (k/k&) «1 the rate of absorption of the waves increases largely due to Landau damp-
ing, and therefore a larger growth rate is needed to start the instability. However, for density waves in
plasmas embedded in a magnetic field and propagating perpendicular to the magnetic field, the collision
frequency is independent of (kjkD), and one can study the excitation of the density waves regardless of
their wave number. The magnetic field also provides a frequency tuning which can help in the experiment.
For the instability of the mode at the cyclotron harmonic, we calculate the growth rate for the two modes
at

(d = Q + Q (o /(d +(d, (d =4(d [(1+2(o 8/(3(d —(o )], RIld (d =(o +(o

Using Eqs. (23) and (25) we can, to leading order in z, obtain the growth rate for these modes (for 3(de2

4(dp );
I/O 1/2

ekE k' ( 3(o '
GJ Q (Z)

1+ '
\std ' —ra '/ td '+td ' ) [4' '[0 '+ (( '(o '/(td '+td '[]["' '

C x P P C P c P c
(33)

In Eq. (33) the growth rate is smaller by a factor of z'/2 =kl/th/Id than that given by Eqs. (31a) and (32).
We therefore conclude that the parametric excitation of the cyclotron harmonic is possible provided kl/th/

v~ can be made of the order of unity.
%e next consider the parametric excitation of the two high-frequency modes at the upper hybrid and the

cyclotl'011 harmonics [see Eqs. {26) RIld (2V)]. F01' 'tllls cRse (d0=2(de + (I'd e +(dp ) ~
RIld 1f (d00 8(de, Il

being an integer, our two-mode analysis is valid. The coupling between the two electronic modes is done
via the ionic motion and we approximate in Eqs. (15) and (16) e ((d+s(d0) = 1 and el ((d +s(d0) —1 = Qp'/
((d+s(d0) . The dispersion relation for the two-mode instability is given using Eqs. (15) and (16) and
reads

e {(d)e ((d —(o )+-,'X2[e ((o) —1] [e ((d —(d ) —1] [Q '/(o' —Q '/((o —(o )']'=0.
8 8 0 O p p

(34)

In deriving Eq. (34) we assumed that X «1 and also that Qp «(de, (dp. The growth rate is given by [see
Eqs. (18) to (23)]:

l/2 -1/2
ekE ) t' k '(d ' )

1
Se((d ) Se((d )

4 m(w' —td')/ ( k'~'( p td' td' ( 8(o' 2 std' )0 e x 0 I 2 1 2
(35)

In Eq. (35) we identify (o,2 with the upper hybrid, i. e. , Idi2=(dp'+&de2. The mode at
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&o '=4ur '([I+-,'~ 'z/(3~ '- ~ ')] )

is the Bernstein mode. The growth rate for these modes is found to be

1/2 5/4
ekE 2 ~ 2 ) ( ~ 2

m(&u '+2&@ ') 0 '
&u '+5&@ ' j M \, &o '+to ' /

(36)

We can see that the growth rate for parametric excitation of the upper hybrid and the cyclotron harmonics
is proportional to z'~'=kvth/~c as expected. We next compare the growth rate for excitation of two high-
frequency modes, Eq. (36), with the growth rates for excitation of high- and low-frequency modes, Eqs.
(31a) and (33). If we assume z Z 1 we obtain, apart from terms of order unity, that ratio of the growth
rates y in Eq. (36), to y in Eqs. (31a) and (33) is (m/M)'~'. This small ratio comes from general con-
sideration of parametric oscillators where the electron ion coupling is done by the self-consistent field.
The electrons are driven by the ions and the external field with coupling proportional to v . Similarly
the ions are driven by the electrons and the external field with coupling proportional to Af, (see Eq. 17).
The effective coupling is g = u& 'Qp' as we found using our Eq. (25). The growth rate in our case for the
lower and upper hybrids is given by Irl (y/&ul&If)"', i. e. ,

y- (o 0 ((u (u ) 'I'-
((u 0 )'I'- (m/M)'~'(oPP ~II PP P'

For the excitation of any of the high-frequency electron modes we depend on the ion fluctuations [see Eq.
(34)] . We obtain y- Qp if all of the high frequencies considered are of the same order of magnitude. The
growth rate y' for this case is given by y'- (0&'/&u ')'~'. Here &up is typically the order of the high fre-
quencies in our problem. We therefore obtain they'- (m/M)&u~ and the ratio of y' to y is (m/M)'I' as we
have found.

The ratio of (m/M)'I' is very small; even for helium, this is of order 10 '. We find, however, from
order-of-magnitude considerations, that when the full electromagnetic radiation field is considered, the
ions can be ignored, but parametric excitation with growth rate y"=(v/c) y takes place. Here v is a
typical phase velocity of the density fluctuations which in our estimate can be taken to be of the order of
vth. Therefore in gaseous plasmas, where vth/c is of the order 10, the coupling via the ions may be
ignored. However, for electron-hole plasmas in semiconductors, where vth/c is typically 10 but (m/M)
could be of order —„(e.g. , InSb), the coupling between the electronic upper-hybrid and the first Bernstein
mode will take place via the holes.

CONCLUSIONS

In conclusion we have calculated the growth
rates for excitation of density waves for plasmas
in a magnetic field. We find that the growth rate
for excitation of low- and high-frequency modes
is comparable with the excitation of electron-
plasma and ion acoustic waves in the absence of
a magnetic field. The growth rate for excitation
of two high-frequency modes is smaller and will
be strongly dependent on the electron-ion mass
ratio.

tively, yL and ya, the dissipation rates of the
linear modes at +L and u&ff. Equation (20) now

reads

[((u+iy )' —(u~'] [(lu —&u +fr~)' —(o~']= yg/4

(A2)

Using the condition that yl, yH&(dL, we solve
Eq. (A2) and obtain the growth rate y, in the pres-
ence of dissipation, to be

y=~s(-(r~+r~)+[(r~ r~)'+4r-']"'}. (A3)

APPENDIX

We derive here the rel'ation between our calcu-
lated growth rate y and the condition for the onset
of instability. Our starting point is Eq. (20). For
the case when y &2+& we obtain

Here y is given in Eq. (Al). From Eq. (A3) it is
clear that y is positive (the system is unstable)
if the growth rate y, calculated in the text, is
larger than the "effective" dissipation rate of the
two modes given by

r = l~(x/~z~H)"', (Al)
r - r f

= (r~rH)"'.eff I II (A4)

where X, X, coL, and (d& are defined in the text.
We next generalize Eq. (20) to include phenomeno-
logically the dissipation by introducing, respec-

This is a well-known result of parametric oscilla-
tor theory and is the basis for calculations of the
threshold field (y-E, ) needed to obtain the in-
stability.
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Ground-State Energy of Solid He ~
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The ground-state energy of solid He is computed using a cluster expansion terminated in

third order. A 6-9 potential is used that gives a better fit to virial data than the 6-12 Lennard-

Jones potential does. A substantial improvement in energy for a particle localization corre-
sponding to the crystal is obtained, although the crystal is not stable against further particle
delocalization. Thus, for this potential, the interaction is too weak to give a stable crystal
structure. Some simplifying features of the cluster expansion are also demonstrated.

I. INTRODUCTION

Several calculations of the ground-state energy
of solid He' have been carried out using a vari-
ational method based on a trial wave function of
the Jastrow type'

4'(r I, ..., r )

N
II y(lr. -R. I) gg f.~(lr~ —r I) . .

i=y i i j&k jk k j

this is not done in a unique way by the above men-
tioned authors. '~ ' Introducing

V (r) =v(r) —(a-'/2m) V' lnf(y) (I. 2)

v(r) = 4e [(o/r)" —(o'/r)'] .

enables the energy terms in the cluster expansion
to be expressed in a convenient way, with an ef-
fective potential Vf'. In the previous calculations
v(r) has been assumed to be the Lennard-Jones
potential

The y are single-particle wave functions de-
scribing the localization of particle i with co-
ordinate ri about the lattice site Ri. These wave
functions are usually assumed to be Gaussian.
The f&y are two-particle .correlation functions,
going to zero for small rjk, and going to a con-
stant for large r I . In some calculations the fjy
are assumed to e independent'~ ' of j, k and then
simply denoted by f; in other calculations they
depend on j,k. The ground-state energy may then
be expressed as a cluster expansion, ' although

The cluster development terminated in low order
will include the short-range correlations. The
long-range correlations associated with the zero-
point fluctuations of the phonon-degrees of free-
dom is not, however, included in the low-order
terms in the expansion. A calculation of the
long-range correlations has been performed by
Koehler. '

The phonon corrections to the ground-state
energy may also be calculated readily by per-
turbation methods. The ring diagrams in the


