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Excitation Spectrum for a Bose Gas with Repulsive Core and Attractive Well
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The correct qualitative features of the helium II elementary excitation spectrum are derived
microscopically for a realistic interparticle potential using a form of pair Hamiltonian. The
strong repulsive core is included by using reaction matrix elements in the Hamiltonian, and

the attractive well is successfully included by assuming a generalized Bose-Einstein conden-
sation. The pair Hamiltonian is diagonalized by the thermodynamically equivalent Hamiltonian
method of Wentzel, Numerical solution of the equations yields spectra with phonon and roton
regions. Since the energies in the spectrum are too high when the Yntema-Schneider potential
is used, another potential is constructed which still fits the second-virial-coefficient data and

gives better results. Spectra calculated for a series of attractive well strengths show the
effect of weaker wells.

I. INTRODUCTION

The attempts which have been made to derive the
fundamental excitation spectrum of superfluid he-
lium have IQet with success and with difficulties
depending on the level of the approach. On the
successful side are the phenomenological theories
with empirically adjusted parameters such as those
of Landau' and of Feynman. ' On the less success-
ful side are the microscopic theories which attempt
to derive the properties of liquid helium II from
the interatomic forces of helium atoms. No micro-
scopic theory has been able to predict the energy
speetrurn for a realistic potential. Pxior to the
present work, not even the qualitative features of
the spectrum (the phonon-like part and the roton
minimum} have been successfully derived from an
interatomic potential including both a strong re-
pulsive core and an attractive well.

The spectrum has been measured experimentally
by neutron scattering. '~4 A chief aim of the many-
body problem for helium is to derive this spectrum
from the theoretically or experimentally deter-
mined interatomic forces of helium atoms, without
further input from experiments. This work de-
rives the spectrum from a realistic interparticle
potential by combining three methods. First, a
generalized or "smeared" Bose-Einstein conden-
sation is assumed because the scattering length of
the interparticle potential is negative. Second, a
modified Brueckner reaction matrix is introduced
to handle the strong repulsive core of the helium
potential. Third, the "thermodynamically equiva-
lent Hamiltonian" (TEH) method of Wentzepi' is
used to include all forward, exchange, and pair
scattering interaction terms.

The microscopic problem of the imperfect Bose
gas has been considered by numerous authors. s-"
The starting point is the second quantized Hamil-
tonian for a system of interacting bosons:
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where apt and ay are the creation and destruction
operators for a plane-wave state with propagation
vector k, the interaction potential 5(t) is a spheri-
cally symmetxic function of the distance r between
two atoms, and appears here in matrix elements
with'respect to free-particle two-body states, e.g. ,
(k,k, l V l k,kg. Summation indices are to be under
stood to be vectors. The full Hamiltonian (1}has
not been diagonalized. The Hamiltonian to be used
here is a truncated one, the "pair Hamiltonian"
of Girardeau and Arnowitt. '4 All interaction terms
axe neglected except those known as forward scat-
tering, exchange scattexing, and pair scattering.
These three types of terms are shown in Fig. l.
The truncated Hamiltonian, which we shall call
the pair Hamiltonian H~, is
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FIG. 1. Interaction terms retained in the pair Hamil-
tonian. Solid lines represent particles with wave numbers
as labeled. Dotted line represents the interaction and

is labeled by the appropriate matrix element.
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Here we do not introduce the Fourier transform
v(k) of the interaction potential because the theory
to follow does not depend solely on the momentum
transfer k. The restrictions on the sums are
necessary to prevent duplication of terms.

Even the simplified Hamiltonian (2) has not been
diagonalized. If two additional simplif ications are
made, diagonalization can be achieved. These are:
(1) keeping only those interaction terms containing
at least two creation or annihilation operators with
subscript zero, (2) approximate both a,f and a, by

If the potential is repulsive, i.e. , 8(0) &0, the
resulting Bogoliubov Hamiltonian can be diago-
nalized. The second simplification, known as the
Bogoliubov approximation, is justified for weak
interactions near absolute zero because nearly all
particles are expected to be in the zero-momentum
state. The Bogoliubov Hamiltonian can be diago-
nalized by the Bogoliubov transformation, which
will be used later. A phonon spectrum for low
momenta occurs in this approximation and a free-
particle spectrum at high momenta, In the inter-
mediate range of momenta the spectrum has a
region connecting the linear and quadratic sections.
For an appropriate repulsive potential this region
could have the general shape of the roton region
of the liquid-helium spectrum. The model thus
has two features resembling liquid helium: the
low-momentum phonon spectrum and at least a
hint of a roton region.

Girardeau and Arnowitt" used a variational
method to consider the entire pair Hamiltonian of
Eq. (2) without making the Bogoliubov approxima-
tion. Wentzel' and Luban' studied this Hamilto-
nian allowing thermal excitation and found a sim-
pler diagonalizable Hamiltonian which gives the
same thermodynamics as that of Eq. (2). Results
of all three of these studies show an energy gap
in the low- momentum excitation spectrum. That
1S,

E(0) = 0, but lim E(k) W 0.
k-0

These results are for weak interparticle poten-
tials with &(0) & 0 and the assumption that Bose-
Einstein condensation takes place with particles
"condensing" into the zero-momentum state. The
spectrum of this pair Hamiltonian model, which
includes more terms than the Bogoliubov Hamil-
tonian, is, nevertheless, further from that of
helium II.

There are two important differences between the
interparticle potential used in the above studies

and the actual helium potential. First, the helium
potential is strongly repulsive at small distances.
Second the scattering length for helium is nega-
tive. (In fact, the scattering length is so negative
that the atoms can almost form a two-body bound
state. ) For a potential with a singular repulsive
core, as in helium, the sign of the scattering length
plays the role that the sign of &(0) plays in a weak
potential, roughly speaking. Thus one may expect
a system of atoms with negative scattering length
to correspond more nearly to a system with P(0)
& 0 than to one with S(0) & 0. The repulsive core and
the negative scattering length each require changes
from the methods used by the authors mentioned in
the previous paragraph.

A. Generalized Bose-Einstein Condensation

Consider first the effect of having a potential
with u(0) & 0. Girardeau" has given arguments to
show that; for weak attractive potentials, the low-
est energy state is not one in which the zero-mo-
mentum state contains a finite fraction of the par-
ticles (simple Bose- Einstein condensation). It is,
rather, one in which a larger number of distinct
low-momentum states contain a finite fraction of
the particles but any single state contains only a
negligibly small fraction. One assumes that in
this generalized condensation all states with mo-
mentum less than a cutoff momentum p, have zero
energy. A finite fraction of the particles occupy
the group of states, but no single state, not even
the p = 0 state, contains a finite fraction. The
group of states containing the condensed particles
draws arbitrarily close to zero momentum and
bears a deceptive resemblance to simple conden-
sation. It is the fact that no single state is macro-
scopically occupied (that is, contains a finite frac-
tion of the total particles) that distinguishes the
two types of condensation.

In Ref. 6 the descriptive statements about gen-
eralized condensation are formulated as follows.
As the thermodynamic limit is taken, that is,K-~ with X/fl constant,

and

p =0(n ), (x&O)

(a a ) =0(II ), for Ipl&p0,x(p)

and 0&x(p)=0(1) &1,

(a a ) =O(Q).
I pi&p

III. METHODS

Three main methods will now be described, which
in combination allow a potential with a singular re-
pulsive core and an attractive well to be studied
using the pair Hamiltonian. To deal with potentials
with negative scattering length (like helium), a
generalized or "smeared" Bose-Einstein conden-
sation is assumed. To avoid the infinite matrix
elements of the repulsive core, a type of reaction
matrix is used in place of the potential. Finally,
to obtain a diagonalized form from the pair Hamil-
tonian, the Wentzel method of the thermodynamical-
ly equivalent Hamiltonian is used. These three
methods are discussed in the following sections.



The results of three studies support the assump-
tion of a smeared condensation. Girardeau demon-
strates by variational means that smearing gives a
lower energy for weakly attractive systems than
does R simple condensation. Sawada and Vasude-
VRQ hRve shown 1Q R simplified mode]. with negR-
tive scattering length, that the states into which
the particles condense shouM be a combination of
zero- and nonzero- momentum states. This combi-
nation of states may be viewed as a smeared con-
densation. Additional i.neentive to investigate the
smeared type of condensation is provided by the
work of Luban (Appendix E of Ref. 6). He showed
that in the pair Hamiltonian model with a hard-core
pseudopotential and weak attractive interactions, a
smeared condensation leads to a phononlike spec-
trum for low-momentum exeitations rather than to
the energy gap predicted by simple condensation.
The modifications to be made below to treat strong
potentials do not change the character of these low-
momentum excitations if the scattering length is
negative, but give a more correct treatment of the
hard-core part of the potential.

Hamiltonian. To reduce the calculation of the
matrix elements to manageable proportions, the
matrix elements of E with respect to two-body
states are approximated by elements with respect
to one-body "center-of- mass" states. Details of
this center-of-mass approximation, and the types
of matrix elements needed are given in Appendix
B. The important results from the Appendix are;

(l) Matrix elements (kpI Vlq r) in the Hamiltonian
are replaced by the corresponding reaction matrix
elements (k p IKI q r ) .

(2) The two-body elements (kpIK I q r) are ap-
proximated by the one-body center-of-mass ele-
ments (—,'(k —plK I-', (q —r )). The integral equation
E = V+ VGE for these one-body elements is de-
composed into a similar equation for each paxtial
wave by expanding all elements of the matrices in
spherical harmonics. The integral equation for
each partial wave can be solved numerically. Only
even partial waves are needed, and three of these
give sufficient accuracy in the energy spectrum
from zero momentum to just past the roton mini-
mum.

B. The Reaction Matrix

To treat an interparticle potential with a strong
repulsive core, the pair Hamiltonian is inadequate
as it stands. The matrix elements of the interac-
tion potential that appear in Eq. (2) are arbitrarily
large for arbitrarily strong cores. However, one
ean still make progress by summing enough terms
in a many-body perturbati. on series of the exact
Hamiltonian to obtain a finite result. Some of the
terms that must be su.mmed are not contained in a
perturbation series derived from Eq. (2), but these
can be introduced by a rather simple modification
of the Hamiltonian. The method used here to effect
this presumming is similar to that of Bxueckner
and 8awada. 9 The matrix elements of the interparti-
cle potential operator are replaced by the elements
of a, type of reaction matrix. Since the reaction
matrix K is defined by

where V is the exact two-body potential operator
and G i.s R Green's function operator, it has an
expansion of the form

K= V+ VGV+ VGVGV+ ~ ~

The use of matrix elements of K in place of matrix
elements of V (which is the first term in the ex-
pansion of K) brings many more interaction terms
into the Hamiltonian without complicating its form.

The axguments for replacement of V by K and
the selection of the opexator G are made in Appen-
dices A. and 8 by considering the many-body per-
turbation expansion of the free energy. The per-
turbation expansion of the free energy based on
the pair Hamiltonian containing E's instead of
V's is more nearly like the expansion of the free
energy based on a complete (nontruncated) Hamil-
tonian. The operator G must be appropriately
chosen, however. The argument in Appendix A
shows that 6 =- l/H, can be used, where H, is the
kinetic- energy operator.

Matrix elements of Z with respect to two-body
plane-wave states are needed in the truncated

C. The Thermodynmnically Equivalent Hamiltonian

all distin-
guishable

stRte8

exp[- p(E &t
—pN)],

where N is the number of particles in the state. If
one could diagonalize the system Hamiltonian (2)
so it could be written

The modification of the truncated Hamiltonian of
Eq. (2) to allow treatment of strongly repulsive
cores has not changed its basic form. It is sti.ll
of the type which can be treated by the thermo-
dynamically equivalent Hamiltonian (TEH) method
of %entzel. ~~' In the first part of this section the
meaning of thermodynamically equlvRlent ls d18-
eussed, and especially the question of how this
method can be applied in the present work where
the use of the x'eaction matrix has been justifi. ed
only in the limit as temperature T 0.

The essence of %entzel's method is that a sim-
pler Hamiltonian can be found which can be exactly
dlRgonRllzed by the Bogol1ubov tx'RQsfox'xnRt1on but
which gives the same partition function as (2) in
the limit as 0-~ (the thermodynamic limit). Two
systems with the same partition function have ex-
actly the same thermodynamics, but in general, this
does not guarantee microscopic similarity. The
microscopic similarity is a central point of this
work, however, in which we attempt to find the
energy spectrum of elementary excitations (nor-
mal modes) in a dense Bose gas resembling heli-
um. The relation, if any, between the speetxum
of excitations found by diagonalizing the thermo-
dynamically equivalent Hamiltonian and the ex-
perimentally determined spectrum of excitations3~4
for liquid helium must be examined.

The grand partition function of a general interac-
ting system is



G. V. BRQ%N AND M. H. COOPERSMITH

where ak't creates fc)„a staie with quantum num-
bers k, then the partition function would be

q(P, P)= Z exP[-PZk(&k- V)nk]k k k
~k(p)=ek, for r&r

exp[- PQ f u ],
jnk]

where the sum over ink) indicates a sum over all
possible sets of occupation numbers ny. The ener-
gies cy in this last expression are temperature in-
dependent numbers. Vfentzel's method diagonalizes
the truncated Hamiltonian (3) in the sense that

q(P, ~) = Z e~[ PZ-;k(P)sk]. (6)

Here, as in Eq. (5), the summation runs over all
sets of occupation numbexs nI . The partition func-
tion of Eq. (6) is constructed to be e ual to that of
Eq. (5) for any p, but in general ek(p bears no
simple relation 'to tk of Eg. (5). If, however, for
a range of temperature from zero to some finite
temperature Ty, the quantities p and sk(p) are in-

it is found that the ek(p) are temperature inde-
pendent near T =0 because the integral equations
that determine the ek(p) are not sensitive to tem-
perature near T =0. The physical reason for this
is that the lowest energy excitations are phonon-
jlk8, that ls, their ener gies are proportlonRl to
momentum. This type of excitation spectrum is
much more rigid against thermal excitation than,
for example, a quadratic free-particle spectrum.
In the former case many fewer states have ener-
gies of the order of kT than i.n the latter case.
This rigidity against excitations causes the number
of excited pRrticles to be relRtlvely constRnt near
zero temperature. This, in turn, leads to the
insensitivity of the excitation spectrum and all
thermal expectation values to temperature as
T -G. Thus the phonon-like spectrum leads to
the temperature independence of ek(p) as p-~(T
-0) and hence to the assertion that the ek(P -~)
found by Wentzel s method ls the same Rs the 6'@

normal mode spectrum.

Consider again the pair Hamiltonian, Ieplacing the V-matrix elements with the corresponding E-matrix
elements.

I'2/2 ] 1 t t 1
P 2 2 kkkk k k 2 p p p 2qq q q p p pqpqp q qp

q~p p4kq

where K=(Pq I K l rs) . '

Pg 'Ys

(Note that Q K a a a a =Q K a a s s -Z&Kkkkkak ak. )
Pq qPqP q P qP Pq qPqP q qP P k kkkkk k

The form (7) can be treated by the TEH method. '~' As in Luban's version' of WentzePs method, p, , the
chemical potential, has been inserted in H~ to facilitate using the grand ensemble. This is soon eliminated
from the equations. To find the TEH, firstdefine new operators Bk, Bkt, Ck, and Ck~:

where the values of the real c numbers $k and qk will be chosen to eliminate some terms from the new
equivalent Hamiltonian. Note that Bkt =Bk Kqpqp =Kpqpq, and Kqppq-Kpqqp. (The reaction matrix element
is symmetric with respect to interchange of the first and second pairs of indices. ) Using these facts and
manipulating the dummy indices yields

H =Qk(a' k /2m —p —',Kkkkk)ak ak+zQ K —(B B +2) a s —$ $ )kkkk k k '
pq qpqp p q p q q p q

+ Q K' (B B —2)a a+$$)+2+ K' [C C+g(a s +aa ) —q'q ].
qPPq q P P q q P q 2 - qq -PP q P P q —q q —q q P

0++9' 0+0

Now collect the terms into two groups, putting those containing B, Bt C, and CT into
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P&+q P&q

All the other terms are put into

HTE= U+Q&(R k /2m —p, ——,'Kkkkk)ak ak+Q K «a a
qP qPqP P q q

+ Z .K «a a+2 Q K g(a a +aa ),I

qp qp
qPPqP q q 2 —qq —PPP q —q q —q

q 4+p q&P

where

j 1'=-2~p qpqp«p«q 2p~ -'ppq«p«q 2 ~p
'

qq pp-Y-q

PC+q qAP

which is a c number. Let
0'k' I K

k 2m 2 kkkk kpkp p ~ k kppk p' k p~k
—kk —pp p

Then +TE = U+Qk fkak ak+ p Qk kk(ak a k + aka k) . (9)

According to the TEE method, HTF, will lead to the same thermodynamic properties as &~ if «p and q pare chosen as «p =(ap'tap) and gp =&apta p't) =(a pap), where the bracket denotes average over a grand
ensemble. This result remains valid for the Hamxltonian which has resulted from replacement of V-ma-
trix elements by E-matrix elements.

We now use the Bogoliubov transformation to diagonalize Eq. (9). Let

Qk = Qk&k+ 5k&k ) and Qk
= Qk+k + 5k&k e

W'e also require that

fk"k'k""k "k""k' =
~ "k'=fk/ 'k " 'k'="k

and ukvk = —k /(2ek}, where ek= (fk'- kk')'~'. (io)

With these conditions on uk and gk the TEH is diagonalized as follows:

H = U +Qk eknk nk, where U = U+Q&(ek- fk)/2.TE 0 k k k k' 0

The Bogoliubov transformatiori is not valid for any k for which ek =0. In a "smeared" condensation there
is a group of states with ek =0, but these states are grouped arbitrarily close to k = 0 in the limit of infinite
system volume. Since all the equations are to be solved only in the limit of infinite volume, the Bogoliubov
transformation can be performed for all states not in the condensate, i. e. , that have finite momenta. The
generalized or smeared Bose-Einstein condensate exists in states with e = 0, and it is not necessary to per-
form any transformation to find the energy of these states. The number of particles in these states is the
difference between the number in excited states and the total number.

In Eq. (8) the limit as k approaches zero gives [denoting lim f(k) by f(0) and lim k(k) by k(0}]
k 0 k-0

(a) f(0) p' KOOOO+Q KO 0 «+Q KO 0« ~ (b) k(0) Q KOO (i2)

Because e(0) =[f'(0)- k'(0)]'I'=0 for BE condensation, we must have f(0) =ok(0). Paralleling Luban' we
choose f(0}=- k(0). Then p, can be eliminated from the equations using Eq. (12):

l~='Koooo Koooo ~ «p' ~ «p'"p
~

~ Kopop«p ~ Koppo«p ~ oo-pp"p'
p ~po P «Po P«PO

P40
Equations (8) become



G. V. BROWN AND M. H. COOPERSMITH

A 'k' &p(„„.„„-„„)- M0Z (& ~ )
P «Po P g P P P

Pg0

pkpk pHp popo poop «p ~ Koop p"p i
0 0

I-coo"p' ~ f-up p~p-
P ~PO P «Po

Pgk

where terms with P &P, are separatedfrom the sums, and continuity of the K-matrix elements near zero
momenta with respect to any of the indices is used. Two terms, ~K««and —~Xyyyy, have been dropped
from ff, because they cancel in the center-of-mass approximation (see Appendix B). It was shown by I uban'
that in the thermodynamic limit as p -0, gp-$p+ —,. Then, since (p-—(apTap), the sums over p (po ot'

$p
and qP are merely the ensemble averages of the number of particles in the smeared condensate. If this
number is f„vadnthe sums are replaced by integrals by using Qo - (0/Bv') Jdsp, then

fy = 1'E 0 /2 PB + N (Ky'OyO + KyOOy 3KOOOO) + [0/(2 w) ] f[(Kpf pf
+ Kpf fp Kpopo KpOOp)gp Koop p'qp]d p

"f ="0K' ~oo'~"/(2" fKf fp p"p'-p-

Note that in the integral form it is permissible to ignore the restrictions

peak,

p 4+k, and P &Po and to
carry out the integrals throughout p space. The first two restrictions do not affect the integration since
the excluded discrete states, p=k or p =+4, make negligible contributions. In the thermodynamic limit,
P, is assumed to approach 0, and the interval of integration that would be excluded by the last restriction
makes a negligible contribution.

From Ref. (6)

', [(f~/e&) coth-(-', Pe&) —I]; ri& = ——,'(h&/e&) coth( —,'Pe&) .

The one remaining relation" needed is

%=/~{a~ a~) =g~$~, or No=A-[0/(2v) ]fg~d & .

These equations constitute a set of nonlinear coupled integral equations. Once the necessary elements
of the reaction matrix K are calculated, the equations may be solved numerically for e(k), the quasi-
particle energy spectrum, and for Xo/N, the fraction of particles (not quasiparticles) in the zero-momen-
tum state.

It is convenient for numerical solution (and for simplicity of form) to put the integral equations in dimen-
sionless form. This can be done by making the following definitions:

h2 nba'
2ma' ' pqrs 4 v5'a pqxs '

v+0( cxoxo+ @xoox 3'0000)

+ (I/v') fcPy ( (& +X —~ 0 0)
—x 00

—(4/v) f y'dy &00
y gygy gyyg y0y0 "y00y 0 00y —y y

a(x) =evt 0X 00+(4/~) f y'dy X, , n

Z(x) = [F'(x) —fp(x)]ii2 (I2c) ~ =~ —(2v') if ( y2d.

As discussed in Appendix B, a general element Ex&'z„of the reaction matrix is approximated in this

(Isa)

(I2b)

0

where a is a reference dimension, taken to be 2.3 A, the approximate core size, in this work. In these
dimensionless quantities the equations are



work by the one particle, center-of-mass reaction matrix element ZL (x y) L(z u). Hence, Zx0x0 is re-
placed by Z—,'x —,'x, for example. The equations for the one-particle reaction matrix elements, analyzed in-
partial waves, are

&I I~Ip&=gf(2E+1)~f(I p)&kI~I», , (14a)

wh-e &kI3' I»f =&kl & I», —(2/» f."d4~)&kl ~ l~&I&~I &I», ,

and &kIuIq&f-=- f y'~(y)jf(kgyp'f(qadi)dy .

(14b)

Equations (13) are coupled and nonlinear but can be solved by relatively simple numerical methods on

a computer. The same basic method is used as for solving the reaction matrix integral equation. Al-
though the equations for E, H, and E are coupled and nonlinear, their solution is less demanding of ma-
chine computing time and memory storage than the solution of the reaction matrix equations, Eq. (14).
One reason is that E, H, and E are only one dimensional arrays as compared to the two dimensional X
and require two orders of magnitude less storage. Secondly, the integrands in the E, H, and E equate ns
vamsh much more rapidly with large momentum and the numerical integration may be stopped sooner.

The method of solution is'to stait with a reasonable guess for the functions F(ka), H(ka), and E(ka} and

P, =P and to insert these quantities in the right-hand members of Eqs. (13). The new values for the
functions calculated by doing the integrals were then averaged with the original guesses, the result being
used as the next approximation. Vhth a reasonable initial guess this iterative method converged to within

a fraction of 1% in about 10 iterations. The reason for averaging new values with old was to prevent
oscillations around the actual solution.

Because all the integrands decrease very rap~idly after the momentum or roton minimum is passed, it is
necessary to carry the integration only to p/h=4A '(4X10'om '). (The roton minimum is observed experi-
mentally at p/5= 1.8A '. )

To solve the integral equations numerically, one
must choose a specific potential function v(x). The
results presented in the next section will show
great sensitivity to the strength of the potential
well. Unfortunately, the well region has not been
determined accurately by either experiment or
theory. Consequently two potentials are presented
in this section. They both fit the measured virial
coefficients. One is an accepted potential; the
other is constructed simply to illustrate the effect
of a weaker attractive well.

Probably the best known expressions for the he-
lium potential are the Slater- Kirkwood potential'9

g(~) = (770' ' —1.49~ ) x 10 erg, (15)

and the Yntema-Schneider potential"

n(r) = (1200e ' —1.24m
—4.72m —6

—1.89m ) x10 erg (r in A)

The former was derived on theoretical grounds.
The attractive tail is calculated from second-
order perturbation theory for the van der Waals
interaction of two neutral atoms. The form of the
repulsive core, due to Slater" is a first approxi-
mation to the overlap energy of two atoms which
are close together. The attractive part- dominates
for large interparticle separation and the repul-
sive part for very small separation. The potential
for intermediate separations, in particular in the
vicinity of the minimum of the potential well, is
not determined with any great accuracy, but in
fact is the result of adding the repulsive and attrac-

tive terms together in the range of intermediate
separation.

The Yntema-Schneider (YS) potential was de-
rived from experimental measurements of the
second virial coefficient between 273 and 1473 K."
The form ae- &~- n —6- dz- 8 was assumed.
The value for c was taken from a theoretical deri-
vation of London" and the value of d from Marge-
nau, '4 who calculated it to correspond to the Lon-
don value of e. The values of a and 5 were then
chosen to give a reasonable fit to the experi-
mentally determined virial coefficients. " ' This
was done by calculating the second virial coeffi-
cient classically from

B(r)=2',f (1- e " )r dr, (17)
0

using various values of a and b to see what com-
bination produced the best agreement between the
calculated and experimental B(T). Figures 2 and
3 show B(T) ca,lculated from Eq. (17) using v(x)
from Eq. (16) and also show experimental data. "'"
The Slater-Kirkwood potential gives. values of
B(T) that are up to 8% too low in the range 273 to
1473'K. It will not be used further here.

Virial coefficients for helium at high tempera-
tures (& 500 K) are very insensitive 'to the attrac-
tive part of the potential. Even at lower tempera-
tures (down to approximately 80'K) the shape
and depth of the well cannot be accurately deter-
mined by a virial-coefficient fit. Thus the attrac-
tive well is not accurately determined by the fit of
Yntema. -Schneider. In Eq. (16), just as in Eq.
(15), the values of potential in the region of the
well result from extrapolation of the limiting forms
for larger and smaller x.

The well cannot be determined accurately by
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FIG. 2. Second virial coefficient for helium.

matching virial coefficients using the classical
formula. " At temperatures where B(T) is sensi-
tive to the well shape and depth, a quantum-me-
chanical calculation of B(T}must be made. Fig-
ure 3 shows an example of the inadequacy of the
classical formula. It contains B(T) for a six-

twelve potential" as calculated from Eq. (1V) and
quantum-mechanical calculations taken from Ref.
(29). [The six-twelve potential used for the exam-
ple does not fit the high-temperature coefficients
very well. For that reason it is used here only to
contrast classical and quantum results for B(T).]
The quantum-mechanical calculation of B(T) is
much more difficult and lengthy than the classical,
and this apparently has prevented a quantum-me-
chanical determination of the potential well. It is
unfortunately the case that neither virial- coefficient
fits nor other methods have yet determined the
attractive well accurately. "

In spite of the inadequacy of the classical formu-
la (17), another potential has been constructed
which fits the measured virial coefficients as well
as the YS potential does. This new potential has
a weaker well than that of YS and a different core
shape. It is introduced here simply to show that
another potential can give a classical fit to B(T)
and yet yield (in the next section) an energy spec-
trum in better agreement with experiment than
that from the YS potential. The new potential will
be designated as the "weakened-well" potential
and is shown in Fig. 4. The classical B(T) cal-
culations from it are shown in Figs. 2 and 3.

Two more potentials are used in the next section
to further illustrate the effects of a shallower at-
tractive well. These two potentials are identical
with the YS potential for v(r) &0 but for v(r}& 0 are
equal to nv~S(r), where o. is chosen as 0.6 for one
potential and 0.8 for the other.

A total of four potentials will be used in the next
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FIG. 3. Second virial coefficient for various potentials. FIG. 4. Comparison of potentials.
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section. Two of these, the YS potential and the
weakened well potential, give good fits of the clas-
sically calculated virial coefficients to the experi-
mental ones. The other two potentials with uni-
formly reduced wells are simply artificial poten-
tials used to show the effects of gradually reducing
the attractive well.

VI. CALCULATED SPECTRA

.9 2m

-4
D

I . I I

4
ka ia ~ 2. 3 A)

I.
8

FIG, 5. Partial-wave contributions to diagonal elements
of reaction matrix. (Yntema-Schneider potential. )

The integral equations (13) have been solved nu-
merically for four potentials: the YS potential, the
weakened-well potential of Fig. 4, and the two po-
tentials derived from the YS by reducing the well
by factors of 0.6 and 0.8. The resulting spectra
are presented in this section beginning with the
spectrum from the YS potential. The qualitative
features of that spectrum will be seen to be correct.
The energies of all excitations will be seen to be
high, however, and simple arguments will indicate
that shallower wells should give better results.
The spectrum corresponding to the weakened-well
potential (which was shown to fit virial-coefficient
measurements) will be seen to be much better but
still too high in energy. Lastly, the results for
the uniformly reduced wells of 0.8 and 0.6 of YS
values are given.

The partial-wave components of the reaction
matrix were calculated from Eq. (14) as the first
step in finding the spectrum. The YS potential
produced the diagonal elements of the first three
even-numbered waves shown in Fig. 5. These
partial waves were summed through /=4 accord-
ing to Eq. (14), and then the integral equations
(13) were solved for the energy spectrum. Figure
6 gives the result. Curves obtained using only
one or two partial waves in the reaction matrix
are also shown. A comparison of the calculated
spectrum with the experimentally measured one
shows the energy scale of the present results to
be nearly an order of magnitude too high.

60—

40

20 -/
Experimental

I E

2 4
ka(a -2.3A)

FIG. 6. Energy spectrum for Yntema-Schneider
potential.

The disparity in scale tends to obscure the im-
portant similarities: the phonon-like low-momen-
tum excitations and the roton minimum. The mo-
menta at which the roton minimum and the relative
maximum occur are approximately the same as
those of the experimental spectrum. Previous at-
tempts to include both singular core and attractive
well have failed to reproduce even these qualitative
features. Brueckner's treatment' of the hard core
gave a qualitatively good spectrum, and as noted in
a previous section gave semiquantitative agree-
ment with the experimental spectrum for an appro-
priate choice of a parameter in the theory. But
best agreement was achieved for a nonphysical
value of the parameter that implied that the num-
ber of particles in excited states exceeded the
total number of particles. The attempt by Parry
and ter Haar to use Brueckner's method and to
include an attractive well led to the loss of even
the qualitative features of the helium II spectrum.
In the context of these previous results, the qual-
itative features of the present spectrum —phonons
at low momentum and the roton minimum —are
gratifying.

The speed c of ordinary sound (first sound) is
equal to the initial slope of the energy versus mo-
mentum curve. The value of c from the YS poten-
tial is 2300 m/sec, to be compared with the actual
value of 240 m/sec (extrapolated to T = 0).
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It is easy to see what causes the integral equa-
tions for E versus ka to give such high energies.
It is primarily the influence of &pp in the equations
for E(x) and H(x). X» is a rather large negative
number for the YS potential because that potential
is nearly attractive enough to produce a zero-
energy bound state. A potential that is just strong
enough to have a zero-energy bound state will
have a scattering length of —~, and the value of
+pp will also be —. For large negative Xpp the
integrals in Eq. (13) may be neglected and the
equations become approximately

P(x) = x'+ 8aPO(2'ei &
—3XOO),

QXp pX

6'—

hC -2—

-4—

Same core for
all potentials

H(x) = 8aPOX0

Z(x) = [P'(x) —H'(x)]'I'. -8

Near x=0, X& i and X0 have the expansions:
2X$ 2X 0x

X g 1
—X +dg2, 8{.' = Q +bg2

Hence

E(ka) [- 128a' P (2d+b)X ]'"ka,

r/a (a ~ 2.3 A)

FIG. 8. Potentials with uniformly reduced wells.
Potentials are identical for v(r) & 0. For v(x) & 0 the
potentials obey v(r) = &v&s(&) .

for small ka.
The initial slope of the spectrum is thus approxi-
mately proportional to —Xpp'~'. But an examina-
tion of Fig. 7 shows that the value of d increases
rapidly as X» decreases. (The same is true for
b. ) Thus the initial slope of the spectrum is very
roughly proportional to -3'.pp, for large negative
X pp

Figure 7 shows the extreme sensitivity of Xp, to
the strength of the attractive well. The curves in
that figure correspond to the potentials of Fig. 8.
These potentials are identical in the core region
but have potential wells of three different strengths.

The two potentials with reduced well strength were
obtained from the YS potential by multiplying all
negative values of v(r) by a parameter n, having
values of 0. 8 and 0. 6. The reduction of well
strength to 60% of the YS strength reduces X« to
about ~4p of the value it has for the YS potential as
shown in Fig. 7. This strong sensitivity of Xpp to
well strength is what prompted the construction of
the weakened-well potential of Fig. 4. This po-
tential was designed to have a much smaller Xpp
than that of YS, and yet to fit the measured second
virial coefficients just as well.

The weakened-well potential gives much better
results than the YS potential. Figure 9 shows the
first three even partial waves of the diagonal ele-
ments of the reaction matrix. Comparison with

a=0. 6

a le@

ma-Schneider
1.0)

t. o

L. 4

-4
0

I I

4
ka (a ~ 2. 3 A)

FIG. 7. Dependence of diagonal elements of K matrix
on well depth (S wave only) . Well-strength parameter
G. is defined in Fig. 8.

-2—

I

4
ka

FIG. 9. Diagonal elements of reaction matrix for
weakened-well potential.
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Fig. 5 shows that Xop is reduced to —,
' of the YS

value. The consequent improvement in the energy
scale of the spectrum is evident in Fig. 10.

The improvement in energy is significant but
short of what is needed to agree with experiment.
Comparing the spectrum with that of the YS po-
tential, one notes a shift toward lower momentum
of the roton minimum and of the relative maximum.
The minimum is much less pronounced. The frac-
tion of particles in the condensed group of states
is 90%%uo, slightly down from the 93/p result for the
YS potential.

There is some possibility that effects not taken
into account might lead to an effective weakening
of the potential well. For example, the Hamil-
tonian upon which this work is based includes only
two-body interaction terms. It is recognized that
nonadditive three- and many-body interactions" ~"
exist in liquids because of the composite nature of
the atoms. That is, because atoms are not simple
particles but instead have internal structure, and
because the interparticle force is a result of a
modification (polarization) of that structure, the
force between a pair of atoms is not independent
of the presence of other atoms in the vicinity. At
low densities this is unimportant. But at liquid-
helium density the effects may not be negligible.
Inclusion of many-body interactions in the Hamil-
tonian" is out of the question in the present theory,
but it might be possible to include the many-parti-
cle effects approximately by modifying the two-

particle potential to make it an effective two-parti-
cle potential appropriate for the observed liquid
density.

Whether the presence of the other particles
weakens or strengthens the van der Waals attrac-
tion between two particles is not at all obvious.

An approximate microscopic treatment of this
problem, "yields a very small weakening of the
attraction. Macroscopic methods taking fre-
quency dependence of the dielectric constant into
account'~ have not been applied to this specific
problem. In any case, because many-body forces
or some other phenomenon might effectively
weaken the attractive well, it is desirable to calcu-
late spectra for a series of wells of varying
strength. Such an approach serves to uncover
trends in the spectra and to further show the sen-
sitivity to well strength.

The potentials of Fig. 8 form a series of three
such potentials, related by the single parameter,

The calculated energy spectra can be compared
in Fig. 11. The results show that as a decreases,
the energy scale of the spectrum improves and can
even fall partially below the observed spectrum.
A marked shift toward lower momentum occurs,
however, which was noted to a lesser degree in
Fig. 10. The cause of this shift is not known.

VII. DISCUSSION

A. Relation to Previous Work

To place the above results in the proper context,

FIG. 10. Comparison of spectra from YS and weakened-
well potentials with experimental spectrum.

r/a (a - 2. 3 A)

FIG. 11. Spectra for uniformly reduced wells.
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the following comparisons of the present methods
and results are made with other work.

Most of the microscopic theories have been
forced to deal with truncated Hamiltonians. Of
these theories several are valid only for weak po-
tentials. Bogoliubov first obtained a phonon-like
low-momentum spectrum for weak repulsive inter-
actions near absolute zero. His Hamiltonian con-
tained forward, exchange, and pair scattering
terms, but was diagonalized only by approximating
some of the operators by c numbers. WentzeP
and Luban' found an energy gap at low momenta
using the pair Hamiltonian. The actual helium II
spectrum, of course, has no such gap. Using
the idea of Girardeau" that, for an attractive in-
teraction, condensation should occur into many
states instead of into just one, Luban showed that
the spectrum is phononlike at low momentum for
an appropriate attractive potential with pair scat-
tering in the Hamiltonian. Hence the present work
has assumed a generalized condensation and has
included pair-to-pair scattering. The spectrum
obtained herein has a phononlike low-momentum
region as observed in liquid helium.

The above mentioned works by other authors
were based on weak potentials. Brueckner and
Sawada' used the reaction matrix method of hand-
ling strong potentials, but included only forward
and exchange scattering and one special type of
pair scattering in their Hamiltonian. For hard
spheres with no attractive well, they found a pho-
nonlike low-momentum spectrum. This is similar
to Wentzel's result for repulsive but weak poten-
tials. The Brueckner and Sawada spectrum had a
roton minimum which approximated the experi-
mental one for an appropriate choice of a parame-
ter in their theory. But this parameter was pro-
portional to the density of condensed (zero-momen-
tum) particles, and thus was not really arbitrary.
In fact the value of the parameter giving the best
spectrum leads to the contradiction that the density
of excited particles is 2. 7 times the total density.
Parry and ter Haar" used approximately the same
method but consistently handled the density of con-
densed particles. However, their attempt to in-
clude an attractive well in the potential was un-
successful. All qualitative similarity to the ex-
perimental spectrum was lost, including the pho-
nonlike part.

The present work uses a reaction matrix to
handle the strong repulsion. It differs from the
Brueckner and Sawada reaction matrix, however,
in that only kinetic energy is included in the propa-
gator G. The additional terms included in the un-
perturbed Hamiltonian by Brueckner and Sawada
and by Parry and ter Haar are not necessary with
net attractive forces. The successful inclusion
of the attractive potential in this work is due to the
inclusion of pair interaction terms and to the as-
sumption of generalized condensation.

Parmenter~'& has shown that a simple Bose con-
densate may mediate an attractive interaction
(much as phonons do in superconductivity). For
some interparticle potentials this effect might
make a simple condensation energetically more
favorable than a smeared condensation. One might
interpret this as casting doubt on the advisability

of assuming a smeared condensation in the present
work. However, inclusion of the strong repulsion
takes the problem outside the scope of the analysis
of Ref. 7, which presumed the potential had finite
matrix elements with 8(0) &0. The present work
uses E rather than V because of the strong repul-
sive core, and Z» twhich takes the place of v(0)]
is less than zero.

The most significant result is that the two im-
portant qualitative features of the helium poten-
tial —strong repulsion, but net attraction —have
been treated with methods that were able to pro-
duce the two important qualitative features of the
excitation spectrum —phonons and rotons.

B. Discussion of Approximations

As in all other attempts to derive the energy
spectrum, simplifications and approximations
have been made to make the problem tractable.
The methods of this work have produced an energy
spectrum of correct qualitative character from a
microscopic theory using realistic potentials with
both singular core and attractive well. It is appro-
priate to review the simplifications, approxima-
tions, and omissions since they may be responsi-
ble for the lack of quantitative agreement with
experiment. Unf ortunately the most important
cause of error has not been identified because of
the complexity of the integral equations.

The first simplification was to restrict the sec-
ond quantized Hamiltonian to two-body interaction
terms. Three-body, four-body, and more-body
operators have been omitted, but they should be
included for an exact treatment of helium.

It has been shown in the last section that a
weakening of the attractive part of the potential
by about 40% gives approximately the correct speed
of sound. Perhaps the interaction of two helium
atoms could be modified to this degree by the pres-
ence of several near neighbors (speaking micro-
scopically) or (speaking phonomenologically) the
presence of the dielectric medium composed of the
other atoms. One treatment of many-body forces"
gives only a, i/o effect; however, it may not be
accurate for liquid-helium densities.

The second simplification was to truncate the
Hamiltonian. Only forward- scattering, exchange-
scattering, and pair-scattering terms were re-
tained. Ways of handling more terms than these
are not known. Actually the use of E in place of
V does, in effect, include more terms, but the
form of the Hamiltonian is unchanged.

To allow the inclusion of a singular repulsive
core in the potential, the V matrix elements were
replaced by reaction matrix elements. This, in
effect, sums enough terms of the many-body per-
turbation series to give finite matrix elements in
the interaction part of the Hamiltonian. But it is
shown in Appendix A that the perturbation series
for the free energy ~erived from the "Hamiltonian"
with E contains some duplicated terms. The extra
terms needed to treat singular cores therefore
come at the price of including some terms twice.
This was recognized by previous authors'~" but
neglected on the basis of cancelling errors for
ground and excited states. But one cannot say
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that the elementary excitation spectrum would be
unaffected. The duplication of terms in the per-
turbation series for the free energy means the
partition function would also be in error since
I' = —kT lnZ.

The justification for putting K into the Hamilto-
nian was valid only near absolute zero. This is,
however, simply a limit on the allowed tempera-
ture rather than an approximation. If the method
is used for higher temperatures, then an approxi-
mation is thereby made.

The Wentzel method of thermodynamically equiv-
alent Hamiltonian is not an approximate method in
itself. The equivalent Hamiltonian has exactly the
same partition function as the Hamiltonian from
which it was derived and thus the same thermo-
dynamics. It has been argued in an earlier sec-
tion that the spectrum of elementary excitations
is also the same if it turns out to be temperature
independent.

The last approximation made was to replace the
two-body reaction matrix elements with their

approximately equal one-body central-f orce counter-
parts. There is no reason, in principle, why this
must be done. However, the solution of the inte-
gral equation for the one-body E matrix was barely
practical. The numerical solution of the integral
equation for a two-body E matrix, which would be
a function of four variables instead of two, would
be impossible without completely different tech-
niques.

The assumed generalized or "smeared" Bose-
Einstein condensation is probably not an approxi-
mation. It has been shown""~" to be a consequence
of a predominantly attractive interaction, which
permits the system to lower its energy by spread
ing out the condensate over many zero-energy de-
generate states of different momenta.
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APPENDIX A. USE OF E INSTEAD OF V

Consider the cumulant expansion of the free energy E."y" Let the exact nontruncated Hamiltonian be
split into the unperturbed part H, (kinetic energy) and the perturbation H' (interaction terms) H =H, +H'.
Then

P(F —Fo}= Q —
(

M
n=l "'

where F, is the unperturbed free energy, and

M, = f(H'(X})d-~, M, = fuff. -'[(H. '(~)H'(X'))-(H'(~})(H'(~'))],

fe.f e '-f. e."[(H'(X}H'(~')H'(~")) —3(H'(~)H'(~')) (H'(~")) + 2(H'(~}) (H'(~')) (H'(~."})], etc.

The bracket means the thermodynamic expectation value

(8) = tr(6 e o}/treH, —PHo

H'(X} is a temperature analog of the interaction picture of an operator:

H& (y) = XHoHt XHo

The operator H for a complete (nontruncated) second-quantized Hamiltonian including only two-body inter-
actions is

H' =2 2 (k,k, l V}k,k, ) ak a a a (Al)

as in Eq. (1). The akt and ak, respectively create and annihilate plane-wave states. Summation indices
are understood to be vectors.

Since the expectation values (8) are exceedingly complicated for finite P, we consider only the limit of
zero temperature (P-~). The excitation spectrum, which is the primary result of this work, is thus valid
only near T =0. The use here of the thermodynamically equivalent Hamiltonian method of %entzel is justi-
fied, and in fact the meaning of "excitation spectrum" is definite, only if the spectrum is temperature in-
dependent for a range of temperature near 7'. =0.

At an arbitrary temperature

(@) = Q (n n„no„...lee Ino, n„n2, ... ) ~,no, n„no, ... le !no nx no ~ ~ ~ )
—PHo —PHD

(n;)
where the sum over (ni] indicates a sum over all possible sets of n„n„n„n„..., and i = 0, 1, 2, ...
indicate various free-particle states, that is, eigenstates of H„ the kinetic energy. The zero subscript
here indicates the zero-momentum state. As T -0 and hence P-~ the factor exp(- PHo} in the numerator
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erms to become negllglble compared to the ground-state term, go ——+ and ~-=0 for &f0
Thus

lim (8) = lim (6) =(N, 0, 0, ...18IN, 0, 0, ...)/(Ã, 0, 0, ... I lil)I; 0, 0, ...) = (01810)
T-O P-~

where 10) —= IX, 0, 0, ...) denotes the ground state of a system of noninteracting bosons, which is all particles
in the zero-momentum state.

The first few cumulants can now be evaluated in the zero-temperature limit.

M, -P Iim —f (a'(h) &dh=P Itm —f dh(Oia'(h)10&

=P 1™
2 2 f dh(0lexP[h(u& +&a —

&dk
—vk )]a a a a 10)(k k IVik k ) .

P-~ kkkk 0 j. 2 3 4 3. 2 3 4k k k k k k k k
1 2 3 4

Here vk is the kinetic energy of a particle with wave number k~ . But

(Oia a a a 10) =0, except for k =k2=k =k4--=-0 .
1 2 3 4

Further &u, =0, and (Oia, tag'a, a, lO)=X, ' —l)1', ~N' for large K. Then

M, ——'PpPb(0),

where &(0) -=fl(001 V IOO& .
The second cumulant becomes, as P-~,

lim —M, = — lim f dh f dh' 5 (001V I k&k, ) (kP, IV100&
~ OO

[&I
' 4P 0

k,k2k3kq

xpxp[-x(&o +tp )+x'(tp +tp )1&a)pp)p '4 p p pp «)p& —p (p)&p)«p «p)p& ) .
k, k, k, k, 0 0 k, k, k,

Only those elements of the I/' matrix which conserve total momentum give nonzero contributions, so that
we have

lim M = — lim f dh f dh', '2 Q,—exp( —2h+ +2h&d )
k&0

&&(OIa a a a a a a a 10)+-, (Oia a aOa a a a a 10) — &, iv (&- I)
0 0 -kk-k k 00 0' 0 0 000 0 00 0

= — lim
4 f dh f dh' &, Q zr'(k) exp[(h' —h)h'k'/mjlV'(X- l)~

pN . + m&'(k)
~ I exp(- p8'k'/m) —2

~

pX I m

2n ' k'k' (
'

Pk 2k'/m jP-~ k+0

In a similar manner M, may be evaluated for P-~. The result is

(As)

(A4)

The above first three terms in the expansion of the free energy of a nontruncated Hamiltonian are suf-
ficient to indicate what type of rea, ction matrix may be used in the truncated Hamiltonian H& to introduce
more terms into the expansion.

Consider first the series expansion of a general element of the reaction matrix with respect to two-parti-
cle (noninteracting) plane-wave states:

(k,k, IA ik,k, ) =(k,k, i(V+ VGV+ VGVGV+ ~ ~ ~ )Ik,k, )

=(k,k, i V Ik,k, &+ 2 (k,k, i V 1k,k, & (k,k, IGik, k, ) (k,k, i V Ik,k, )
k,k,k,ka

k,k,k,ks
kgk, ok„k„

(k,k, l V lk, k, ) (k,k, I Glk, k, ) (k,k, I Vlk,k„)(k,k„lG Ik„k„)(k„k„iV ik,k, ) + ~ ~ ~ . (A5)
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Many of the above terms vanish because V has nonzero elements only between momentum-conserving states.
If the free energy is nom expanded in a perturbation series with E's instead of V's in the interaction

term of II~, the series will contain in first order many terms which previously appeared in higher order.
Each higher order of the series with K in the truncated Hamiltonian has terms which the series with V had
only in higher orders or not at all. One therefore hopes that the series based on A (in the truncated Hamil-
tonian) more nearly resembles the exact perturbation series based on a nontruncated Hamiltonian. This
can be achieved if G is chosen so that its matrix elements contain the same energy denominators as those
which appear in the exact perturbation series. The first cumulant containing K in place of V mill now be
examined to show what G must be. It will be seen that zero-energy propagators should be used.

Clearly, the first term in the expansion (A5), which is simply the potential itself, will make the same
contribution to the free energy as the potential would have made. Consider, however, the second-order
terms of (A5)

(k,k, l V ik, k, ) (k,k, lGik, k, ) (k,k, l V Ik,k, ),
k5 ke0708

and their contribution to M, . Note first that only ky = A2: ks = k4 0 make any contribution at all to I,. Since
momentum-nonconserving elements of V vanish, only terms with k, =46 and k, =k, appear. Further, when
G is defined using H, as the kinetic energy alone, only terms mith 0, =A, mill be nonzero. Hence the second-
order terms in (A5) give in Q as P-~

—,'tiIv g(ooivik-k)(k-kiGik-k)(k-kivioo&=- . fPpN 1 ~ k'82(k)dk
(Ae)

This term has the same form as the second-order terms in the perturbation series based on V if ~ is
set equal to zero. The resulting "zero-energy propagator" contains the same energy denominators which
arise in M, upon integrating with respect to X' [see algebra leading to (A3) above]. In a similar way the
third-order terms in (A5) produce terms in M, with the right type of energy denominators if E is always
set equal to zero. This value for E mas also used by Brueckner and Samada. '

A Green s function is not uniquely specified until the manner of handling the singularities is given. That
the principal value should be used is due to the fact that the integrals [such as (A6)) which arise from the
expansion of K in terms of V actually come from sums over intermediate states. We desire these sums
to be like those that occur in the semi-invariants Mz. The sums occurring there appeared first as the
sums in the interaction parts of the Hamiltonian (Al). There, k„k„k„and k4 are the allowed wave
vectors of plane waves. As the thermodynamic limit is taken, the equally spaced allowed values of the
x, y, and g components of any k~ become more and more closely spaced. The sum over the states [see
Eq. {A5), second termj therefore approaches the principal value of the integral (by the definition of the
latter).

As previously noted, 'y" the use of a reaction matrix is seen to cause a duplication of some terms in
the perturbation expansion. The first-order term of {A5), which is simply the potential, produces the
result (A3)in M2/P, that is, —(pK/4v'k') f nzv'(k)dk. But the very same contribution is produced by the
second-order terms of(A5) in M, /P as shown in Eq.(AG). Similar duplications occur in higher order,
though not every term is duplicated. According to Parry and ter Haar, '4 it can be shown that if the linked-
cluster expansion is valid, the same error occurs in the energy of an excited state as in the ground-state
energy. We therefore expect the total energy of the system to be incorrectly given by this model, but that
if thermal excitation is allowed, the difference between the excited and ground-state energies mill not con-
tain the error.

APPENDIX B. CALCULATION OF REACTION MATRIX ELEMENTS

Center of Mass Approximation

The equations for the quantities f, k, and e involve the following types of elements of the reaction matrix;

(p —piKip —p) „(p-

pixel-

pp), (kplKikp), (kpR'i pk) .

The required elements include those in which k and p may be zero. To reduce the calculation to manage-
able size in terms of machine memory storage and computing time, we make a center-of-mass approxi-
mation. It reduces the above matrix elements to matrix elements of a one-particle K operator with re-
spect to one-particle states.

The K matrix needed is defined by the integral equation

K= V+ VGK= V+ VGV+ VGVGV+ ~ ~-

where V is the interparticle potential. G has been chosen to be a zero-energy Green's function, G = —1/H, ,
where H, is the unperturbed Hamiltonian, taken to be simply the kinetic energy.
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The elements of Kwltll lespect to two-bodv free particie states wh1ch are requ1red are (kxk~2lzlks 4)
where Ikp ) is a state with the wave function n-'exp(1f, ~ r, ) exp(fk~ ~ r, ) . A genera& element of the Z ma-
trix then satisfies

(k,k, IZ lk, f4) =(k,k, I Vlk,fc) + Q (k,k, l Vlk, k ) (k,k IZlk,k, ) (k,k, l V If~f, ) .
k,kek, ks

Since the operator G is diagonal with respect to free-particle eigenfunctions, we have

(k,k, ial k,k, ) =- & 5 /&, =- & & /[0'(0, '+0, ')/2m] .
k,k, k k,

(B2)

(k,k, iZlk, k, ) =(k,k, lVlk, k, ) —Z (k1k, IVlk, k6) ~, ~, (ksk, lZlk+4) ~

The central potential v(x) has the one-body matrix elements

(-.'(k, -k, )IVI-.'(k, -k,)&=—„ fd're' ' ' '~(~), (for k, +k, =k, +k,),

after integration over the center of mass coordinate. This is the same as (k,k, lVik, k4). The matrix
elements of C, however, do not simply reduce to one-body elements. Let the definition of the center-of-
mass one-body G be G=-- I/H, =-m/)f'k', where m occurs rather than 2m because the reduced mass is
m/2. Matrix elements are taken with respect to single-particle plane-wave states. Then

(-'(k, -f )IG I-.'(k, -f )) =- ~ - -..- -,/[e'(u, - u, )'/4m]=, - ~ /[a'(u, '+ O,'-2f, f )/4m] .

This quantity approaches the form of the two-body element (82) above if k, = —k, . It equals the two-body
element for a pair excitation, where k, and k, are equal and ~oposite momenta, produced, for example,
by pair-to-pair scattering from the condensate. For k, and k, such that the total momentum is not negli-
gible compared to the relative momentum, the approximation is poorer. The exact effect of using this
approximation is certainly not known for the present application. " Parry and ter Haar" made some
approximate calculations to estimate errors, and drew the qualitative conclusion that the error would be
small.

The matrix elements (Bl) thus reduce (to the accuracy of the center-of-mass approximation) as follows:.

(p- plZlp- p)-(piKip) =—K
pp

(p- piK I- p p) -(p IKI- p) -=K'
p —p

(kpIZIkp)-( —,'(k- p)IZI —'(k —p})= K~(„) (~ ),
(k pIZ ipk) (2 (k —p) IK I (p —k)):Kq1 )

1 ( )
~

2 I 2

Special Elements

There are no special problems in calculating the first two of the above elements. The elements
K&(f p} + &(f p} are really of the simyle form Kq~|1, where q= 2 (f-P). In the integral equations de-
rived in (he text, the elements appear in an integral of the form

[n/(2v)'] fd'pZq~f ) ~ ~(f pqh(p).

Note that q = (k'+p'- 2kp p, }'~' from the law of cosines, where I1 is the cosine of the angle between k and p.
Let the Polar axis of the P sPace be Parallel to%, and denote K&(k P ~1(k p) by Z~(q). Then

[n/(2~)']fd'p K,„,„- - ~(p) =(n/4v') f p'dpi'(p) f di K,(-'. (~'+p' 2upi )'I')-
=(n/4v'u) f pdp ((p)[q (-,'(a+p)} q(-.'II1--pl)]

where Q+(z) = f z'K~(z')dz' .
PartialWave Decomposition of Reaction Matrix

The general one-body reaction matrix element (klZ Ip) can be decomposed into partial-wave components,



each of which obeys a simple integral equation. The decomposition, which simplifies the numerical calcu-
lation is

(kixip} =Z, (2f+1}(kIXIP},~,(k P),

where $ and P are unit vectors parallel to k and p, respectively, Pf {n}is a Legendre polynomial, and

(kixip), =--." f (kixip}J&(k p)d(k p).

The pax'tial waves are solutions of

(klXip)f =(kl'Ulp}f —(2/II} f d(qa)(klul q)f(qlXI p) f,
where (kie I q) 1

=- f y'v(y )j f (kay )j f(qay)dy, e(y ) = (m-a'/If')V(r},

(B3)

(B4}

and jf (x) is a spherical Besael function.
Equation (B3) can be solved rather simply with a computer for any potential for which (kl 'Ui p)f exists.

The simplest method of solution is '"guess and iterate". The partial wave components (ki'Oip)l are first,
calculated, and then they and the first guess for (kiXI p}f are substituted into the right-hand side of Eq.
(B3). The resulting left-hand side could serve as the next approximation to (k IX ip}f, but averaging that
value with the original guess before starting a new itex'ation helps reduce or prevent oscillations about
the final answer. The situation is rather analogous to underdamping, overdamping, or cx'itical damping
in a mechanical oscillator. The relative weighting of the old and new values of the elements (klXI p)f de-
termine the damping characteristics. Where the elements (kiXI p)f are large, a large relative weight
IQus't be giveIl to 'tile tlth Rppl'oxllllatioll 111 eolnpR1'lsoll to tile (II + 1)tll ill ol'del' to prevell't ovel'slloo'tlllg Rlld

oscillating about the solution,
For a hard core or any singular repulsive core that increases faster than 1/r, (k I 't~ I p), (S wave) does

not exist, and higher partial waves may also be divergent. However, (kiXI p)f does exist for such
potentials for any f if it is considered to be the limit of the class of solutions of Eq. (B3) as a finite re-
pulsive core is made progx essively stronger. In fact, this is the way the integx'al equation was solved
numerically. A modestly strong repulsive core was first introduced, and the strength was increased until
furthier increases had negligible effect on the x'esulting reaction matrix elements. Flgux'e 6 shows the
Yntema-Schneider potential with the core cut off at p equal to 300 and 400. These energies correspond
to V/k of 684 and 912 K. Values of the diagonal elements, (piXI p), (the S-wave component), of the reac-
tion matrix differed by less than 1% for these two cutoffs. Further increase of the cutoff has a still smaller
effect on the elements. The higher partial waves axe less sensitive to the core details because of the angu-
lar- momentum barrier.

The matrix eleillellts of 0 Rnd X Rl'e square RI'1'Rys of Illllnbel's. Stol'lllg these Rl'I'Rys {foI' sIQR11 ellollgll

increments and large enough ranges in ka for good accuracy) and doing the required numerical operations
in a reasonable time on the computer was a problem. For a given potential (such as YS}about 5 minutes
of computing time was needed to calculate the K matrix. Perhaps a more efficient method exists for sol-
ving the integral equation for K, although the iterative method is undoubtedly the most straighforward.

The number of partial waves to be calculated i.s small for two reasons. First, one sees from

(kixip) =Q, {2f+1)~,( P)(kiZIP), ,

that if ((ki Xi p) +(kiXI- p)) occurs, the odd artial wave terms will cancel because (ki X Ip}& depends only
on the magnitude of k and p whereas Pf (k p = a&f (- k ~ p), depending on whether f is even (upper sign) or
odd (lower sign). In our equations it is fortunate that only even-numbered waves are required. Second,
if either k or p is zero, then (kiXip) 1

= 0 for f 4 0, ao only the S wave need be calculated.
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