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By expanding in a Taylor series the inelastic scattering probability in the collision term of

the Boltzmann transport equation, an approximate form of the Boltzmann equation for slightly

ionized gases in the presence of a time-dependent electric field, which takes into account

elastic and inelastic electron-molecule collisions, is obtained in a rigorous fashion. The in-

elastic collision term is obtained for arbitrary collision frequency, and it is shown how this

expression can be simplified under the assumption of a low inelastic (in comparison with the

elastic) collision frequency, or low molecular excitation energy in comparison with the aver-

age kinetic energy of the electrons, or both. Making both these assumptions and further as-
suming a low inelastic energy transfer, a formal solution of this equation is effected by an

iterative procedure. This solution indicates explicitly that inelastic collisions are responsi-

ble for a small correction term to the distribution which is obtained if one considers only

elastic collisions.

I. INTRODUCTION

In many investigations into ionospheric and gas-
discharge phenomena, one is frequently confronted
with the problem of determining the electron-
velocity distribution for a slightly ionized gas in

the presence of a relatively weak time-dependent
electric field. The Boltzmann equation for the
electron-distribution function, f(v, t), in this situ-
ation is (assuming spatial homogeneity and the
external electric field E to be in the x direction)

af/at+ (eE/m)af/av = (af/at)x C

where e and m are the charge and mass of the
electron, respectively, and (af/at)c is the rate
of change of the distribution function due to col-
lisions. To solve this equation one often makes
the following, quite reasonable assumptions:

(a) f(v, t) is isotropic except for a time varying
perturbation in the x direction caused by the elec-
tric field, i. e. ,
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f(v, t)=f {n)+v g{v,t).

(b) Since the gas is only slightly ionized, we
can neglect electron-electron and electron-ion
collisions and consider only electron-molecule
collisions in evaluating (Bf/Bt)c .

(c) The distribution function for the molecules
is essentially the equilibrium distribution at a
temperatux'e T0.

Making these assumptions and further assuming
only elastic electron-molecule encounters, Chap-
man, and Cowling' have derived expressions for
the separate collisions terms (Bfo/Bt)c and
[B(uzi)/Bt] c whenever m «M, M being the molec-
ular mass. Their results axe

83p 5 8Bf m d
Bt Me2 dv 0

In these expressions v(v) is the elastic collision
frequency for momentum transfer and is given by

v(v) =Nvq (e)=¹f(1 —cosa)q(v, e)dn,

where N is the molecular density and q(e, 8) is
the differential cross section for elastic scattex-
i.ng into the solid angle dQ=2msin8d8.

Equation (1) together with Eqs. (3) and (4) is
the starting point for many investigations into
the microscopic behavior of ionized gases. If
one knows v(v), one can in principle solve the
differential equation and obtain the distribution
function for the electrons. As mentioned, how-
ever, this result is valid only for elastic en-
counters. Holstein, investigating the distribu-
tion of electrons in high-frequency gas discharges,
appears to have been the first author to have con-
sidered the effects of inelastic collisions in ob-
taining the approximate collision term. His der-
ivation, however, relies heavily upon geometri-

cal and physical arguments which may have ob-
scured important details. For example, the role
of inverse collisions (microscopic reversibility)
is not clearly brought out. Thus, he only con-
siders collisions of the first kind, in. which elec-
trons lose energy by exciting the internal degrees
of freedom of the molecule. Howe' gives a deri-
vation of this term similar to Holstein's for the
constant-field case, but only considers the pos-
sibility of one level being excited. Frost and
Phelps' extend Holstein's result to include col-
lisions of the second kind in which electrons gain
energy through molecular de-excitation, but only
state their results without giving the derivation.
Altshuler' gives the same extension, but neglects
elastic collisions and molecular recoil during in-
elastic collisions. A precise mathematical deri-
vation of the inelastic collision term which is prac-
tically free of intuitive geometric and physical
arguments, and which carefully elucidates the
IQR)or RssuIQptlons necessRx'y to obtain the final
results, appears to be lacking in the literature;
and it is this deficiency which the present paper
attempts to remedy. In this paper, then, we de-
rive an expression for the approximate collision
term which is quite general in the sense that it in-
cludes on an equal footing, ab Asitio, elastic col-
lisions and inelastic collisions of both the first
and the second kind in which the molecules may
have any number of levels. Our efforts will ex-
tend and incorporate the work of the above men-
tioned authors and, it is hoped, clearly indicate
what assumptions are necessary to obtain their
results.

Desloge and Matthysse'»' have given a deriva-
tion of the approximate collision term for elastic
collisions using elastic scattering probabilities.
Their derivation, which employs an expansion of
the scattering probability in powers of the ratio
of the electronic to the molecular mass, is rig-
orous and eliminates recourse to somewhat ques-
tionable intuitive arguments. Our derivation will
parallel theirs employing instead an expansion of
the inelastic scattering px obability discussed in
the next section.

II. APPROXIMATE FORM OF THE COLLISION TERM

I et Et(V)dV be the number of molecules per unit volume in the velocity range dV at V and in the internal
state characterized by i. Considering one of these molecules and an electron of velocity v in a container
of unit volume, let Wt&(v, V;v', V')dv'dV' be the probability per unit time that they will undergo a collision
in such a way that the electron ends up with its velocity between v' and v'+dv', while the molecule ends up

in the state j with its velocity between V' and V'+dV'. It follows that the collision term of Eq. (1) is'

where W(v, v') = Z. . f W. . (v, V;v, V )E (V)dVdV.
ij gJ"

' ' ' i

In terms of relative and center-of-mass velocities defined by
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u=v —V, w=(mv+MV)/(m+M), u'=v' —V', w'=(mv'+MV')/(m+M),

a&here m is the electxonic mass and M is the molecular xnass, the scattering probability can be written
in the form'

R'. . (v, V;v', V') =8.. (u, u')5(w —w').
ij

In this expression Sij is given by

S .. (u, u') = (u/u ")q .. (u, 8) 5(u '- u ..),
2j ij '

gj
'

where qf& (u, 8) is the inelastic differential cross section for scattering into the solid angle dQ = 2m sin8d8
and for the molecule making transitions from the state i to the state j,

u .. = [u'+ (2/p) e ..] "', e .. = S. —h. ,
U ij ' ij i j

Sg is the internal energy of the state i, and p, =mM/(m+M) is the reduced mass.
On substituting Eg. (9) into (7), transforlIllng fro111 the variable V to w through the use of Egs. (8),

noting that the Jacobian J(V'/w') = (m/p)', and integrating over w', we obtain

W(v, v ') = (m/p, )' P .. f8 .. (v —V, v '- V ') E.(V) dV,
ij ij ' i

where now V'=V+(m/M)(v —v').

If the average kinetic energy of the electrons does not differ too much from that of the molecules, then'

(V) /(v) - (m/M)'I'. Since m «M we can set (m/p)' = 1 in (11), expand Sf& (v —V, v'- V') in a Taylor series
about v and v', retain only the first few terms, and obtain

8$..
8.. (v —V, v'- V') =S.. (v, v') -Z

gj Q Be

82 82 82

8 Be Be t 8 Be Be f' 8 Be Be
XS g 8 S 8

If rve assume a MaxweO-Boltzmann distribution for the molecules, me can ferrite

F.(V)=n. N(M/2vkT )exp(-MV'/2kT ), o. . =g. P. , P.=Z 'exp( S./kT ), - (14)

where X is the number of molecules per unit volume, k is Boltzmann's constant, To is the molecular
temperature, Z is the internal partition function, and gz is the statistical weight (degeneracy) of the ith
level.

On substituting Eqs. (13) and (14) into (11), integrating over V and neglecting terms of the order (m/M)',
ere obtain

as. . kT 8~ 82 82
&(v, v')=&+o'. 8.. (v, v')-M Z, , (t -t ')+2M'Z s, +2, + „8.. (v, v') . (15)

ij M Be 7' x 2M Be Be Be Be ijij

interchanging v and v' and invoking microscopic reversibility~ (or equivalently the existence of inverse
collisions) through the use of the relation"

g. S.. (v', v) =g.S.. (v, v'),jjg ' iij
we can write

&(v', v) =N Z &. exp(&. ./k& .).i ij

, ij ' M Bv x r 2M Be ' Be Bv ' Be " ij
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Substituting (15) and (1V) into (6) we obtain

BS.. BS.. )=»o' [f*(v')-f(v)]S"«v')- —&(v '-v )l f*(v') ' +f(v)Bt .. iJ, ij ' M r r ~
Bv Bv '

C

hr. . . & B' a2 82

+2M [f*(v') —f(v)]Z~, +2, + „S..(f, v') dv',

where f(v ') = exp(e ../h T )f (v ') .
U

This is as far as we can go without specifying f(v). It is at this point that we assume f(v) is given by
Eq. (2).

In carrying out the integrations over v', me make use of the following relations":

fh(v')S (v,.v. ')dv'=vh(v. . )q. . (v),ij ' ij v (20)

fv 'h(v')S. .(v, v')dv'=v v. .h(v. .)q. . (v),ij ' g ij ij ij
mhere h is an arbitrary function, and

(21)

q .. (v) = Iq .. (v, e)d Q,

q. . (v) = fq, . (v, e) cosedQ.
ij ij

(22)

Setting f = vugg in Eq. (18), integrating over v', and neglecting all but the first term, which makes the
largest contribution, me obtain

[B(v,.x)IBt ]&
= v~i(v)g —(v), (24)

where me have suppressed the time dependence of g, and where

p(v) =Q. . n. v .. (v),ij i v
v. .(v) =¹tq (v) —[v ..g. .+(v ..)/vg(v)] q. . (v)] .ij ij ij 6' U

(28)

If we set f =f, in Eq. (18), we must consider the contribution from all the terms. The calculations in-
'volved in carrying out the integrations over v' and grouping all the various derivatives into convenient
forms mill not be presented here since they differ little from the elastic case discussed in detail in Refs.
6 and V. The major difference in our treatment is that we make use of E(ls. (20) and (21) instead of the
corresponding elastic collision integr als.

Setting f=f, in Eq. (18), we obtain

+,' ——v. . v —
l

—[ *v.. ] — v'v, . (v)—[ +(v.. )Mv' 2v. . ij dvt( v dv" 0 ey" dv ( tg dv' 0 ag
U

dv. . ~

~ ——
l

~' —(~.. (~)f "(~.. )] i(v)—--
2dv& dv ij 0 ij 2 0 dv dv

where v&j (v) =¹qf&(v) is the inelastic collision frequency, vs(v) =¹fjqfj (v), and Pg& (v) = v&&(v) —vs(v) is
the inelastic collision frequency for momentum transfer. 'y"

Equation (2V) is general and holds for arbitrary inelastic cross sections and collision frequencies. A
very useful simplification of this expression can be achieved if me make the assumption that the collision
frequency for inelastic collisions is much smaller than that for elastic collisions. If this be the case, the
major inelastic contribution to (Bf0/Bt)z will come from the first term in (2V), and we can neglect inelas-
tic collisions in the remaining terms. %e can then write upon combining derivatives
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(
!

Bt i f0 i f0 t Mv' dv f0 Mv'dv dv
C

In obtaining {28)we have used the result that for elastic collisions v~&
--v, f0 (vtj) =f0(v), and we have set

v=L n. v, v=2. n v. , t =Q n . r... =v-v .i gu' i g zi' i i U

The last two terms of Eq. (28) constitute the purely elastic contribution, and are in agreement with the
results obtained by Chapman and Cowling' and Desloge and Matthysse. '~' The first term, which contains
the purely inelastic contribution, can be arrived at quite readily by retaining only the leading term in the
expansion of the scattering probability, Eq. (15). This is equivalent to assuming that for inelastic col-
lisions the molecules may be treated as infinitely massive scatterers at rest. '

When one cannot assume a low inelastic collision frequency, another very useful simplification of Eq.
(27) can be obtained by assuming that the average kinetic energy of the electrons is much greater than the
internal energy difference of the molecules for allowed transitions, i. e. ,

(-,'mv'}» e.. .
iJ

If this be the case, we can reasonably approximate vt& and f0 (vtj ) in (27) by the first few terms of their
Taylor series. Thus we take

v. ."=v (I+ns. . /mv'), f +(v. .)=f {v)+e..f1(v),6' 0 iq 0

where fl(v) =f0(v)/k7'0+ (I/mv)(d/dv)f0(v) .

(so)

(sl)

Substituting (30) and (31) into (27), we obtain upon neglecting the quadratic terms m etj and groupmg
derivatives

„"
~

=f,( ) ( )+ ——„.d, [ '(uf. + f,)]
c

kTO d 2 ~d d ~ 56 d 1 dO ~d 2 4&(

where p=Z. . .nv, e =Q.. ne. . v
i2 i U' iJ i' iJ' s =g..n. s.. v. . .

iJ i i2 i2

III. THE BOI.TZMANN EQUATION

Combining Eqs. (1) and (2) we have

2

Bg eE x dfo x Bgv —+ ——+ + —+gx 8t pl, v dv v 85

+ —(v g (33)

Replacing vx by —vx in (33) and alternately adding
and subtracting the result equation from (33), we
obtain the separate equations ~ '~

—+—~=—
I

—(~z)) .Bg eE df 1 B

Bt m dv v (Bt

Assuming E=E,eosvt and combining (24) with (36),
we obtain v. . (v) =¹[q.. (v) —q .. (v)] = v ..(v) .u gg g'tt n (37)

—+ p (v)g = n -co—s(ot,Bg " ydf
et v dv (s6)

where y=eEJm.
It would appear at first glance that we immediate-

ly could integrate (36) to obtain g in terms of f,.
This would be possible if we were considering only
elastic collisions. The introduction of inelastic
collisions, however, introduces a further compli-
cation through the term p(v). From Eqs. (25) and
(26) we see that j(v) is dependent upon the func-
tional form of g. Consequently, (36) cannot be
integrated in the obvious manner without some
further assumptions concerning inelastic collision
processes. Fortunately, the two assumptions
which me can make to render p, independent of g
are the same assumptions which were employed
above to simplify the expression for (Bf0/Bt)c,
that is, to obtain Eqs. (28) and (32). In the first
case„ then, we assume the inelastic collision fre-
quency is much smaller than the frequency for
elastic encounters, i. e. , q" (v, 8) «q-~ (v, 8) for
i x j. For elastic collisions we have from (26)
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j(v) =Z. n. v . . (v) = v (v) . (38)

Thus, neglecting inelastic collisions, we obtain
g, (v) 1 T, AT„
g(v) AT, T mv'

Putting (38) into (36) and solving for g gives'~" ~" Thus, except for the low-energy tail of the dis-
tribution, we have from (51)

g(v, f) =yA (v) cosrot +yA (v) sinu&t,
P V

(39)
e..g (v)/g(v)-e. /AT «1.
ij 1 U

(52)

where A (v)=- —d"1 df„ v

p vdv (0+v

1 lgo M
A (v)=--

p v ctv co +v
(41}

If f,(v) is a Druyvesteyn distribution, i. e. , if

f,(v) =A exp(- nv'),

where n =3m/2My'P', we obtain

If the inelastic collision frequency is not small
in comparison with the elastic, we can, under cer-
tain conditions, employ fruitfully the approxima-
tions which are valid when ( —,'mv')» ef&. If this
is true, then similar to Eqs. (30) and (31), we
have

g,{u) { { kT,
{ 4,{)g(v) AT,

+ mv' (53)

For a Druyvesteyn distribution (v') - n '~', so that
except for the high- and low-energy tails of the
distribution we again obtain

g*(v ..)/g(v) =1+e. g, (v)/g(v),
ij U1
g, (v) 1 A T„sg
g(v) AT, mvg(v) sv

If we assume further that

e..g (v)/g(v) «1,
ij 1

then we have from (26)
v. .

v. . (v)=¹ 1-—cos8 I q. . (v)d&
U v ! ij

= v. . (v),ij
and ll (v) = Z n v. . (v.).= F. (v) .ij i ij

(44)

(45)

(46)

e..g (v)/g(v)- e. /AT «1..
1 U

Therefore, our result Eq. (4V) is consistent
with the approximation used to derive it if f,(v)
is either Maxwellian or Druyvesteyn and if we
ignore the divergencies which appear in the ratio
g, (v)/g(v) at the low- and high-energy tails of the
distr ibutlon.

An approximately valid differential equation for
fo can be realized by proceeding in a manner sim-
ilar to the elastic collision case. '&"&" Thus, sub-
stituting either (39) or (4V) into (34) and averaging
over all directions of v and over one cycle of the
external field, we obtain

Substituting (46) into (36) and integrating, we

obtain

=v2
6 dv

(54)

g (v, t) = yA (v) cosset+ yA (v) sin(uf,
p, p.

where A (v) = ——1 dfo p,

p, v dv u+p.

A (v)=- —~1d GP

p, vdv e+p,

(47)

(48)

(49)

where g = v or ll depending upon which form of g
we use, Eq. (39) or (47). If we can assume a low
inelastic collision frequency, then $ = v and the

(sfO/M)c term in Eq. (54) will be given by Eq. (28).
Therefore, substituting Eqs. (28) and (40) into

(54), we obtain

g(v) = —(yp/v') dfJdv . (5o)

In order to verify if our result (47) is consistent
with the assumption of Eq. (44), we look at the
collstallt-field case. Setting co = 0 ill (47), (48),
alld (49), and settlllg p =v/p 111 (48), wllere p 18

the mean free path of the electrons (for simplicity
assumed constant), we obtain

d 2df v m dv' a, -, + ——(v'vf, )
6 gv gv co +v M cfv

+v'5 n. [f +( ) vf(v)t v. . (v) =0. -
0 ~g 0ij

(55)

If we assume f,(v) is a Maxwellian with tempera-
ture T, compute g(v) from (50), and substitute the
result into (43), we obtain

If we had not assumed microscopic reversibili-
ty back in Eq. (17), the last term in (55) would
read instead



.. Qv. . V.. p. , V. , —Qv v p. . v
ij j ij 0 ij ji ij i 0 ij

Equation (55) with ~ =0 (dc case), when applied
to electron-N, collisions in which j is either i —2

or i+2, is essentially the fundamental equation
for f, employed by Frost and Phelps. ' It is based,
as we have seen, upon the neglect in inelastic col-
lisions of molecular motion or recoil. Methods of
solution of Eq. (55) for various physical situations
are described in detail by Frost and Phelps' and by
Sherman, " and for a similar expression by Carle-
ton and Megill '6

If we cannot assume a low inelastic collision fre-
quency but can assume (-,' mv')» e~&, then in Eq.
(54) $ = p, and (&f0/Bf)c will be given by (32). Com-
bining (32) with (48) and (54), we obtain

+ ——[v'(f.) +f,e )]
y' d, df p, m d
6 dv dv co'+ p,

' M dv

kTO d 2 dfo de

where A is a normalization constant, and

My2
p(e)=me()ee' e

6(40 + v

Q(v) =-, %TO+, , -,
)

e f (f(e')+; ", )e "e(e')de'. (6()

We note that the first term in (59) represents the
contribution to f, from elastic collisions. " Mar-
genau'3 has investigated the functional form of
this term in the constant mean-free-path approxi-
mation. The second term in (59) is the correc-
tion due to inelastic collisions, and we see from
(61) that it is dependent upon the functional form
of f, We .can eliminate this dependence by as-
suming the inelastic contribution is. much smaller
than the elastic, obtain the first iterative form
of {59), and neglect terms quadratic in e. Doing

this we obtain

kT~ VC d 1 ~d ~ d 266
f,(v) =A exp[- J P{v')dv']

x (I + fB(v) exp[ f P(v')dv'] dv$,

+v'f, (v)&(v) =0.

As far as this author knows, an expression
along the lines of Eq. (56) has not appeared pre-
viously in the literature. The reason for this
probably lies in the fact that most authors content
themselves to use somewhat simpler expressions
analogous to (55). Equation (56), however, can
be used as the starting point for many investiga-
tions into the properties of ionized gases when the
assumptions involved in the derivation of Eq. (55)
ax'e no longex' valid.

A third useful differential equation for f, may
be obtained by assuming both a low inelastic col-
lision frequency and the condition (-,' mv')» ef .
If we do this, we can use Eq. (34) to rewrite t e
fourth term in Eq. (55) as

M my2
B(v) = —&, kT, +

6(

x f exp[.—f I'(v") dv "]

x $ —;-Pv v cv dv
/Plv

Following Margenau" we can, zn the constant
mean-free-path approximation, evaluate further
the integrals in (62) and (63) for two important
special cases. In the first case (high-frequency
ac field) &u» v and we obtain

v' ~,. o',. [f0*(v,-. ) -f0(v)] v, (v)

=v'f, (v )e(v) .

Substituting (5V) into (55) we have

(57)

—Av'2
e e(e') e de')e e de ),

wh~re p = v/v is the constant mean-free-path of
the electrons, and

X =m/2y(T, +my'/6a~') =m/mT.

= —Mv'f, (v) e(v),

which can be integrated formally to yield

In the second case (strong dc field) we assume
My'p'/6v' »kT, and obtain

f,(v) =Aexp[- f I'(v')dv'] +exp[- f P(v')dv']

x f Q(v)exp[ f P(v')dv']dv, (59)
Ig

e e(v')e de ') e e de) . ($5)
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Thus, in both cases considered here the effect of
inelastic collisions on the isotropic part of the
electron distribution is, within the limitations of
our assumptions, to add a small correction term
to the well known Maxwellian and Druyvesteyn dis-
tributions which arise when only elastic collisions
ax'e consldex'ed.

IV. SUMMARY AND CONCLUSION

By expanding in a Taylor series the inelastic
scattering probability in the collision term of the
Boltzmann transport equation, an approximate
form of the Boltzmann equation for slightly ionized
gases in the presence of a time-dependent electric
field, which takes into account elastic and inelas-
tic electron-molecule collisions, has been ob-
tained in a rigorous fashion. The inelastic col-
lision term mas obtained for arbitrary collision

frequency, and it mas shown how this expression
could be simplified under the assumption of a low
inelastic (in comparison with the elastic) collision
frequency, or lom molecular excitation energy in
comparison with the average kinetic energy of the
electrons, or both, Making both these assump-
tions and further assuming a low inelastic energy
transfer, a formal solution of this equation was
effected by an iterative procedure. This solution
indicated explicitly that inelastic collisions ax e
responsible for a small correction term to the
distx'ibution function which mould be obtained if
one considered only elastic collisions.

ACKNOWLEDGMENT

This work was supported in part by the National
Science Foundation and the Research Council of
the University of Nox'th Carolina, at Greensboro.

S. Chapman and T. G. Cowling, The Mathematical

Theory of Non-Uniform Gases {Cambridge University
Press, New York, 1952), 2nd ed.

T. Holstein, Phys. Rev. 70, 367 (1946).
J. C. Howe, Am. J. Phys. 31, 905 (1963).
L. S. Frost and A. V. Phelps, Phys. Rev. 127, 1621

(1962).
8. Altshuler, J. Geophys. Res. 68, 4707 (1963).
E. A. Desloge and S. %'. Matthysse, Am. J. Phys.

28, 1 (1960).
E. A. Desloge, Statistical Physics (Holt, Rinehart,

and Winston, Inc. , New York, 1966), Chap. 37.
E. A. Desloge, Phys. Fluids 9, 982 (1966).
Reference 7, p. 386.
The usual statement of microscopic reversibility

iRef. 7, p. 386) is S&~(v', v)=Sg& (v, v'), which is valid for
nondegenerate internal molecular states. It is believed
that for degenerate states (see, for example, Ref. 5) Eq.

{16) is a valid generalization. An equivalent expression
in terms of cross section is g& e~& q&g (v~&) =g~ e q~& (e),
which is obtained by substituting Eq. (10) into (16) and

integrating over v '. This equation is satisfied by the
theoretical cross sections for rotational excitation of N2

derived by E. Gerjuoy and S, Stein, Phys. Rev. 97, 1671
(1955), and of CO derived by K. Takayanagi, J. Phys.
Soc. Japan 21, 507 (1966).

These integrals are evaluated in a manner similar to
the elastic collision case which is discussed in detail in
Ref. 7, Appendix 14.

F. J. McCormack, J. Chem. Phys. 49, 1442 (1968).
H. Margenau, Phys. Rev. 69, 508 (1946).
Reference 7, Chap. 38.
B. Sherman, J. Math. Analysis and Application 1,

342 (1960).
N. P. Carleton and L. R. Megill, Phys. Rev. 126,

2089 (1962).


