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A boundary-condition method is used to investigate the energy levels of atomic hydrogen
in a uniform electric field. At low fields the misbehavior of trial eigensolutions in the non-
classical region enables one to obtain high-accuracy upper and lower bounds to the Stark
shift. At higher fields the energy levels are treated as resonant states imbedded in a con-
tinuum. A modified WEB approach is used to obtain both the position and width of these reso-
nances. Comparison is made with the usual perturbation-theory results.

I. INTRODUCTION

An adequate explanation of the Stark effect in
atomic hydrogen was one of the first tests applied
to the old' and new'~' quantum theories. The appli-
cation of perturbation theory was successful in con-
firming both the linear and quadratic Stark effects. 'y ~

Recently these results have been extended to higher
order. ' Several authors have also treated the
Stark effect using the WKB technique. '~' As yet,
however, no exact solution of the appropriate
Schrmingel equation has been undertaken This is
perhaps due to the we].].-known fact that at large
distances from the proton the potential energy be-
comes infinitely negative. 3~'~' Thus the electric
field, however weak, eventually strips off the
atomic electron. The problem then becomes more
complicated than a simple determination of bound-
state energy levels.

In this paper we use a modification of the bound-
ary-condition method, recently used by Rosenthal
and Wilson, "~" to investigate the energy levels of
atomic hydrogen in a uniform electric field. We
obtain series solutions to the appropriate Schrb-
dinger equation for various trial eigenvalues. At
low fields the nature of the misbehavior of these
solutions in the nonclassical regions changes as the
sequence of trial eigenvalues crosses the true
eigenvalue. This enables us to obtain high-accuracy

upper and lower bounds to the Stark Shift. The un-
certainty in the energy caused by the unbounded
character of the state is less than the difference
between these bounds.

At higher fields it becomes necessary to consider
explicitly the unbound character of the initially
bound states, which now appear as resonant (meta-
stable) states imbedded in a continuum. We use
the boundary-condition method together with a
modification of the WKB technique to obtain the
phase shift of the asymptotic (unbound) eigen-
function. In exact analogy with elementary scat-
tering theory, analysis of the energy dependence
of this phase shift yields both the position and
width of the metastable levels.

II. GENERAL REMARKS

The SchrMinger equation for atomic hydrogen in
a uniform electric field of strength I' directed
along the z axis is separable in parabolic coor-
dinates, $, q, Q, yielding the three ordinary dif-

ferentiall

equations'~"

+ -~ +Z, M(()=0, (2)
dP, d$ 4 2 4$



and

+—— +z, L(n) =0.d j'q2 Eq 12
dq dg 4 2 4q

and further write the energy E and the separation
constant Z, as

(lla)

Here E is the total energy of the system whose
eigenfunction may be written as

and Z, =M, + (2n, +m+ I)/2N . (lib)

(4)

The two separation constants Z, and Z, obey the
relation

Z1+Z2

Here 8$' and dZ, represent the shifts in the energy
and in the separation constant from their zero-
fieM values. Following the well-known technique
of power series solutions to ordinary differential
equations, '3 we substitute the expansion (10) into
Eq. (2) and equate coefficients of powers of g to
zero to obtain the following four-term recursion
relation for the coefficients g~'.

and in the zero-field case have the values N(4n' —m')a +4(N~ +nl+ 2 m+1 —n)aI n —1

Z, = (2n, + m+ I)/2N

and Z, = (2n +m + 1)/2N,

(ea)

N being the principal quantum number of the parent
hydrogen orbital. The two parabolic quantum
numbers n, and n, are related to N by

N=n, +n~+m+1 .

III. SOLUTION OF THE $ EQUATION

Equation (2) has singularities at g =0 and g = ~.
The substitution M' (()= VTM($) transforms Eq.
(2) into the Schrodinger form

(8)

The integration of Eq. (1) is trivial, yielding the
usual azimuthal functions. The quantum number
m is, of course, just the angular momentum about
the imposed field direction. Equations (2) and (3)
are both boundary-value equations with singularities
at 0 and ~. Gonsequently they possess properly
behaved solutions only for certain related values of
the energy E and the two separation constants Z,
and Z, . This fact, together with Eq. (5), results
in constraints on the allowed values of the energy.

Inserting trial values of M and hg, and setting
a, =1, we can compute as many of the g~ as de-
sired from Eq. (12). One way to examine the so-
lution that these coefficients represent is to com-
pare the111 with the expansion coefficients of
exp(+$/2N), namely b = I/(2N)nn &

" If for all
n greater than some vaIue n„(a„l & I bn I, then

ll tend to +
—~ if the a+ are all negative. This is indeed what
happens; after a certain point the computed co-
efficients become either all positive or all negative.
In Appendix A we show how it is possible to prove
from this that the computed function diverges to
+ ~ or to —~. The transition from positive to nega-
tive divergence indicates that two successive trial
values of ~, straddle the true value. By re-
peatedly subdividing the grid of trial values, one
can obtain extremely precise upper and lower
bounds to the exact ~, for a given ~. Since the
use of parabolic coordinates correctly lifts the
degeneracy of the zero-field hydrogen orbitals, 9

once one specifies the initial quantum numbers g„
n2, and m in Eqs. (9), (lla), and (111), there will
exist only one allowable value of ~, for each ~.
This series of allowable values defines a continuous
curve in the (~, hZ, ) plane along which the function
M(g) is well behaved

IV. SOLUTION OF THE q EQUATION:
LOVf-FIELD CASE

V (g) = ,' [Z~ 4Z,-/g+ (m-I)/p], -

and e = ~E. The potential function V increases to
+ ~ with increasing $. Thus the solutions of Eq. (2)
are related to the bound eigenfunctions of Eq. (8).
For each value of the energy E there exists only a
discrete set of allowable values of Z, for which
M behaves correctly at the two singularities.

We assume a series solution to Eq. (2) of the
form

—8/2N g (n
n=O"

The substitution I'(q) =vt(i I ( ) converts Eq. (3)
into an equation similar to Eq. 8), namely

——&,+V(q)-e I,'(q)=0,

v()l ) = -', [ —Fq —4Z, /q + (m' —I)/q'], (14)

and, as before, @ =4E. Since V(q) tends to —~
for large q, the solution I, ' (q) becomes oscillatory
in the asymptotic region. Herein lies the unbounded
character of the Stark levels. In contrast with Eq.
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(8), Eq. (13)is a one-point boundary-value equation, "
possessing well-behaved solutions for each ~,
dZ', pair arising from the previous solution of the

g equation.
The presence of the electric field transforms the

bound zero-field states into slowly decaying, meta-
stable states, which are initially concentrated in
the atomic region (q =a,). '~'i'4 Such a metastable
state may be represented by a wave packet with

g component"

iL,*(q)i„,» ii'(q)i „„„, (16)

The range of energies over which this inequality
holds is a measure of the width of the metastable
level.

Now, examination of V(q) shows that at low fields
there exists a large nonclassical region, defined by
V-6&0, inside of which

(I/L, i)d2Z, ~/d~2& 0.
In order for the inequality (16) to hold, I, ' must
not diverge with increasing q inside the nonclassi-
cal region. If it then were possible to choose two
trial energies such that inside the nonclassical
region one eigenfunction L, was diverging posi-
tively while the other was diverging negatively,
one could thereby bracket the range of energies
implied by (16). By subsequently tightening the
grid of trial eigenvalues, one could obtain upper
and lower bounds to the Stark shift.

To do so we proceed as in the solution of the

$ equation. Assuming a series solution of the
form

}f (q) = t}-'" fI, '(q, Z„e)f(e)dh,

f (e ) being an unspecified weight factor. In order
that the wave packet be initially concentrated in the
atomic region, the only important contributions to
the integral in Eq. (15) must come from energies
for which

For the lowest state only the coefficients of even
powers are nonvanishing. By convention the first-
two coefficients, +, and a~, are called, respec-
tively, the polarizability and hyperpolarizability. "
For the hydxogen 1s level one finds, to fourth
order, "

~E(1@) yP a 35~so Pe (22)

of exp(+q/2N), namely 5„=I/(2N)"n I . If we find
i an t & ) bn ] for all n with N„~n (N, , then f, (q)
will diverge positively in this range if all the an
are positive, or diverge negatively if the an are
negative. Eventually, as n becomes greatex than
N„ the n wiH. no longer be of the same sign. This
sign alternation at large n will reflect the oscilla-
tory behavior of Ii(g) in the asymptotic region. If,
however, N, is sufficiently greater than N„a
simple inspection of the expansion coefficients will
suffice to determine the behavior of L, ' in the
nonclassical region. In Appendix 8 we show how
one can obtain the upper limit N„once N, is
known. .

In practice, at low to medium fields, N, »NO
and the above criterion may be used. The com-
plete procedure is simple. For a given ~ one
computes M, by solving the f, equation (Sec. III)."
One then proceeds as outlined in this Section to
determine whether the corresponding function
1,'(q) is diverging positively or negatively in the
nonclassical region. Repetition of this procedure
yields upper and lower bounds to the Stark shift.
%e have computed these bounds for the lowest
(Is) state of atomic hydrogen (n, =n~ =m =0) at a
number of low and medium field strengths. '7 The
results are shown in Table I. Obviously, very
precise bounds can be obtained.

The standard treatment of the Stark effect by
perturbation theory leads to an expression for
the Stark shift as a power series in the field
strength of the form' 'i'

e E
(21)

pert

and writing

we substitute (18) into Eq. (3) to obtain the re-
cursion relation

(18) Table I also contains a comparison of our results
with those obtained using Eq. (22). Clearly, at
low to medium fields the fourth-order perturba-
tion theory results represent an upper bound to
the exact Stark shifts. From the difference be-
tween our results and the fourth-order perturba-
tion theory values one can obtain a crude esti-
mate to the sixth-order term in atomic hydrogen.
We find n, (ls) = (3. 530+0. 015)&&10'a.u.

~(4n'-m')a +4(-X~, +n +-.'~+I-n)a
n 1 2 n-1

(20)

nserting various ~,~, pairs obtained from the
previous solution of the f equation" and setting
a, =1, we can compute as many coefficients as de-
sired. As before, it is instructive to compare
these coefficients with the expansion coefficients

V. SOLUTION OF THE q EQUATION:
HIGH-FIELD CASE

As the field strength increases, the nonclassical
region decreases markedly in width. It is no
longer possible to extract any information about
the level positions from a simple inspection of the
expansion eoeff icients. Another approach is
needed. Asymptotically Eq. (13) admits the usual
%KB solution"

L, ' CA. '~ cos(f W— dg' —'v+5), -



TABLE I. Upper and lower bounds to the Stark shift for the 18 state of atomic hydrogen: low-field case.

Field
strength

0.02
0 ~ 01
0;009
0.008
0.007
0.006
0.005
0.004
0.001

Upper bound

-9.092 24256 x 10-4
-2.25560456 x 10-'
-1.82617085 x 10-'
—1.442 288 19 x 10-4
—1.103 83950 x 10-4
-8.107 22193 x 10-'
—5.62847936 x 10-'
-3.601423 99 x 10-'
—2.250 055 54 x 10-'

Stark shift
a

Louver bound

—9.092 24259 x 10
—2.255 604 61 x 10-'
-1.826170 90 x 10-4
-1.442 288 23 x 10-'
—1.103 83966 x 10
-8.107 22195 x 10-'
-5.628 47937 x 10-'
-3.601424 01 x 10-'
-2.25005558 x 10-'

Perturbation
theory

—9.088 875 00 x 10-
-2.25554687 x 10-'
-1.826 14443 x 10-4
—1.442275 20 x 10
—1.103 833 68 x 10-4
-8.10719888 x 10-'
-5.628 47168 x 10-"
-3.60142200 x 10 5

-2.25005547 x 10 ~

All quantities are in atomic units. To extend the above results to the case of an arbitrary hydrogen-like ion with
nuclear charge Z, one must multiply the field strength by Z3 and the Stark shift by Z (see Ref. 12).

Fourth-order perturbation theory results, see Eq. (22) of text.

where A = 2(e —V). C is an arbitrary constant, 5

is the phase shift, and a is the outer classical
turning point, defined by V(a) —e =0.

It is still possible, of course, to expand I'as a
power series about the origin and solve for the
expansion coefficients. One may then evaluate
the asymptotic phase shift 6 by matching up the
logarithmic derivative of the series solution with
the logarithmic derivative of (23) at some point
.go, with go & a. %e obtain

n(~z, q )=-,'~- f"'W

+tan-'-4A. -'I' ~+4A.dln, 24
0

where d ln denotes the logarithmic derivative of
the series solution and where the argument of the
arctangent is evaluated at g =go.

The function I ' of Eq. (23) is only an asymp-
totically correct solution to Eq. (13). Thus the
VRhle of tI obtained fl'oIII Eq. (24) slloIIM coIlvel'ge
to some limiting value 5(&E, ~) as the matching
point go goes to ~. A somewhat faster conver-
gence 18 obtR1ned by using ~

I'=CA II4cos(f WAdIi'- 4II+5

In order to obtain the phase shift 5 as a function
of &E for a given external field, we first fix the
energy and solve the $ equation for b ZI using the
technique of Sec. III. Then using Eq. (5) and the
modified%EH technique of this section, we find
5(hz) from Eq. (26).

If oils plots fI(&E) Rs R fIIIlctioll of 81181'gy, 0I18
finds that the asymptotic phase shift is quasicon-
stant over most of the energy range, while under-
going a rapid change of magnitude m over a narrow
energy spread, as shown in Fig. 1 for a particular
case. This behavior is remarkably similar to
that encountered in the elementary treatment of
scattering by a central potential where a rapid
chRnge 1n the phase sh1ft 1ndlcRtes the ex18tence
of a metastable state. ' By analogy, then, we
identify the resonances found here with the initially
bound electronic energy levels. This hypothesis
is further confirmed by the fact that the asymp-
totic amplitude C of I '(q) goes through a sharp
minimum at resonance.

Making the usual separation of the total phase
shift into resonant and nonresonant contributions

g(~z)-C (~z)+a (~z),

- hA '~'dA/dI}), (25)

which leads to a new expression for the phase
shift

g(gz 7j ) II f 0 ~d,g

-2.0 x'

4 -l.5r
V)

where

+/A-'" dA/dIi+ tan-IB (26) QJ I I07l
(A

CL 5.3 -5.4 -5.5

+4Ad ln4 dq+
ENERGY LOM/ERiNG sE (io ~ a.u.)

FIG. 1. Energy dependence of the asymptotic phase
shift for the ls state of atomic hydrogen in an electric
field of 2.440 x 10 Vjcm. The resonance parameters
are &Eg=-5.4425 x10 3 a,u. and 1 =4,10x10 5 a.u.
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TABLE II. Stark shift and width of the is state of atomic hydrogen: high-field case.
All quantities are in a. u. (see Ref. 12).

Field
strength

0.12
0.11
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03

-3.6 x 10"2
-3.1x10 '
-2.7 x 10-'
—2.22 x 10-'

1,75 x 10-2
-1.30 x 10-'

9,20 x 10
-6.105 x 10-'
-3.771 5 x 10
-2.074273 x 10 3

aI erturbation theory

-4.39 x 1Q

-3.53 x 10 ~

—2.80x10 2

2.19 x ]Q-
-1.67 X 10 '
-1.24 x 10-'
-8.82 x 10
-5.972X10 '
-3.742 2 x 10-~

2.06999 x 10

Level
width

3.1x 10-2
2.2 x 1Q

1.5x10 '
8.8 x 10-'
4.6 x 10-'
1.9 x 10-'
5.2x ]Q-4

7.8X10 '
4.0 x 1Q-6

2.3 x 1Q

aFourth-order perturbation theory results, see Eq. (22) of text.

we identify the Stark energy shift &Zft as that
value for which 5It(&EIt) = 2m. Using the Breit-
Vfigner parameterization of the resonant phase
shift

for +E near +Eg y
oIle finds the width of the

reso-

nancee to be given by

(30)

In Table II are listed the values of 4' and I'
obtained for various values of the field strength
in the ease of the 1s state of atomic hydrogen.

These results are shown graphically in Fig. 2. As
the field strength increases, the resonance be-
comes less sharp. " Since the nonclassical bar-
rier through which the electron must tunnel de-

F IE LD STRENGTH ( lo 2 a.u.)

5 6 7 8 9 IO I I I 2

creases rapidly with increasing field strength, the
lifeti. me of the metastable state should also de-
crease. The resonance width I is equal to the
ionization probability of the metastable state. "
Table III lists the ionization probability of the 1s
state at various field strengths. Also shown are
results obtained by the methods of Lanezos' and
of Ri.ce and Good. ' The Lanczos method involves
a standard WEB solution of Eq. (13); that of Rice
and Good, a standard %KB solution of both Eqs.
(3) and (13). The Rice and Good results are seen
to be somewhat too large; those of Lanczos, con-
siderably too small.

We notice from Tables I and II and Fig. 2 that
the fourth-order perturbation theory results, al-
though representing an upper bound to the exact
Stark shift at low to medium fields, become too
large at high fields. This might suggest that the
perturbation expansion of Eq. (21) is only an
asymptotic series, which, if carried fax enough,
vrould diverge even at extremely small field
strengths. Although less accurate than the bound-
ary-condition method and eventually divergent if
carried to high order, perturbation theory does
have the advantage of providing general formulas
for the Stark shift of type (21) which contain the
field strength as an explicit parameter.
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FIG. 2. High-field values of the Stark shift for the
1s state of atomic hydrogen. Curve E is the exact
result (&Eg), while curve P is the fourth-order per-
turbation theory result [Kq. (22) of text]. Curves U

and I are upper and lower bounds to the Stark shift,
defined by +Eg + I .

TABLE III. Ionization probability of the Is state of
atomic hydrogen in a strong electric field.

Field strength
(V/cm}

Ionization probability (sec )a a
Lane zos Rice/Good this work

2.857 x ]0
2.44Q x 108

2.027 x 10'
1.617 x 10

3.16 x 10"
5.23 x 10
3.94 x 10"
7,40 x 10'

1.45 x ].0~3

2.35 x 10"
1 73 x10~~

3.19x 1Q

1.10 x 10"
1.69 x 10"
].29x 10~~

2.41 x ].Q~

Ionization probabilities calculated by D. S. Bailey,
J. R. Hlskes, and A. C. Rlvlele [Nucl. Fusion 5 41
(1965)] using the WKB methods of Lanczos (Ref. 6) and

of Rice and Good (Ref. 7).



STARK EFFECT IN ATOMIC HYDROGEN

APPENDIX A: DIVERGENCE THEOREM
FOR THE $ EQUATION

%e present this theorem for the case of zero
angular momentum about the field axis (rn = 0).
An analogous theorem is possible for m 0 0. %'e

define cz=a„/(2N)"n! and b„=c~/c~ 1. Then,
if the energy is louvered by the application of the
electric field (4E & 0), the divergence theorem is:

If for hE &0, there is an n such that bn 2 &0,
b„ I & 0, and n & 2(N& ZI + nl + I), then b„» I,
foi Rll n +~n, (AI)

Proof. Using the above definitions of c~ and b
and the basic recursion scheme [Eq. (12)], we
obtain

2nb =4n —o!+2P- +4yn 1 (n- I)(n- 2)
n b b b

n —1 n-1 n —2

where @=4(NAZ, +n, + I),
P = —26E¹, and y =EN'.

Now, if b, E&0, then P, y&0. If, furthermore,
b 1 & 0, b 2 & 0, and n & —,'a. , %e find bn & 1 and
the theorem (Al) is established.

In othei %'ords, if n~ bn 1, Rnd bn 2 SRtisfy
the conditions of (A1), then all the succeeding
comPRrison coefficients en& will remain of same
sign and continuously increase in magnitude. Thus
the series component of M(() [Eq. (10)] will eventu-
ally diverge faster than exp(+ t/2N) and M(() will
itself diverge to + ~ or to —~ depending on the
sign of the expansion coefficients.

In practice these conditions are met rather
easily. In the case of the 1s state of hydrogen
in a field of strength 0. 009 a. u. , for 4E
= —1.826 17086 ~ 10-~a.u. (see Table I), and for
an upper bound to ~ Z, which differs by not Inore
than 1 part in 10-ao from its true value the requi
site value of n in (Al) is only 18.

An entirely sin1ilar divergence theorem is pos-
sible in the case of a positive Stark shift (b E &0).
%'e simply state the theorem without proof:

If for ~&0, there is an n such that bn 2 &0,
bz 1 & 1, and n & 2(NE Z, + n, + 1)/(1 —2bEN'),
then bn» 1, for all n' & n . (A3)

APPENDIX 8: PARTIAL DIVERGENCE THEOREM
FOR THE g EQUATION

Proof. As in Appendix A we use the recursion
relation (20) and the above definitions of o.', P, and
y to write

2p
ri- 1 4 (B- l)(~- 2)

n b b b
n —1 n —1n-2

(B2)

Now, if LE&0, then, asbefore, P, y&0. If further-
more bn 1&1 and bn 2&1, we have

I & I+[2m- n-4y(n- I)(n-2)]/2n. (B3)

The coefficient bn will be greater than unity pro-
vided the quantity in brackets in (B3) is greater
than zero. This quantity is a quadratic function
of n whose t%'0 roots Rle given by n Rnd n+ %'ltl1

n. ~ n . Since the term in n' enters in with a
minus sign, bn will be greater than unity for all
values of n lying between n Rnd n .~ Thus the

Here, as in the previous Appendix, we consider
explicitly only the m =0 case with &E & 0. %e de-
fine c„=a„/(2Ã)&nf and b~=c„/c„ I, where the
coefficients now refer to the q expansion of Eq.
(18). Retaining the parameters P and y of Appen-
dix A and redefining n as n =4(- nhZ, +n, + I), we
write the partial divergence theorem as follows:
divergence theorem (B1) is established for n & n+.

In practice at low to medium fields one finds
~+»n, so that the function L(g) exhibits diver-
gent behavior over a large range of n. Vhth the
same example used in Appendix A, we find n = 2,
n=19, and n+=56. In fact the upper limit n+
given in (Bl) is somewhat restrictive; actual com-
putation of the high-order coefficients shows that
bn & 1 for 17 ~ n ~ 76.

If, for bE& 0, y(y+3 —n) &- —,', and if there

then bn»1, for all n'with n-n'&n+, where
n and n+ are given by

ri =~ '(I+6y+[4y'+4y(3 —n)+ I]'~'j. (BI)
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Measurement of ttn Emission Cross Section for the Collision Reaction

H++N, (~'g +,s=O) ~H(3p, 3d)+N, +(B Z„,t =0)
Using Photon-Coincidence Techniques~

S. J. Young, J. S. Murray, and J. R. Sheridan

Physics Department and Geophysical Institute, University of Alaska, College, Alaska

(Received 24 June 1968)

The measurement of the cross section for the emission of a Balmer-e and a N&+(0, 0) first-
negative-band photon from a hydrogen atom and aN&+ molecule excited simultaneously in the

same H'++ N2 electron-capture collision has been performed in the proton velocity range from

cm/sec to 2.40 ~ 10 cm/sec. The measurement has been accomplished using the

technique of single photon-coincidence detection. To within the random error of the experi-

ment, the cross section has only a single-peak structure with a maximum value of 1.2 ~ 10

cm at a velocity of 1.15 x 10 cm /sec. The magnitude and shape of the measured cross section

is found to be in good agreement with across section calculated by assuming that final-state

excitations of the two product systems are uncorrelated.

I. INTRODUCTION

The specification of a particular collision re-
action between two systems, both of which have in-
ternal structure, must necessarily include a state-
ment of the structural state of both product systems.
If the systems are prepared in given initial states
and total rather than differential reaction cross
sections are desired, the specification of the final
internal states of both systems defines a unique
collision reaction. However, in previous cross-
section measurements for such systems the final
states of both colliding partners have not been
specif led+

An experiment in which the initial and final states

of both reacting systems are specified has been
carried out at our laboratory for the specific case
of simultaneous excitation of the 3P or 3d state of
hydrogen and the 0 vibrational level of the 82K~
state of N, + (hereafter referred to as the "J3 state"}
in electron-capture collisions of protons with nitro-
gen molecules. Specifically, we have measured
the cross section for production of Balmer-o. radia-
tion from the 3p or M states of hydrogen and
3914A N2 band emission in a single-proton-nitro-
gen collision. This measurement has been accom-
plished by counting single photons in coincidence.

This method for measuring collision-reaction
cross sections consists, in brief, in the detection
of the two photons resulting from the excitation of


